forked from M-Labs/nac3
Compare commits
18 Commits
ndarray-st
...
ndarray-st
Author | SHA1 | Date |
---|---|---|
lyken | 3f4ee433f1 | |
lyken | ab7ff2ae9d | |
lyken | e75db2c26f | |
lyken | 635542a36d | |
lyken | 39a05d6be6 | |
lyken | d6451b11c1 | |
lyken | 0774dd1685 | |
lyken | dec1658e13 | |
lyken | c192256b78 | |
lyken | 94c547ee22 | |
lyken | 262a99ff26 | |
lyken | 5fe74303ee | |
lyken | 84fc095800 | |
lyken | b0f97b4d36 | |
lyken | 8f191631f2 | |
lyken | 851cef57aa | |
lyken | 0300c81bb7 | |
lyken | 600acc8e5e |
|
@ -0,0 +1,31 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_printer.hpp"
|
||||
|
||||
namespace {
|
||||
#define MAX_ERROR_NAME_LEN 32
|
||||
|
||||
// TODO: right now just to report some messages for now
|
||||
struct ErrorContext {
|
||||
Printer error;
|
||||
// TODO: add error_class_name??
|
||||
|
||||
void initialize(char* string_base_ptr, uint32_t max_length) {
|
||||
error.initialize(string_base_ptr, max_length);
|
||||
}
|
||||
|
||||
bool has_error() {
|
||||
return error.length > 0;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
void __nac3_error_context_init(ErrorContext* ctx, char* string_base_ptr, uint32_t max_length) {
|
||||
ctx->initialize(string_base_ptr, max_length);
|
||||
}
|
||||
|
||||
uint8_t __nac3_error_context_has_error(ErrorContext* ctx) {
|
||||
return (uint8_t) ctx->has_error();
|
||||
}
|
||||
}
|
|
@ -1,10 +1,12 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_utils.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
#include "irrt_basic.hpp"
|
||||
#include "irrt_slice.hpp"
|
||||
#include "irrt_error_context.hpp"
|
||||
#include "irrt_numpy_ndarray.hpp"
|
||||
#include "irrt_printer.hpp"
|
||||
#include "irrt_slice.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
#include "irrt_utils.hpp"
|
||||
|
||||
/*
|
||||
All IRRT implementations.
|
||||
|
|
|
@ -8,9 +8,6 @@
|
|||
NDArray-related implementations.
|
||||
`*/
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndex = uint32_t;
|
||||
|
||||
namespace {
|
||||
namespace ndarray_util {
|
||||
template <typename SizeT>
|
||||
|
@ -105,12 +102,16 @@ namespace {
|
|||
}
|
||||
|
||||
struct NDSlice {
|
||||
// A poor-man's `std::variant<int, UserRange>`
|
||||
// A poor-man's enum variant type
|
||||
NDSliceType type;
|
||||
|
||||
/*
|
||||
if type == INPUT_SLICE_TYPE_INDEX => `slice` points to a single `SizeT`
|
||||
if type == INPUT_SLICE_TYPE_SLICE => `slice` points to a single `UserRange`
|
||||
if type == INPUT_SLICE_TYPE_SLICE => `slice` points to a single `UserRange<SizeT>`
|
||||
|
||||
`SizeT` is controlled by the caller: `NDSlice` only cares about where that
|
||||
slice is (the pointer), `NDSlice` does not care/know about the actual `sizeof()`
|
||||
of the slice value.
|
||||
*/
|
||||
uint8_t* slice;
|
||||
};
|
||||
|
@ -123,36 +124,36 @@ namespace {
|
|||
SizeT final_ndims = ndims;
|
||||
for (SizeT i = 0; i < num_slices; i++) {
|
||||
if (slices[i].type == INPUT_SLICE_TYPE_INDEX) {
|
||||
final_ndims--; // An integer slice demotes the rank by 1
|
||||
final_ndims--; // An index demotes the rank by 1
|
||||
}
|
||||
}
|
||||
return final_ndims;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
struct NDArrayIndicesIter {
|
||||
SizeT ndims;
|
||||
const SizeT *shape;
|
||||
SizeT *indices;
|
||||
// template <typename SizeT>
|
||||
// struct NDArrayIndicesIter {
|
||||
// SizeT ndims;
|
||||
// const SizeT *shape;
|
||||
// SizeT *indices;
|
||||
|
||||
void set_indices_zero() {
|
||||
__builtin_memset(indices, 0, sizeof(SizeT) * ndims);
|
||||
}
|
||||
// void set_indices_zero() {
|
||||
// __builtin_memset(indices, 0, sizeof(SizeT) * ndims);
|
||||
// }
|
||||
|
||||
void next() {
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
SizeT dim_i = ndims - i - 1;
|
||||
// void next() {
|
||||
// for (SizeT i = 0; i < ndims; i++) {
|
||||
// SizeT dim_i = ndims - i - 1;
|
||||
|
||||
indices[dim_i]++;
|
||||
if (indices[dim_i] < shape[dim_i]) {
|
||||
break;
|
||||
} else {
|
||||
indices[dim_i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
// indices[dim_i]++;
|
||||
// if (indices[dim_i] < shape[dim_i]) {
|
||||
// break;
|
||||
// } else {
|
||||
// indices[dim_i] = 0;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// };
|
||||
|
||||
// The NDArray object. `SizeT` is the *signed* size type of this ndarray.
|
||||
//
|
||||
|
@ -172,6 +173,8 @@ namespace {
|
|||
// NOTE: Formally this should be of type `void *`, but clang
|
||||
// translates `void *` to `i8 *` when run with `-S -emit-llvm`,
|
||||
// so we will put `uint8_t *` here for clarity.
|
||||
//
|
||||
// This pointer should point to the first element of the ndarray directly
|
||||
uint8_t *data;
|
||||
|
||||
// The number of bytes of a single element in `data`.
|
||||
|
@ -212,11 +215,11 @@ namespace {
|
|||
return this->size() * itemsize;
|
||||
}
|
||||
|
||||
void set_value_at_pelement(uint8_t* pelement, const uint8_t* pvalue) {
|
||||
void set_pelement_value(uint8_t* pelement, const uint8_t* pvalue) {
|
||||
__builtin_memcpy(pelement, pvalue, itemsize);
|
||||
}
|
||||
|
||||
uint8_t* get_pelement(const SizeT *indices) {
|
||||
uint8_t* get_pelement_by_indices(const SizeT *indices) {
|
||||
uint8_t* element = data;
|
||||
for (SizeT dim_i = 0; dim_i < ndims; dim_i++)
|
||||
element += indices[dim_i] * strides[dim_i];
|
||||
|
@ -229,7 +232,7 @@ namespace {
|
|||
|
||||
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * this->ndims);
|
||||
ndarray_util::set_indices_by_nth(this->ndims, this->shape, indices, nth);
|
||||
return get_pelement(indices);
|
||||
return get_pelement_by_indices(indices);
|
||||
}
|
||||
|
||||
// Get pointer to the first element of this ndarray, assuming
|
||||
|
@ -252,15 +255,10 @@ namespace {
|
|||
|
||||
// Fill the ndarray with a value
|
||||
void fill_generic(const uint8_t* pvalue) {
|
||||
NDArrayIndicesIter<SizeT> iter;
|
||||
iter.ndims = this->ndims;
|
||||
iter.shape = this->shape;
|
||||
iter.indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndims);
|
||||
iter.set_indices_zero();
|
||||
|
||||
for (SizeT i = 0; i < this->size(); i++, iter.next()) {
|
||||
uint8_t* pelement = get_pelement(iter.indices);
|
||||
set_value_at_pelement(pelement, pvalue);
|
||||
const SizeT size = this->size();
|
||||
for (SizeT i = 0; i < size; i++) {
|
||||
uint8_t* pelement = get_nth_pelement(i);
|
||||
set_pelement_value(pelement, pvalue);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -283,12 +281,18 @@ namespace {
|
|||
|
||||
if (!in_bounds(indices)) continue;
|
||||
|
||||
uint8_t* pelement = get_pelement(indices);
|
||||
set_value_at_pelement(pelement, one_pvalue);
|
||||
uint8_t* pelement = get_pelement_by_indices(indices);
|
||||
set_pelement_value(pelement, one_pvalue);
|
||||
}
|
||||
}
|
||||
|
||||
// To support numpy complex slices (e.g., `my_array[:50:2,4,:2:-1]`)
|
||||
// To support numpy "basic indexing" https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing
|
||||
// "Advanced indexing" https://numpy.org/doc/stable/user/basics.indexing.html#advanced-indexing is not supported
|
||||
//
|
||||
// This function supports:
|
||||
// - "scalar indexing",
|
||||
// - "slicing and strides",
|
||||
// - and "dimensional indexing tools" (TODO, but this is really easy to implement).
|
||||
//
|
||||
// Things assumed by this function:
|
||||
// - `dst_ndarray` is allocated by the caller
|
||||
|
@ -299,13 +303,14 @@ namespace {
|
|||
// - `dst_ndarray->data` does not have to be set, it will be derived.
|
||||
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `this->itemsize`
|
||||
// - `dst_ndarray->shape` and `dst_ndarray.strides` can contain empty values
|
||||
void slice(SizeT num_ndslices, NDSlice* ndslices, NDArray<SizeT>* dst_ndarray) {
|
||||
void subscript(SizeT num_ndslices, NDSlice* ndslices, NDArray<SizeT>* dst_ndarray) {
|
||||
// REFERENCE CODE (check out `_index_helper` in `__getitem__`):
|
||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||
|
||||
irrt_assert(dst_ndarray->ndims == ndarray_util::deduce_ndims_after_slicing(this->ndims, num_ndslices, ndslices));
|
||||
|
||||
dst_ndarray->data = this->data;
|
||||
dst_ndarray->itemsize = this->itemsize;
|
||||
|
||||
SizeT this_axis = 0;
|
||||
SizeT dst_axis = 0;
|
||||
|
@ -326,15 +331,15 @@ namespace {
|
|||
// Handle when the ndslice is a slice (represented by UserSlice in IRRT)
|
||||
// e.g., `my_array[::2, -5, ::-1]`
|
||||
// ^^^------^^^^----- like these
|
||||
UserSlice<SizeT>* user_slice = (UserSlice<SizeT>*) ndslice->slice;
|
||||
Slice<SizeT> slice = user_slice->indices(this->shape[this_axis]); // To resolve negative indices and other funny stuff written by the user
|
||||
UserSlice* user_slice = (UserSlice*) ndslice->slice;
|
||||
Slice slice = user_slice->indices(this->shape[this_axis]); // To resolve negative indices and other funny stuff written by the user
|
||||
|
||||
// NOTE: There is no need to write special code to handle negative steps/strides.
|
||||
// This simple implementation meticulously handles both positive and negative steps/strides.
|
||||
// Check out the tinynumpy and IRRT's test cases if you are not convinced.
|
||||
dst_ndarray->data += slice.start * this->strides[this_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
|
||||
dst_ndarray->strides[dst_axis] = slice.step * this->strides[this_axis]; // Determine stride
|
||||
dst_ndarray->shape[dst_axis] = slice.len(); // Determine shape dimension
|
||||
dst_ndarray->data += (SizeT) slice.start * this->strides[this_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
|
||||
dst_ndarray->strides[dst_axis] = ((SizeT) slice.step) * this->strides[this_axis]; // Determine stride
|
||||
dst_ndarray->shape[dst_axis] = (SizeT) slice.len(); // Determine shape dimension
|
||||
|
||||
// Next
|
||||
dst_axis++;
|
||||
|
@ -344,7 +349,18 @@ namespace {
|
|||
}
|
||||
}
|
||||
|
||||
irrt_assert(dst_axis == dst_ndarray->ndims); // Sanity check on the implementation
|
||||
/*
|
||||
Reference python code:
|
||||
```python
|
||||
dst_ndarray.shape.extend(this.shape[this_axis:])
|
||||
dst_ndarray.strides.extend(this.strides[this_axis:])
|
||||
```
|
||||
*/
|
||||
|
||||
for (; dst_axis < dst_ndarray->ndims; dst_axis++, this_axis++) {
|
||||
dst_ndarray->shape[dst_axis] = this->shape[this_axis];
|
||||
dst_ndarray->strides[dst_axis] = this->strides[this_axis];
|
||||
}
|
||||
}
|
||||
|
||||
// Similar to `np.broadcast_to(<ndarray>, <target_shape>)`
|
||||
|
@ -426,20 +442,30 @@ namespace {
|
|||
};
|
||||
src_ndarray->broadcast_to(&broadcasted_src_ndarray);
|
||||
|
||||
// Using iter instead of `get_nth_pelement` because it is slightly faster
|
||||
SizeT* indices = __builtin_alloca(sizeof(SizeT) * this->ndims);
|
||||
auto iter = NDArrayIndicesIter<SizeT> {
|
||||
.ndims = this->ndims,
|
||||
.shape = this->shape,
|
||||
.indices = indices
|
||||
};
|
||||
const SizeT this_size = this->size();
|
||||
for (SizeT i = 0; i < this_size; i++, iter.next()) {
|
||||
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_pelement(indices);
|
||||
uint8_t* this_pelement = this->get_pelement(indices);
|
||||
this->set_value_at_pelement(src_pelement, src_pelement);
|
||||
const SizeT size = this->size();
|
||||
for (SizeT i = 0; i < size; i++) {
|
||||
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_nth_pelement(i);
|
||||
uint8_t* this_pelement = this->get_nth_pelement(i);
|
||||
this->set_pelement_value(this_pelement, src_pelement);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: DOCUMENT ME
|
||||
bool is_unsized() {
|
||||
return this->ndims == 0;
|
||||
}
|
||||
|
||||
// Simulate `len(<ndarray>)`
|
||||
// See (it doesn't help): https://numpy.org/doc/stable/reference/generated/numpy.ndarray.__len__.html#numpy.ndarray.__len__
|
||||
SliceIndex len() {
|
||||
// If you do `len(np.asarray(42))` (note that its `.shape` is just `()` - an empty tuple),
|
||||
// numpy throws a `TypeError: len() of unsized object`
|
||||
irrt_assert(!this->is_unsized());
|
||||
|
||||
// Apparently `len(<ndarray>)` is defined to be the first dimension
|
||||
// REFERENCE: https://stackoverflow.com/questions/43081809/len-of-a-numpy-array-in-python
|
||||
return (SliceIndex) this->shape[0];
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -452,6 +478,14 @@ extern "C" {
|
|||
return ndarray->size();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
|
||||
ndarray->set_strides_by_shape();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
|
||||
ndarray->set_strides_by_shape();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_fill_generic(NDArray<int32_t>* ndarray, uint8_t* pvalue) {
|
||||
ndarray->fill_generic(pvalue);
|
||||
}
|
||||
|
@ -460,7 +494,27 @@ extern "C" {
|
|||
ndarray->fill_generic(pvalue);
|
||||
}
|
||||
|
||||
// void __nac3_ndarray_slice(NDArray<int32_t>* ndarray, int32_t num_slices, NDSlice<int32_t> *slices, NDArray<int32_t> *dst_ndarray) {
|
||||
// // ndarray->slice(num_slices, slices, dst_ndarray);
|
||||
// }
|
||||
int32_t __nac3_ndarray_deduce_ndims_after_slicing(int32_t ndims, int32_t num_slices, const NDSlice* slices) {
|
||||
return ndarray_util::deduce_ndims_after_slicing(ndims, num_slices, slices);
|
||||
}
|
||||
|
||||
int64_t __nac3_ndarray_deduce_ndims_after_slicing64(int64_t ndims, int64_t num_slices, const NDSlice* slices) {
|
||||
return ndarray_util::deduce_ndims_after_slicing(ndims, num_slices, slices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_subscript(NDArray<int32_t>* ndarray, int32_t num_slices, NDSlice* slices, NDArray<int32_t> *dst_ndarray) {
|
||||
ndarray->subscript(num_slices, slices, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_subscript64(NDArray<int64_t>* ndarray, int32_t num_slices, NDSlice* slices, NDArray<int64_t> *dst_ndarray) {
|
||||
ndarray->subscript(num_slices, slices, dst_ndarray);
|
||||
}
|
||||
|
||||
SliceIndex __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
|
||||
return ndarray->len();
|
||||
}
|
||||
|
||||
SliceIndex __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
|
||||
return ndarray->len();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,82 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_typedefs.hpp"
|
||||
|
||||
// TODO: obviously implementing printf from scratch is bad,
|
||||
// is there a header only, no-cstdlib library for this?
|
||||
|
||||
namespace {
|
||||
struct Printer {
|
||||
char* string_base_ptr;
|
||||
uint32_t max_length;
|
||||
uint32_t length; // NOTE: this could be incremented past max_length, which indicates
|
||||
|
||||
void initialize(char *string_base_ptr, uint32_t max_length) {
|
||||
this->string_base_ptr = string_base_ptr;
|
||||
this->max_length = max_length;
|
||||
this->length = 0;
|
||||
}
|
||||
|
||||
void put_space() {
|
||||
put_char(' ');
|
||||
}
|
||||
|
||||
void put_char(char ch) {
|
||||
push_char(ch);
|
||||
}
|
||||
|
||||
void put_string(const char* string) {
|
||||
// TODO: optimize?
|
||||
while (*string != '\0') {
|
||||
push_char(*string);
|
||||
string++; // Move to next char
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void put_int(T value) {
|
||||
// NOTE: Try not to use recursion to print the digits
|
||||
|
||||
// value == 0 is a special case
|
||||
if (value == 0) {
|
||||
push_char('0');
|
||||
} else {
|
||||
// Add a '-' if the value is negative
|
||||
if (value < 0) {
|
||||
push_char('-');
|
||||
value = -value; // Negate then continue to print the digits
|
||||
}
|
||||
|
||||
// TODO: Recursion is a bad idea on embedded systems?
|
||||
uint32_t num_digits = int_log_floor(value, 10) + 1;
|
||||
put_int_helper(num_digits, value);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: implement put_float() and more would be useful
|
||||
private:
|
||||
void push_char(char ch) {
|
||||
if (length < max_length) {
|
||||
string_base_ptr[length] = ch;
|
||||
}
|
||||
|
||||
// NOTE: this could increment past max_length,
|
||||
// to indicate the true length of the message even if it gets cut off
|
||||
length++;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void put_int_helper(uint32_t num_digits, T value) {
|
||||
// Print the digits recursively
|
||||
__builtin_assume(0 <= value);
|
||||
|
||||
if (num_digits > 0) {
|
||||
put_int_helper(num_digits - 1, value / 10);
|
||||
|
||||
uint32_t digit = value % 10;
|
||||
char digit_char = '0' + (char) digit;
|
||||
put_char(digit_char);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
|
@ -4,19 +4,15 @@
|
|||
#include "irrt_typedefs.hpp"
|
||||
|
||||
namespace {
|
||||
// A proper slice in IRRT, all negative indices have be resolved to absolute values.
|
||||
// Even though nac3core's slices are always `int32_t`, we will template slice anyway
|
||||
// since this struct is used as a general utility.
|
||||
template <typename T>
|
||||
struct Slice {
|
||||
T start;
|
||||
T stop;
|
||||
T step;
|
||||
SliceIndex start;
|
||||
SliceIndex stop;
|
||||
SliceIndex step;
|
||||
|
||||
// The length/The number of elements of the slice if it were a range,
|
||||
// i.e., the value of `len(range(this->start, this->stop, this->end))`
|
||||
T len() {
|
||||
T diff = stop - start;
|
||||
SliceIndex len() {
|
||||
SliceIndex diff = stop - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
|
@ -27,38 +23,45 @@ namespace {
|
|||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
T resolve_index_in_length(T length, T index) {
|
||||
SliceIndex resolve_index_in_length(SliceIndex length, SliceIndex index) {
|
||||
irrt_assert(length >= 0);
|
||||
if (index < 0) {
|
||||
// Remember that index is negative, so do a plus here
|
||||
return max(length + index, 0);
|
||||
return max<SliceIndex>(length + index, 0);
|
||||
} else {
|
||||
return min(length, index);
|
||||
return min<SliceIndex>(length, index);
|
||||
}
|
||||
}
|
||||
|
||||
// A user-written Python-like slice.
|
||||
//
|
||||
// i.e., this slice is a triple of either an int or nothing. (e.g., `my_array[:10:2]`, `start` is None)
|
||||
//
|
||||
// You can "resolve" a `UserSlice` by using `UserSlice::indices(<length>)`
|
||||
//
|
||||
// NOTE: using a bitfield for the `*_defined` is better, at the
|
||||
// cost of a more annoying implementation in nac3core inkwell
|
||||
template <typename T>
|
||||
struct UserSlice {
|
||||
// Did the user specify `start`? If 0, `start` is undefined (and contains an empty value)
|
||||
uint8_t start_defined;
|
||||
T start;
|
||||
SliceIndex start;
|
||||
|
||||
// Similar to `start_defined`
|
||||
uint8_t stop_defined;
|
||||
T stop;
|
||||
SliceIndex stop;
|
||||
|
||||
// Similar to `start_defined`
|
||||
uint8_t step_defined;
|
||||
T step;
|
||||
SliceIndex step;
|
||||
|
||||
// Like Python's `slice(start, stop, step).indices(length)`
|
||||
Slice<T> indices(T length) {
|
||||
Slice indices(SliceIndex length) {
|
||||
// NOTE: This function implements Python's `slice.indices` *FAITHFULLY*.
|
||||
// SEE: https://github.com/python/cpython/blob/f62161837e68c1c77961435f1b954412dd5c2b65/Objects/sliceobject.c#L546
|
||||
irrt_assert(length >= 0);
|
||||
irrt_assert(!step_defined || step != 0); // step_defined -> step != 0; step cannot be zero if specified by user
|
||||
|
||||
Slice<T> result;
|
||||
Slice result;
|
||||
result.step = step_defined ? step : 1;
|
||||
bool step_is_negative = result.step < 0;
|
||||
|
||||
|
|
|
@ -81,7 +81,7 @@ void __print_ndarray_aux(const char *format, bool first, bool last, SizeT* curso
|
|||
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndarray->ndims);
|
||||
for (SizeT i = 0; i < dim; i++) {
|
||||
ndarray_util::set_indices_by_nth(ndarray->ndims, ndarray->shape, indices, *cursor);
|
||||
ElementT* pelement = (ElementT*) ndarray->get_pelement(indices);
|
||||
ElementT* pelement = (ElementT*) ndarray->get_pelement_by_indices(indices);
|
||||
ElementT element = *pelement;
|
||||
|
||||
if (i != 0) printf(", "); // List delimiter
|
||||
|
@ -158,34 +158,34 @@ void test_set_strides_by_shape() {
|
|||
assert_arrays_match("strides", "%u", 4u, expected_strides, strides);
|
||||
}
|
||||
|
||||
void test_ndarray_indices_iter_normal() {
|
||||
// Test NDArrayIndicesIter normal behavior
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[3] = { 1, 2, 3 };
|
||||
int32_t indices[3] = { 0, 0, 0 };
|
||||
auto iter = NDArrayIndicesIter<int32_t> {
|
||||
.ndims = 3,
|
||||
.shape = shape,
|
||||
.indices = indices
|
||||
};
|
||||
|
||||
assert_arrays_match("indices #0", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #1", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #2", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 2 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #3", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 0 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #4", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 1 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #5", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 2 });
|
||||
iter.next();
|
||||
assert_arrays_match("indices #6", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 }); // Loops back
|
||||
iter.next();
|
||||
assert_arrays_match("indices #7", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
|
||||
}
|
||||
// void test_ndarray_indices_iter_normal() {
|
||||
// // Test NDArrayIndicesIter normal behavior
|
||||
// BEGIN_TEST();
|
||||
//
|
||||
// int32_t shape[3] = { 1, 2, 3 };
|
||||
// int32_t indices[3] = { 0, 0, 0 };
|
||||
// auto iter = NDArrayIndicesIter<int32_t> {
|
||||
// .ndims = 3,
|
||||
// .shape = shape,
|
||||
// .indices = indices
|
||||
// };
|
||||
//
|
||||
// assert_arrays_match("indices #0", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #1", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #2", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 2 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #3", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 0 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #4", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 1 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #5", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 2 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #6", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 }); // Loops back
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #7", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
|
||||
// }
|
||||
|
||||
void test_ndarray_fill_generic() {
|
||||
// Test ndarray fill_generic
|
||||
|
@ -248,10 +248,10 @@ void test_ndarray_set_to_eye() {
|
|||
}
|
||||
|
||||
void test_slice_1() {
|
||||
// Test `slice(5, None, None).indices(100) == slice(5, 100, 1)`
|
||||
// Test `subscript(5, None, None).indices(100) == subscript(5, 100, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = 5,
|
||||
.stop_defined = 0,
|
||||
|
@ -265,10 +265,10 @@ void test_slice_1() {
|
|||
}
|
||||
|
||||
void test_slice_2() {
|
||||
// Test `slice(400, 999, None).indices(100) == slice(100, 100, 1)`
|
||||
// Test `subscript(400, 999, None).indices(100) == subscript(100, 100, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = 400,
|
||||
.stop_defined = 0,
|
||||
|
@ -282,10 +282,10 @@ void test_slice_2() {
|
|||
}
|
||||
|
||||
void test_slice_3() {
|
||||
// Test `slice(-10, -5, None).indices(100) == slice(90, 95, 1)`
|
||||
// Test `subscript(-10, -5, None).indices(100) == subscript(90, 95, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = -10,
|
||||
.stop_defined = 1,
|
||||
|
@ -300,10 +300,10 @@ void test_slice_3() {
|
|||
}
|
||||
|
||||
void test_slice_4() {
|
||||
// Test `slice(None, None, -5).indices(100) == (99, -1, -5)`
|
||||
// Test `subscript(None, None, -5).indices(100) == (99, -1, -5)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice<int> user_slice = {
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 0,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
|
@ -366,14 +366,14 @@ void test_ndslice_1() {
|
|||
};
|
||||
|
||||
// Create the slice in `ndarray[-2::, 1::2]`
|
||||
UserSlice<int32_t> user_slice_1 = {
|
||||
UserSlice user_slice_1 = {
|
||||
.start_defined = 1,
|
||||
.start = -2,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 0
|
||||
};
|
||||
|
||||
UserSlice<int32_t> user_slice_2 = {
|
||||
UserSlice user_slice_2 = {
|
||||
.start_defined = 1,
|
||||
.start = 1,
|
||||
.stop_defined = 0,
|
||||
|
@ -387,17 +387,17 @@ void test_ndslice_1() {
|
|||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
|
||||
};
|
||||
|
||||
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
|
||||
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
|
||||
|
||||
int32_t expected_shape[dst_ndims] = { 2, 2 };
|
||||
int32_t expected_strides[dst_ndims] = { 32, 16 };
|
||||
assert_arrays_match("shape", "%d", dst_ndims, expected_shape, dst_ndarray.shape);
|
||||
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
assert_values_match("dst_ndarray[0, 0]", "%f", 5.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 0 })));
|
||||
assert_values_match("dst_ndarray[0, 1]", "%f", 7.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 1 })));
|
||||
assert_values_match("dst_ndarray[1, 0]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 0 })));
|
||||
assert_values_match("dst_ndarray[1, 1]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 1 })));
|
||||
assert_values_match("dst_ndarray[0, 0]", "%f", 5.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0, 0 })));
|
||||
assert_values_match("dst_ndarray[0, 1]", "%f", 7.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0, 1 })));
|
||||
assert_values_match("dst_ndarray[1, 0]", "%f", 9.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1, 0 })));
|
||||
assert_values_match("dst_ndarray[1, 1]", "%f", 11.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1, 1 })));
|
||||
}
|
||||
|
||||
void test_ndslice_2() {
|
||||
|
@ -450,7 +450,7 @@ void test_ndslice_2() {
|
|||
|
||||
// Create the slice in `ndarray[2, ::-2]`
|
||||
int32_t user_slice_1 = 2;
|
||||
UserSlice<int32_t> user_slice_2 = {
|
||||
UserSlice user_slice_2 = {
|
||||
.start_defined = 0,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
|
@ -463,7 +463,7 @@ void test_ndslice_2() {
|
|||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
|
||||
};
|
||||
|
||||
ndarray.slice(num_ndslices, ndslices, &dst_ndarray);
|
||||
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
|
||||
|
||||
int32_t expected_shape[dst_ndims] = { 2 };
|
||||
int32_t expected_strides[dst_ndims] = { -16 };
|
||||
|
@ -471,8 +471,52 @@ void test_ndslice_2() {
|
|||
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
// [5.0, 3.0]
|
||||
assert_values_match("dst_ndarray[0]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0 })));
|
||||
assert_values_match("dst_ndarray[1]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1 })));
|
||||
assert_values_match("dst_ndarray[0]", "%f", 11.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0 })));
|
||||
assert_values_match("dst_ndarray[1]", "%f", 9.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1 })));
|
||||
}
|
||||
|
||||
void test_ndslice_3() {
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[12] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
|
||||
const int32_t in_itemsize = sizeof(double);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 3, 4 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
const int32_t dst_ndims = 2;
|
||||
int32_t dst_shape[dst_ndims] = {999, 999}; // Empty values
|
||||
int32_t dst_strides[dst_ndims] = {999, 999}; // Empty values
|
||||
NDArray<int32_t> dst_ndarray = {
|
||||
.data = nullptr,
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides
|
||||
};
|
||||
|
||||
// Create the slice in `ndarray[2:3]`
|
||||
UserSlice user_slice_1 = {
|
||||
.start_defined = 1,
|
||||
.start = 2,
|
||||
.stop_defined = 1,
|
||||
.stop = 3,
|
||||
.step_defined = 0,
|
||||
};
|
||||
|
||||
const int32_t num_ndslices = 1;
|
||||
NDSlice ndslices[num_ndslices] = {
|
||||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_1 },
|
||||
};
|
||||
|
||||
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
|
||||
}
|
||||
|
||||
void test_can_broadcast_shape() {
|
||||
|
@ -576,19 +620,21 @@ void test_can_broadcast_shape() {
|
|||
|
||||
void test_ndarray_broadcast_1() {
|
||||
/*
|
||||
# array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
|
||||
# >>> [[19.9 29.9 39.9 49.9]]
|
||||
#
|
||||
# array = np.broadcast_to(array, (2, 3, 4))
|
||||
# >>> [[[19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]]
|
||||
# >>> [[19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]
|
||||
# >>> [19.9 29.9 39.9 49.9]]]
|
||||
#
|
||||
# assery array.strides == (0, 0, 8)
|
||||
```python
|
||||
array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
|
||||
>>> [[19.9 29.9 39.9 49.9]]
|
||||
|
||||
array = np.broadcast_to(array, (2, 3, 4))
|
||||
>>> [[[19.9 29.9 39.9 49.9]
|
||||
>>> [19.9 29.9 39.9 49.9]
|
||||
>>> [19.9 29.9 39.9 49.9]]
|
||||
>>> [[19.9 29.9 39.9 49.9]
|
||||
>>> [19.9 29.9 39.9 49.9]
|
||||
>>> [19.9 29.9 39.9 49.9]]]
|
||||
|
||||
assert array.strides == (0, 0, 8)
|
||||
# and then pick some values in `array` and check them...
|
||||
```
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
|
@ -618,31 +664,33 @@ void test_ndarray_broadcast_1() {
|
|||
|
||||
assert_arrays_match("dst_ndarray->strides", "%d", dst_ndims, (int32_t[]) { 0, 0, 8 }, dst_ndarray.strides);
|
||||
|
||||
assert_values_match("dst_ndarray[0, 0, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 0})));
|
||||
assert_values_match("dst_ndarray[0, 0, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 1})));
|
||||
assert_values_match("dst_ndarray[0, 0, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 2})));
|
||||
assert_values_match("dst_ndarray[0, 0, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 3})));
|
||||
assert_values_match("dst_ndarray[0, 1, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 0})));
|
||||
assert_values_match("dst_ndarray[0, 1, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 1})));
|
||||
assert_values_match("dst_ndarray[0, 1, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 2})));
|
||||
assert_values_match("dst_ndarray[0, 1, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 3})));
|
||||
assert_values_match("dst_ndarray[1, 2, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {1, 2, 3})));
|
||||
assert_values_match("dst_ndarray[0, 0, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 0})));
|
||||
assert_values_match("dst_ndarray[0, 0, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 1})));
|
||||
assert_values_match("dst_ndarray[0, 0, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 2})));
|
||||
assert_values_match("dst_ndarray[0, 0, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 3})));
|
||||
assert_values_match("dst_ndarray[0, 1, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 0})));
|
||||
assert_values_match("dst_ndarray[0, 1, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 1})));
|
||||
assert_values_match("dst_ndarray[0, 1, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 2})));
|
||||
assert_values_match("dst_ndarray[0, 1, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 3})));
|
||||
assert_values_match("dst_ndarray[1, 2, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {1, 2, 3})));
|
||||
}
|
||||
|
||||
void test_assign_with() {
|
||||
/*
|
||||
```
|
||||
xs = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=np.float64)
|
||||
ys = xs.shape
|
||||
```
|
||||
*/
|
||||
void test_printer() {
|
||||
const uint32_t buffer_len = 256;
|
||||
char buffer[buffer_len];
|
||||
Printer printer = {
|
||||
.string_base_ptr = buffer,
|
||||
.max_length = buffer_len,
|
||||
.length = 0
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
int main() {
|
||||
test_calc_size_from_shape_normal();
|
||||
test_calc_size_from_shape_has_zero();
|
||||
test_set_strides_by_shape();
|
||||
test_ndarray_indices_iter_normal();
|
||||
// test_ndarray_indices_iter_normal();
|
||||
test_ndarray_fill_generic();
|
||||
test_ndarray_set_to_eye();
|
||||
test_slice_1();
|
||||
|
@ -651,8 +699,9 @@ int main() {
|
|||
test_slice_4();
|
||||
test_ndslice_1();
|
||||
test_ndslice_2();
|
||||
test_ndslice_3();
|
||||
test_can_broadcast_shape();
|
||||
test_ndarray_broadcast_1();
|
||||
test_assign_with();
|
||||
test_printer();
|
||||
return 0;
|
||||
}
|
|
@ -21,6 +21,43 @@ namespace {
|
|||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
uint32_t int_log_floor(T value, T base) {
|
||||
uint32_t result = 0;
|
||||
while (value < base) {
|
||||
result++;
|
||||
value /= base;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool string_is_empty(const char *str) {
|
||||
return str[0] == '\0';
|
||||
}
|
||||
|
||||
// TODO: DOCUMENT ME!!!!!
|
||||
// returns false if `src_str` could not be fully copied over to `dst_str`
|
||||
bool string_copy(uint32_t dst_max_size, char* dst_str, const char* src_str) {
|
||||
// This function guarantess that `dst_str` will be null-terminated,
|
||||
|
||||
for (uint32_t i = 0; i < dst_max_size; i++) {
|
||||
bool is_last = i + 1 == dst_max_size;
|
||||
if (is_last && src_str[i] != '\0') {
|
||||
dst_str[i] = '\0';
|
||||
return false;
|
||||
}
|
||||
|
||||
if (src_str[i] == '\0') {
|
||||
dst_str[i] = '\0';
|
||||
return true;
|
||||
}
|
||||
|
||||
dst_str[i] = src_str[i];
|
||||
}
|
||||
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
void irrt_panic() {
|
||||
// Crash the program for now.
|
||||
// TODO: Don't crash the program
|
||||
|
|
|
@ -702,53 +702,54 @@ pub fn call_numpy_min<'ctx, G: CodeGenerator + ?Sized>(
|
|||
BasicValueEnum::PointerValue(n)
|
||||
if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
|
||||
{
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
|
||||
let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
todo!()
|
||||
// let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
|
||||
// let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
|
||||
let n = NDArrayValue::from_ptr_val(n, llvm_usize, None);
|
||||
let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None));
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
let n_sz_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, n_sz, n_sz.get_type().const_zero(), "")
|
||||
.unwrap();
|
||||
// let n = NDArrayValue::from_ptr_val(n, llvm_usize, None);
|
||||
// let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None));
|
||||
// if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
// let n_sz_eqz = ctx
|
||||
// .builder
|
||||
// .build_int_compare(IntPredicate::NE, n_sz, n_sz.get_type().const_zero(), "")
|
||||
// .unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
n_sz_eqz,
|
||||
"0:ValueError",
|
||||
"zero-size array to reduction operation minimum which has no identity",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
// ctx.make_assert(
|
||||
// generator,
|
||||
// n_sz_eqz,
|
||||
// "0:ValueError",
|
||||
// "zero-size array to reduction operation minimum which has no identity",
|
||||
// [None, None, None],
|
||||
// ctx.current_loc,
|
||||
// );
|
||||
// }
|
||||
|
||||
let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
|
||||
unsafe {
|
||||
let identity =
|
||||
n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
|
||||
ctx.builder.build_store(accumulator_addr, identity).unwrap();
|
||||
}
|
||||
// let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
|
||||
// unsafe {
|
||||
// let identity =
|
||||
// n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
|
||||
// ctx.builder.build_store(accumulator_addr, identity).unwrap();
|
||||
// }
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
llvm_usize.const_int(1, false),
|
||||
(n_sz, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
// gen_for_callback_incrementing(
|
||||
// generator,
|
||||
// ctx,
|
||||
// llvm_usize.const_int(1, false),
|
||||
// (n_sz, false),
|
||||
// |generator, ctx, _, idx| {
|
||||
// let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
|
||||
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
let result = call_min(ctx, (elem_ty, accumulator), (elem_ty, elem));
|
||||
ctx.builder.build_store(accumulator_addr, result).unwrap();
|
||||
// let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
// let result = call_min(ctx, (elem_ty, accumulator), (elem_ty, elem));
|
||||
// ctx.builder.build_store(accumulator_addr, result).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
// Ok(())
|
||||
// },
|
||||
// llvm_usize.const_int(1, false),
|
||||
// )?;
|
||||
|
||||
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
accumulator
|
||||
// let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
// accumulator
|
||||
}
|
||||
|
||||
_ => unsupported_type(ctx, FN_NAME, &[a_ty]),
|
||||
|
@ -920,53 +921,54 @@ pub fn call_numpy_max<'ctx, G: CodeGenerator + ?Sized>(
|
|||
BasicValueEnum::PointerValue(n)
|
||||
if a_ty.obj_id(&ctx.unifier).is_some_and(|id| id == PrimDef::NDArray.id()) =>
|
||||
{
|
||||
let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
|
||||
let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
todo!()
|
||||
// let (elem_ty, _) = unpack_ndarray_var_tys(&mut ctx.unifier, a_ty);
|
||||
// let llvm_ndarray_ty = ctx.get_llvm_type(generator, elem_ty);
|
||||
|
||||
let n = NDArrayValue::from_ptr_val(n, llvm_usize, None);
|
||||
let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None));
|
||||
if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
let n_sz_eqz = ctx
|
||||
.builder
|
||||
.build_int_compare(IntPredicate::NE, n_sz, n_sz.get_type().const_zero(), "")
|
||||
.unwrap();
|
||||
// let n = NDArrayValue::from_ptr_val(n, llvm_usize, None);
|
||||
// let n_sz = irrt::call_ndarray_calc_size(generator, ctx, &n.dim_sizes(), (None, None));
|
||||
// if ctx.registry.llvm_options.opt_level == OptimizationLevel::None {
|
||||
// let n_sz_eqz = ctx
|
||||
// .builder
|
||||
// .build_int_compare(IntPredicate::NE, n_sz, n_sz.get_type().const_zero(), "")
|
||||
// .unwrap();
|
||||
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
n_sz_eqz,
|
||||
"0:ValueError",
|
||||
"zero-size array to reduction operation minimum which has no identity",
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
// ctx.make_assert(
|
||||
// generator,
|
||||
// n_sz_eqz,
|
||||
// "0:ValueError",
|
||||
// "zero-size array to reduction operation minimum which has no identity",
|
||||
// [None, None, None],
|
||||
// ctx.current_loc,
|
||||
// );
|
||||
// }
|
||||
|
||||
let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
|
||||
unsafe {
|
||||
let identity =
|
||||
n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
|
||||
ctx.builder.build_store(accumulator_addr, identity).unwrap();
|
||||
}
|
||||
// let accumulator_addr = generator.gen_var_alloc(ctx, llvm_ndarray_ty, None)?;
|
||||
// unsafe {
|
||||
// let identity =
|
||||
// n.data().get_unchecked(ctx, generator, &llvm_usize.const_zero(), None);
|
||||
// ctx.builder.build_store(accumulator_addr, identity).unwrap();
|
||||
// }
|
||||
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
llvm_usize.const_int(1, false),
|
||||
(n_sz, false),
|
||||
|generator, ctx, _, idx| {
|
||||
let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
// gen_for_callback_incrementing(
|
||||
// generator,
|
||||
// ctx,
|
||||
// llvm_usize.const_int(1, false),
|
||||
// (n_sz, false),
|
||||
// |generator, ctx, _, idx| {
|
||||
// let elem = unsafe { n.data().get_unchecked(ctx, generator, &idx, None) };
|
||||
|
||||
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
let result = call_max(ctx, (elem_ty, accumulator), (elem_ty, elem));
|
||||
ctx.builder.build_store(accumulator_addr, result).unwrap();
|
||||
// let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
// let result = call_max(ctx, (elem_ty, accumulator), (elem_ty, elem));
|
||||
// ctx.builder.build_store(accumulator_addr, result).unwrap();
|
||||
|
||||
Ok(())
|
||||
},
|
||||
llvm_usize.const_int(1, false),
|
||||
)?;
|
||||
// Ok(())
|
||||
// },
|
||||
// llvm_usize.const_int(1, false),
|
||||
// )?;
|
||||
|
||||
let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
accumulator
|
||||
// let accumulator = ctx.builder.build_load(accumulator_addr, "").unwrap();
|
||||
// accumulator
|
||||
}
|
||||
|
||||
_ => unsupported_type(ctx, FN_NAME, &[a_ty]),
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
use crate::codegen::{
|
||||
llvm_intrinsics::call_int_umin, stmt::gen_for_callback_incrementing, CodeGenContext,
|
||||
// irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
|
||||
llvm_intrinsics::call_int_umin,
|
||||
stmt::gen_for_callback_incrementing,
|
||||
CodeGenContext,
|
||||
CodeGenerator,
|
||||
};
|
||||
use inkwell::context::Context;
|
||||
|
@ -1207,25 +1210,27 @@ impl<'ctx> NDArrayType<'ctx> {
|
|||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
) -> Self {
|
||||
let llvm_usize = generator.get_size_type(ctx);
|
||||
todo!()
|
||||
|
||||
// struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
|
||||
//
|
||||
// * num_dims: Number of dimensions in the array
|
||||
// * dims: Pointer to an array containing the size of each dimension
|
||||
// * data: Pointer to an array containing the array data
|
||||
let llvm_ndarray = ctx
|
||||
.struct_type(
|
||||
&[
|
||||
llvm_usize.into(),
|
||||
llvm_usize.ptr_type(AddressSpace::default()).into(),
|
||||
dtype.ptr_type(AddressSpace::default()).into(),
|
||||
],
|
||||
false,
|
||||
)
|
||||
.ptr_type(AddressSpace::default());
|
||||
// let llvm_usize = generator.get_size_type(ctx);
|
||||
|
||||
NDArrayType::from_type(llvm_ndarray, llvm_usize)
|
||||
// // struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
|
||||
// //
|
||||
// // * num_dims: Number of dimensions in the array
|
||||
// // * dims: Pointer to an array containing the size of each dimension
|
||||
// // * data: Pointer to an array containing the array data
|
||||
// let llvm_ndarray = ctx
|
||||
// .struct_type(
|
||||
// &[
|
||||
// llvm_usize.into(),
|
||||
// llvm_usize.ptr_type(AddressSpace::default()).into(),
|
||||
// dtype.ptr_type(AddressSpace::default()).into(),
|
||||
// ],
|
||||
// false,
|
||||
// )
|
||||
// .ptr_type(AddressSpace::default());
|
||||
|
||||
// NDArrayType::from_type(llvm_ndarray, llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an [`NDArrayType`] from a [`PointerType`].
|
||||
|
@ -1659,23 +1664,22 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
|
|||
indices: &Index,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let indices_elem_ty = indices
|
||||
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
.get_type()
|
||||
.get_element_type();
|
||||
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
|
||||
panic!("Expected list[int32] but got {indices_elem_ty}")
|
||||
};
|
||||
assert_eq!(
|
||||
indices_elem_ty.get_bit_width(),
|
||||
32,
|
||||
"Expected list[int32] but got list[int{}]",
|
||||
indices_elem_ty.get_bit_width()
|
||||
);
|
||||
|
||||
todo!()
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// let indices_elem_ty = indices
|
||||
// .ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
// .get_type()
|
||||
// .get_element_type();
|
||||
// let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
|
||||
// panic!("Expected list[int32] but got {indices_elem_ty}")
|
||||
// };
|
||||
// assert_eq!(
|
||||
// indices_elem_ty.get_bit_width(),
|
||||
// 32,
|
||||
// "Expected list[int32] but got list[int{}]",
|
||||
// indices_elem_ty.get_bit_width()
|
||||
// );
|
||||
|
||||
// let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices);
|
||||
|
||||
|
@ -1764,306 +1768,163 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx,
|
|||
{
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct StructField<'ctx> {
|
||||
/// The GEP index of this struct field.
|
||||
pub gep_index: u32,
|
||||
/// Name of this struct field.
|
||||
///
|
||||
/// Used for generating names.
|
||||
pub name: &'static str,
|
||||
/// The type of this struct field.
|
||||
pub ty: BasicTypeEnum<'ctx>,
|
||||
}
|
||||
// #[derive(Debug, Clone, Copy)]
|
||||
// pub struct StructField<'ctx> {
|
||||
// /// The GEP index of this struct field.
|
||||
// pub gep_index: u32,
|
||||
// /// Name of this struct field.
|
||||
// ///
|
||||
// /// Used for generating names.
|
||||
// pub name: &'static str,
|
||||
// /// The type of this struct field.
|
||||
// pub ty: BasicTypeEnum<'ctx>,
|
||||
// }
|
||||
//
|
||||
// pub struct StructFields<'ctx> {
|
||||
// /// Name of the struct.
|
||||
// ///
|
||||
// /// Used for generating names.
|
||||
// pub name: &'static str,
|
||||
//
|
||||
// /// All the [`StructField`]s of this struct.
|
||||
// ///
|
||||
// /// **NOTE:** The index position of a [`StructField`]
|
||||
// /// matches the element's [`StructField::index`].
|
||||
// pub fields: Vec<StructField<'ctx>>,
|
||||
// }
|
||||
//
|
||||
// pub struct StructFieldsBuilder<'ctx> {
|
||||
// gep_index_counter: u32,
|
||||
// /// Name of the struct to be built.
|
||||
// name: &'static str,
|
||||
// fields: Vec<StructField<'ctx>>,
|
||||
// }
|
||||
//
|
||||
// impl<'ctx> StructField<'ctx> {
|
||||
// /// TODO: DOCUMENT ME
|
||||
// pub fn gep(
|
||||
// &self,
|
||||
// ctx: &CodeGenContext<'ctx, '_>,
|
||||
// struct_ptr: PointerValue<'ctx>,
|
||||
// ) -> PointerValue<'ctx> {
|
||||
// let index_type = ctx.ctx.i32_type(); // TODO: I think I'm not supposed to use i32 for GEP like that
|
||||
// unsafe {
|
||||
// ctx.builder
|
||||
// .build_in_bounds_gep(
|
||||
// struct_ptr,
|
||||
// &[index_type.const_zero(), index_type.const_int(self.gep_index as u64, false)],
|
||||
// self.name,
|
||||
// )
|
||||
// .unwrap()
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// /// TODO: DOCUMENT ME
|
||||
// pub fn load(
|
||||
// &self,
|
||||
// ctx: &CodeGenContext<'ctx, '_>,
|
||||
// struct_ptr: PointerValue<'ctx>,
|
||||
// ) -> BasicValueEnum<'ctx> {
|
||||
// ctx.builder.build_load(self.gep(ctx, struct_ptr), self.name).unwrap()
|
||||
// }
|
||||
//
|
||||
// /// TODO: DOCUMENT ME
|
||||
// pub fn store<V>(&self, ctx: &CodeGenContext<'ctx, '_>, struct_ptr: PointerValue<'ctx>, value: V)
|
||||
// where
|
||||
// V: BasicValue<'ctx>,
|
||||
// {
|
||||
// ctx.builder.build_store(self.gep(ctx, struct_ptr), value).unwrap();
|
||||
// }
|
||||
// }
|
||||
|
||||
pub struct StructFields<'ctx> {
|
||||
/// Name of the struct.
|
||||
///
|
||||
/// Used for generating names.
|
||||
pub name: &'static str,
|
||||
// type IsInstanceError = String;
|
||||
// type IsInstanceResult = Result<(), IsInstanceError>;
|
||||
|
||||
/// All the [`StructField`]s of this struct.
|
||||
///
|
||||
/// **NOTE:** The index position of a [`StructField`]
|
||||
/// matches the element's [`StructField::index`].
|
||||
pub fields: Vec<StructField<'ctx>>,
|
||||
}
|
||||
// pub fn check_basic_types_match<'ctx, A, B>(expected: A, got: B) -> IsInstanceResult
|
||||
// where
|
||||
// A: BasicType<'ctx>,
|
||||
// B: BasicType<'ctx>,
|
||||
// {
|
||||
// let expected = expected.as_basic_type_enum();
|
||||
// let got = got.as_basic_type_enum();
|
||||
|
||||
struct StructFieldsBuilder<'ctx> {
|
||||
gep_index_counter: u32,
|
||||
/// Name of the struct to be built.
|
||||
name: &'static str,
|
||||
fields: Vec<StructField<'ctx>>,
|
||||
}
|
||||
// // Put those logic into here,
|
||||
// // otherwise there is always a fallback reporting on any kind of mismatch
|
||||
// match (expected, got) {
|
||||
// (BasicTypeEnum::IntType(expected), BasicTypeEnum::IntType(got)) => {
|
||||
// if expected.get_bit_width() != got.get_bit_width() {
|
||||
// return Err(format!(
|
||||
// "Expected IntType ({expected}-bit(s)), got IntType ({got}-bit(s))"
|
||||
// ));
|
||||
// }
|
||||
// }
|
||||
// (expected, got) => {
|
||||
// if expected != got {
|
||||
// return Err(format!("Expected {expected}, got {got}"));
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// Ok(())
|
||||
// }
|
||||
|
||||
impl<'ctx> StructField<'ctx> {
|
||||
pub fn gep(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
) -> PointerValue<'ctx> {
|
||||
ctx.builder.build_struct_gep(ptr, self.gep_index, self.name).unwrap()
|
||||
}
|
||||
|
||||
pub fn load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
ctx.builder.build_load(self.gep(ctx, ptr), self.name).unwrap()
|
||||
}
|
||||
|
||||
pub fn store<V>(&self, ctx: &CodeGenContext<'ctx, '_>, ptr: PointerValue<'ctx>, value: V)
|
||||
where
|
||||
V: BasicValue<'ctx>,
|
||||
{
|
||||
ctx.builder.build_store(ptr, value).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
type IsInstanceError = String;
|
||||
type IsInstanceResult = Result<(), IsInstanceError>;
|
||||
|
||||
pub fn check_basic_types_match<'ctx, A, B>(expected: A, got: B) -> IsInstanceResult
|
||||
where
|
||||
A: BasicType<'ctx>,
|
||||
B: BasicType<'ctx>,
|
||||
{
|
||||
let expected = expected.as_basic_type_enum();
|
||||
let got = got.as_basic_type_enum();
|
||||
|
||||
// Put those logic into here,
|
||||
// otherwise there is always a fallback reporting on any kind of mismatch
|
||||
match (expected, got) {
|
||||
(BasicTypeEnum::IntType(expected), BasicTypeEnum::IntType(got)) => {
|
||||
if expected.get_bit_width() != got.get_bit_width() {
|
||||
return Err(format!(
|
||||
"Expected IntType ({expected}-bit(s)), got IntType ({got}-bit(s))"
|
||||
));
|
||||
}
|
||||
}
|
||||
(expected, got) => {
|
||||
if expected != got {
|
||||
return Err(format!("Expected {expected}, got {got}"));
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
impl<'ctx> StructFields<'ctx> {
|
||||
pub fn num_fields(&self) -> u32 {
|
||||
self.fields.len() as u32
|
||||
}
|
||||
|
||||
pub fn as_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
|
||||
let llvm_fields = self.fields.iter().map(|field| field.ty).collect_vec();
|
||||
ctx.struct_type(llvm_fields.as_slice(), false)
|
||||
}
|
||||
|
||||
pub fn is_type(&self, scrutinee: StructType<'ctx>) -> IsInstanceResult {
|
||||
// Check scrutinee's number of struct fields
|
||||
if scrutinee.count_fields() != self.num_fields() {
|
||||
return Err(format!(
|
||||
"Expected {expected_count} field(s) in `{struct_name}` type, got {got_count}",
|
||||
struct_name = self.name,
|
||||
expected_count = self.num_fields(),
|
||||
got_count = scrutinee.count_fields(),
|
||||
));
|
||||
}
|
||||
|
||||
// Check the scrutinee's field types
|
||||
for field in self.fields.iter() {
|
||||
let expected_field_ty = field.ty;
|
||||
let got_field_ty = scrutinee.get_field_type_at_index(field.gep_index).unwrap();
|
||||
|
||||
if let Err(field_err) = check_basic_types_match(expected_field_ty, got_field_ty) {
|
||||
return Err(format!(
|
||||
"Field GEP index {gep_index} does not match the expected type of ({struct_name}::{field_name}): {field_err}",
|
||||
gep_index = field.gep_index,
|
||||
struct_name = self.name,
|
||||
field_name = field.name,
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
// Done
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> StructFieldsBuilder<'ctx> {
|
||||
fn start(name: &'static str) -> Self {
|
||||
StructFieldsBuilder { gep_index_counter: 0, name, fields: Vec::new() }
|
||||
}
|
||||
|
||||
fn add_field(&mut self, name: &'static str, ty: BasicTypeEnum<'ctx>) -> StructField<'ctx> {
|
||||
let index = self.gep_index_counter;
|
||||
self.gep_index_counter += 1;
|
||||
StructField { gep_index: index, name, ty }
|
||||
}
|
||||
|
||||
fn end(self) -> StructFields<'ctx> {
|
||||
StructFields { name: self.name, fields: self.fields }
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NpArrayType<'ctx> {
|
||||
pub size_type: IntType<'ctx>,
|
||||
pub elem_type: BasicTypeEnum<'ctx>,
|
||||
}
|
||||
|
||||
pub struct NpArrayStructFields<'ctx> {
|
||||
pub whole_struct: StructFields<'ctx>,
|
||||
pub data: StructField<'ctx>,
|
||||
pub itemsize: StructField<'ctx>,
|
||||
pub ndims: StructField<'ctx>,
|
||||
pub shape: StructField<'ctx>,
|
||||
pub strides: StructField<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> NpArrayType<'ctx> {
|
||||
pub fn new_opaque_elem(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size_type: IntType<'ctx>,
|
||||
) -> NpArrayType<'ctx> {
|
||||
NpArrayType { size_type, elem_type: ctx.ctx.i8_type().as_basic_type_enum() }
|
||||
}
|
||||
|
||||
pub fn struct_type(&self, ctx: &CodeGenContext<'ctx, '_>) -> StructType<'ctx> {
|
||||
self.fields().whole_struct.as_struct_type(ctx.ctx)
|
||||
}
|
||||
|
||||
pub fn fields(&self) -> NpArrayStructFields<'ctx> {
|
||||
let mut builder = StructFieldsBuilder::start("NpArray");
|
||||
|
||||
let addrspace = AddressSpace::default();
|
||||
|
||||
let byte_type = self.size_type.get_context().i8_type();
|
||||
|
||||
// Make sure the struct matches PERFECTLY with that defined in `nac3core/irrt`.
|
||||
let data = builder.add_field("data", byte_type.ptr_type(addrspace).into());
|
||||
let itemsize = builder.add_field("itemsize", self.size_type.into());
|
||||
let ndims = builder.add_field("ndims", self.size_type.into());
|
||||
let shape = builder.add_field("shape", self.size_type.ptr_type(addrspace).into());
|
||||
let strides = builder.add_field("strides", self.size_type.ptr_type(addrspace).into());
|
||||
|
||||
NpArrayStructFields { whole_struct: builder.end(), data, itemsize, ndims, shape, strides }
|
||||
}
|
||||
|
||||
/// Allocate an `ndarray` on stack, with the following notes:
|
||||
///
|
||||
/// - `ndarray.ndims` will be initialized to `in_ndims`.
|
||||
/// - `ndarray.itemsize` will be initialized to the size of `self.elem_type.size_of()`.
|
||||
/// - `ndarray.shape` and `ndarray.strides` will be allocated on the stack with number of elements being `in_ndims`,
|
||||
/// all with empty/uninitialized values.
|
||||
pub fn alloca(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
in_ndims: IntValue<'ctx>,
|
||||
name: &str,
|
||||
) -> NpArrayValue<'ctx> {
|
||||
let fields = self.fields();
|
||||
let ptr =
|
||||
ctx.builder.build_alloca(fields.whole_struct.as_struct_type(ctx.ctx), name).unwrap();
|
||||
|
||||
// Allocate `in_dims` number of `size_type` on the stack for `shape` and `strides`
|
||||
let allocated_shape =
|
||||
ctx.builder.build_array_alloca(fields.shape.ty, in_ndims, "allocated_shape").unwrap();
|
||||
let allocated_strides = ctx
|
||||
.builder
|
||||
.build_array_alloca(fields.strides.ty, in_ndims, "allocated_strides")
|
||||
.unwrap();
|
||||
|
||||
let value = NpArrayValue { ty: *self, ptr };
|
||||
value.store_ndims(ctx, in_ndims);
|
||||
value.store_itemsize(ctx, self.elem_type.size_of().unwrap());
|
||||
value.store_shape(ctx, allocated_shape);
|
||||
value.store_strides(ctx, allocated_strides);
|
||||
|
||||
return value;
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NpArrayValue<'ctx> {
|
||||
pub ty: NpArrayType<'ctx>,
|
||||
pub ptr: PointerValue<'ctx>,
|
||||
}
|
||||
|
||||
impl<'ctx> NpArrayValue<'ctx> {
|
||||
pub fn load_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
|
||||
let field = self.ty.fields().ndims;
|
||||
field.load(ctx, self.ptr).into_int_value()
|
||||
}
|
||||
|
||||
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
|
||||
let field = self.ty.fields().ndims;
|
||||
field.store(ctx, self.ptr, value);
|
||||
}
|
||||
|
||||
pub fn load_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
|
||||
let field = self.ty.fields().itemsize;
|
||||
field.load(ctx, self.ptr).into_int_value()
|
||||
}
|
||||
|
||||
pub fn store_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>, value: IntValue<'ctx>) {
|
||||
let field = self.ty.fields().itemsize;
|
||||
field.store(ctx, self.ptr, value);
|
||||
}
|
||||
|
||||
pub fn load_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||
let field = self.ty.fields().shape;
|
||||
field.load(ctx, self.ptr).into_pointer_value()
|
||||
}
|
||||
|
||||
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
|
||||
let field = self.ty.fields().shape;
|
||||
field.store(ctx, self.ptr, value);
|
||||
}
|
||||
|
||||
pub fn load_strides(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
|
||||
let field = self.ty.fields().strides;
|
||||
field.load(ctx, self.ptr).into_pointer_value()
|
||||
}
|
||||
|
||||
pub fn store_strides(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
|
||||
let field = self.ty.fields().strides;
|
||||
field.store(ctx, self.ptr, value);
|
||||
}
|
||||
|
||||
/// TODO: DOCUMENT ME -- NDIMS WOULD NEVER CHANGE!!!!!
|
||||
pub fn shape_slice(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let field = self.ty.fields().shape;
|
||||
field.gep(ctx, self.ptr);
|
||||
|
||||
let ndims = self.load_ndims(ctx);
|
||||
|
||||
TypedArrayLikeAdapter {
|
||||
adapted: ArraySliceValue(self.ptr, ndims, Some(field.name)),
|
||||
downcast_fn: Box::new(|_ctx, x| x.into_int_value()),
|
||||
upcast_fn: Box::new(|_ctx, x| x.as_basic_value_enum()),
|
||||
}
|
||||
}
|
||||
|
||||
/// TODO: DOCUMENT ME -- NDIMS WOULD NEVER CHANGE!!!!!
|
||||
pub fn strides_slice(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
|
||||
let field = self.ty.fields().strides;
|
||||
field.gep(ctx, self.ptr);
|
||||
|
||||
let ndims = self.load_ndims(ctx);
|
||||
|
||||
TypedArrayLikeAdapter {
|
||||
adapted: ArraySliceValue(self.ptr, ndims, Some(field.name)),
|
||||
downcast_fn: Box::new(|_ctx, x| x.into_int_value()),
|
||||
upcast_fn: Box::new(|_ctx, x| x.as_basic_value_enum()),
|
||||
}
|
||||
}
|
||||
}
|
||||
// impl<'ctx> StructFields<'ctx> {
|
||||
// pub fn num_fields(&self) -> u32 {
|
||||
// self.fields.len() as u32
|
||||
// }
|
||||
//
|
||||
// pub fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
|
||||
// let llvm_fields = self.fields.iter().map(|field| field.ty).collect_vec();
|
||||
// ctx.struct_type(llvm_fields.as_slice(), false)
|
||||
// }
|
||||
//
|
||||
// pub fn is_type(&self, scrutinee: StructType<'ctx>) -> IsInstanceResult {
|
||||
// // Check scrutinee's number of struct fields
|
||||
// if scrutinee.count_fields() != self.num_fields() {
|
||||
// return Err(format!(
|
||||
// "Expected {expected_count} field(s) in `{struct_name}` type, got {got_count}",
|
||||
// struct_name = self.name,
|
||||
// expected_count = self.num_fields(),
|
||||
// got_count = scrutinee.count_fields(),
|
||||
// ));
|
||||
// }
|
||||
//
|
||||
// // Check the scrutinee's field types
|
||||
// for field in self.fields.iter() {
|
||||
// let expected_field_ty = field.ty;
|
||||
// let got_field_ty = scrutinee.get_field_type_at_index(field.gep_index).unwrap();
|
||||
//
|
||||
// if let Err(field_err) = check_basic_types_match(expected_field_ty, got_field_ty) {
|
||||
// return Err(format!(
|
||||
// "Field GEP index {gep_index} does not match the expected type of ({struct_name}::{field_name}): {field_err}",
|
||||
// gep_index = field.gep_index,
|
||||
// struct_name = self.name,
|
||||
// field_name = field.name,
|
||||
// ));
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Done
|
||||
// Ok(())
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// impl<'ctx> StructFieldsBuilder<'ctx> {
|
||||
// pub fn start(name: &'static str) -> Self {
|
||||
// StructFieldsBuilder { gep_index_counter: 0, name, fields: Vec::new() }
|
||||
// }
|
||||
//
|
||||
// pub fn add_field(&mut self, name: &'static str, ty: BasicTypeEnum<'ctx>) -> StructField<'ctx> {
|
||||
// let index = self.gep_index_counter;
|
||||
// self.gep_index_counter += 1;
|
||||
//
|
||||
// let field = StructField { gep_index: index, name, ty };
|
||||
// self.fields.push(field); // Register into self.fields
|
||||
//
|
||||
// field // Return to the caller to conveniently let them do whatever they want
|
||||
// }
|
||||
//
|
||||
// pub fn end(self) -> StructFields<'ctx> {
|
||||
// StructFields { name: self.name, fields: self.fields }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
|
|
|
@ -1,10 +1,14 @@
|
|||
use std::{collections::HashMap, convert::TryInto, iter::once, iter::zip};
|
||||
use std::{
|
||||
collections::HashMap,
|
||||
convert::TryInto,
|
||||
iter::{once, zip},
|
||||
};
|
||||
|
||||
use crate::{
|
||||
codegen::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayValue, ProxyType,
|
||||
ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
|
||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayDataProxy, NDArrayValue,
|
||||
ProxyType, ProxyValue, RangeValue, TypedArrayLikeAccessor, UntypedArrayLikeAccessor,
|
||||
},
|
||||
concrete_type::{ConcreteFuncArg, ConcreteTypeEnum, ConcreteTypeStore},
|
||||
gen_in_range_check, get_llvm_abi_type, get_llvm_type,
|
||||
|
@ -13,7 +17,8 @@ use crate::{
|
|||
call_expect, call_float_floor, call_float_pow, call_float_powi, call_int_smax,
|
||||
call_memcpy_generic,
|
||||
},
|
||||
need_sret, numpy,
|
||||
need_sret,
|
||||
numpy::{self, call_ndarray_subscript_impl, get_ndarray_first_element},
|
||||
stmt::{
|
||||
gen_for_callback_incrementing, gen_if_callback, gen_if_else_expr_callback, gen_raise,
|
||||
gen_var,
|
||||
|
@ -34,15 +39,17 @@ use crate::{
|
|||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
types::{AnyType, BasicType, BasicTypeEnum},
|
||||
values::{BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue},
|
||||
values::{BasicValue, BasicValueEnum, CallSiteValue, FunctionValue, IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use itertools::{chain, izip, Either, Itertools};
|
||||
use nac3parser::ast::{
|
||||
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Location, Operator, StrRef,
|
||||
Unaryop,
|
||||
self, Boolop, Cmpop, Comprehension, Constant, Expr, ExprKind, Located, Location, Operator,
|
||||
StrRef, Unaryop,
|
||||
};
|
||||
|
||||
use super::classes::{NpArrayType, NpArrayValue};
|
||||
|
||||
pub fn get_subst_key(
|
||||
unifier: &mut Unifier,
|
||||
obj: Option<Type>,
|
||||
|
@ -2095,17 +2102,123 @@ pub fn gen_cmpop_expr<'ctx, G: CodeGenerator>(
|
|||
///
|
||||
/// * `ty` - The `Type` of the `NDArray` elements.
|
||||
/// * `ndims` - The `Type` of the `NDArray` number-of-dimensions `Literal`.
|
||||
/// * `v` - The `NDArray` value.
|
||||
/// * `ndarray` - The `NDArray` value.
|
||||
/// * `slice` - The slice expression used to subscript into the `ndarray`.
|
||||
fn gen_ndarray_subscript_expr<'ctx, G: CodeGenerator>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ty: Type,
|
||||
ndims: Type,
|
||||
v: NDArrayValue<'ctx>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
slice: &Expr<Option<Type>>,
|
||||
) -> Result<Option<ValueEnum<'ctx>>, String> {
|
||||
todo!()
|
||||
// TODO: bounds check (on IRRT (how?), or using inkwell)
|
||||
// TODO: For invalid `slice`, throw a proper error
|
||||
// TODO: Support https://numpy.org/doc/stable/user/basics.indexing.html#dimensional-indexing-tools
|
||||
|
||||
let size_type = ndarray.ty.size_type;
|
||||
debug_assert_eq!(size_type, generator.get_size_type(ctx.ctx)); // The ndarray's size_type somehow isn't that of `generator.get_size_type()`... there would be a bug
|
||||
|
||||
// Annoying notes about `slice`
|
||||
// - `my_array[5]`
|
||||
// - slice is a `Constant`
|
||||
// - `my_array[:5]`
|
||||
// - slice is a `Slice`
|
||||
// - `my_array[:]`
|
||||
// - slice is a `Slice`, but lower upper step would all be `Option::None`
|
||||
// - `my_array[:, :]`
|
||||
// - slice is now a `Tuple` of two `Slice`-s
|
||||
//
|
||||
// In summary:
|
||||
// - when there is a comma "," within [], `slice` will be a `Tuple` of the entries.
|
||||
// - when there is not comma "," within [] (i.e., just a single entry), `slice` will be that entry itself.
|
||||
//
|
||||
// `entries` will flatten it out.
|
||||
let entries = match &slice.node {
|
||||
ExprKind::Tuple { elts, ctx } => elts.iter().collect_vec(),
|
||||
_ => vec![slice],
|
||||
};
|
||||
|
||||
// This could have been written as a `ndslices = entries.into_iter().map(...)`,
|
||||
// but error shortcutting part would be annoying
|
||||
let mut ndslices = vec![];
|
||||
for entry in entries.into_iter() {
|
||||
// NOTE: Currently nac3core's slices do not have an object representation,
|
||||
// so the code/implementation looks awkward - we have to do pattern matching on the expression
|
||||
let ndslice = match &entry.node {
|
||||
ExprKind::Slice { lower: start, upper: stop, step } => {
|
||||
// Helper function here to deduce code duplication
|
||||
let mut help = |value_expr: &Option<
|
||||
Box<Located<ExprKind<Option<Type>>, Option<Type>>>,
|
||||
>|
|
||||
-> Result<_, String> {
|
||||
Ok(match value_expr {
|
||||
None => None,
|
||||
Some(value_expr) => Some(
|
||||
generator
|
||||
.gen_expr(ctx, &value_expr)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?
|
||||
.into_int_value(),
|
||||
),
|
||||
})
|
||||
};
|
||||
|
||||
let start = help(start)?;
|
||||
let stop = help(stop)?;
|
||||
let step = help(step)?;
|
||||
|
||||
// start stop step should all be 32-bit ints after typechecking,
|
||||
// and `IrrtUserSlice` expects `int32`s
|
||||
NDSlice::Slice(UserSlice { start, stop, step })
|
||||
}
|
||||
_ => {
|
||||
// Anything else that is not a slice (might be illegal values),
|
||||
// For nac3core, this should be e.g., an int32 constant, an int32 variable, otherwise its an error
|
||||
|
||||
let index = generator
|
||||
.gen_expr(ctx, entry)?
|
||||
.unwrap()
|
||||
.to_basic_value_enum(ctx, generator, ctx.primitives.int32)?
|
||||
.into_int_value();
|
||||
|
||||
NDSlice::Index(index)
|
||||
}
|
||||
};
|
||||
ndslices.push(ndslice);
|
||||
}
|
||||
|
||||
// TODO: what is going on? why the original implementation doesn't assert `ndims_values.len() == 1`
|
||||
// Extract the `ndims` from a `Type` to `i128`
|
||||
let TypeEnum::TLiteral { values: ndims_values, .. } = &*ctx.unifier.get_ty_immutable(ndims)
|
||||
else {
|
||||
unreachable!()
|
||||
};
|
||||
assert_eq!(ndims_values.len(), 1);
|
||||
let ndims = i128::try_from(ndims_values[0].clone()).unwrap() as u64;
|
||||
assert!(ndims > 0);
|
||||
|
||||
// Deduce the subndarray's ndims
|
||||
let dst_ndims = deduce_ndims_after_slicing(ndims, ndslices.iter());
|
||||
|
||||
// Finally, perform the actual subscript logic
|
||||
// TODO: `call_ndarray_subscript_impl` under the hood deduces `dst_ndims` again. We could save it some time by passing `dst_ndims` - a TODO?
|
||||
let subndarray = call_ndarray_subscript_impl(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray,
|
||||
&ndslices.iter().collect_vec(),
|
||||
)?;
|
||||
|
||||
// ...and return the result, with two cases
|
||||
let result = if dst_ndims == 0 {
|
||||
// 1) ndims == 0 (this happens when you do `np.zerps((3, 4))[1, 1]`), return *THE ELEMENT*
|
||||
get_ndarray_first_element(ctx, subndarray, "element")
|
||||
} else {
|
||||
// 2) ndims > 0 (other cases), return subndarray
|
||||
subndarray.ptr.as_basic_value_enum()
|
||||
};
|
||||
Ok(Some(ValueEnum::Dynamic(result)))
|
||||
|
||||
// let llvm_i1 = ctx.ctx.bool_type();
|
||||
// let llvm_i32 = ctx.ctx.i32_type();
|
||||
|
@ -3031,17 +3144,29 @@ pub fn gen_expr<'ctx, G: CodeGenerator>(
|
|||
}
|
||||
}
|
||||
TypeEnum::TObj { obj_id, params, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let (ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
|
||||
let (elem_ty, ndims) = params.iter().map(|(_, ty)| ty).collect_tuple().unwrap();
|
||||
|
||||
let v = if let Some(v) = generator.gen_expr(ctx, value)? {
|
||||
// Get the pointer to the ndarray described by `value`
|
||||
let ndarray_ptr = if let Some(v) = generator.gen_expr(ctx, value)? {
|
||||
v.to_basic_value_enum(ctx, generator, value.custom.unwrap())?
|
||||
.into_pointer_value()
|
||||
} else {
|
||||
return Ok(None);
|
||||
};
|
||||
let v = NDArrayValue::from_ptr_val(v, usize, None);
|
||||
|
||||
return gen_ndarray_subscript_expr(generator, ctx, *ty, *ndims, v, slice);
|
||||
// Derive the current NDArray struct type independently...
|
||||
let ndarray_ty = NpArrayType {
|
||||
elem_type: ctx.get_llvm_type(generator, *elem_ty),
|
||||
size_type: generator.get_size_type(ctx.ctx),
|
||||
};
|
||||
|
||||
// ...and wrap it in `NDArrayValue`
|
||||
let ndarray = ndarray_ty.value_from_ptr(ctx.ctx, ndarray_ptr);
|
||||
|
||||
// Implementation
|
||||
return gen_ndarray_subscript_expr(
|
||||
generator, ctx, *elem_ty, *ndims, ndarray, slice,
|
||||
);
|
||||
}
|
||||
TypeEnum::TTuple { .. } => {
|
||||
let index: u32 =
|
||||
|
|
|
@ -0,0 +1,87 @@
|
|||
// TODO: Use derppening's abstraction
|
||||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, IntType},
|
||||
values::BasicValueEnum,
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::codegen::structure::{
|
||||
CustomStructType, CustomType, Field, FieldCreator, IntType2, Object, PointerType2,
|
||||
PointingArrayType,
|
||||
};
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NpArrayType<'ctx> {
|
||||
pub size_type: IntType<'ctx>,
|
||||
pub elem_type: BasicTypeEnum<'ctx>,
|
||||
}
|
||||
|
||||
pub struct NpArrayFields<'ctx> {
|
||||
pub data: Field<'ctx, PointerType2<'ctx>>,
|
||||
pub itemsize: Field<'ctx, IntType2<'ctx>>,
|
||||
pub ndims: Field<'ctx, IntType2<'ctx>>,
|
||||
pub shape: Field<'ctx, PointingArrayType<'ctx, IntType2<'ctx>>>,
|
||||
pub strides: Field<'ctx, PointingArrayType<'ctx, IntType2<'ctx>>>,
|
||||
}
|
||||
|
||||
pub type NpArrayValue<'ctx> = Object<'ctx, NpArrayType<'ctx>>;
|
||||
|
||||
// impl<'ctx> CustomType<'ctx> for NpArrayType<'ctx> {
|
||||
// type Value = NpArrayValue<'ctx>;
|
||||
//
|
||||
// fn llvm_basic_type_enum(
|
||||
// &self,
|
||||
// ctx: &'ctx inkwell::context::Context,
|
||||
// ) -> inkwell::types::BasicTypeEnum<'ctx> {
|
||||
// self.llvm_struct_type(ctx).as_basic_type_enum()
|
||||
// }
|
||||
//
|
||||
// fn llvm_field_load(
|
||||
// &self,
|
||||
// ctx: &crate::codegen::CodeGenContext<'ctx, '_>,
|
||||
// field: crate::codegen::structure::FieldInfo,
|
||||
// struct_ptr: inkwell::values::PointerValue<'ctx>,
|
||||
// ) -> Self::Value {
|
||||
// let ok = field.llvm_load(ctx, struct_ptr);
|
||||
// todo!()
|
||||
// }
|
||||
//
|
||||
// fn llvm_field_store(
|
||||
// &self,
|
||||
// ctx: &crate::codegen::CodeGenContext<'ctx, '_>,
|
||||
// field: crate::codegen::structure::FieldInfo,
|
||||
// struct_ptr: inkwell::values::PointerValue<'ctx>,
|
||||
// value: &Self::Value,
|
||||
// ) {
|
||||
// todo!()
|
||||
// }
|
||||
// }
|
||||
|
||||
impl<'ctx> CustomStructType<'ctx> for NpArrayType<'ctx> {
|
||||
type Fields = NpArrayFields<'ctx>;
|
||||
|
||||
fn llvm_struct_name() -> &'static str {
|
||||
"NDArray"
|
||||
}
|
||||
|
||||
fn add_fields_to(&self, creator: &mut FieldCreator<'ctx>) -> Self::Fields {
|
||||
let pi8 = creator.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
NpArrayFields {
|
||||
data: creator.add_field("data", PointerType2(pi8)),
|
||||
itemsize: creator.add_field("itemsize", IntType2(self.size_type)),
|
||||
ndims: creator.add_field("ndims", IntType2(self.size_type)),
|
||||
shape: creator.add_field("shape", PointingArrayType::new(IntType2(self.size_type))),
|
||||
strides: creator.add_field("strides", PointingArrayType::new(IntType2(self.size_type))),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NpArrayType<'ctx> {
|
||||
pub fn new_opaque_elem(ctx: &'ctx Context, size_type: IntType<'ctx>) -> Self {
|
||||
NpArrayType { elem_type: ctx.i8_type().into(), size_type }
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -35,6 +35,54 @@ fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
|
|||
unreachable!()
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.lifetime.start`](https://releases.llvm.org/14.0.0/docs/LangRef.html#llvm-lifetime-start-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_lifetime_start<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
) {
|
||||
const FN_NAME: &str = "llvm.lifetime.start";
|
||||
// NOTE: inkwell temporary workaround, see [`call_stackrestore`] for details
|
||||
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i64 = ctx.ctx.i64_type();
|
||||
let llvm_p0i8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let fn_type = llvm_void.fn_type(&[llvm_i64.into(), llvm_p0i8.into()], false);
|
||||
|
||||
ctx.module.add_function(FN_NAME, fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[size.into(), ptr.into()], "")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.lifetime.end`](https://releases.llvm.org/14.0.0/docs/LangRef.html#llvm-lifetime-end-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_lifetime_end<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
) {
|
||||
const FN_NAME: &str = "llvm.lifetime.end";
|
||||
// NOTE: inkwell temporary workaround, see [`call_stackrestore`] for details
|
||||
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i64 = ctx.ctx.i64_type();
|
||||
let llvm_p0i8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let fn_type = llvm_void.fn_type(&[llvm_i64.into(), llvm_p0i8.into()], false);
|
||||
|
||||
ctx.module.add_function(FN_NAME, fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[size.into(), ptr.into()], "")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_stacksave<'ctx>(
|
||||
|
|
|
@ -7,6 +7,7 @@ use crate::{
|
|||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||
},
|
||||
};
|
||||
use classes::NpArrayType;
|
||||
use crossbeam::channel::{unbounded, Receiver, Sender};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
|
@ -43,6 +44,7 @@ pub mod irrt;
|
|||
pub mod llvm_intrinsics;
|
||||
pub mod numpy;
|
||||
pub mod stmt;
|
||||
pub mod structure;
|
||||
|
||||
#[cfg(test)]
|
||||
mod test;
|
||||
|
@ -476,7 +478,14 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
||||
);
|
||||
|
||||
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
||||
let ndarray_ty = NpArrayType {
|
||||
size_type: generator.get_size_type(ctx),
|
||||
elem_type: element_type,
|
||||
};
|
||||
ndarray_ty
|
||||
.get_struct_type(ctx)
|
||||
.ptr_type(AddressSpace::default())
|
||||
.as_basic_type_enum()
|
||||
}
|
||||
|
||||
_ => unreachable!(
|
||||
|
|
|
@ -2,15 +2,11 @@ use crate::{
|
|||
codegen::{
|
||||
classes::{
|
||||
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayType, NDArrayValue,
|
||||
ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
|
||||
NpArrayType, ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
|
||||
TypedArrayLikeMutator, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
|
||||
},
|
||||
expr::gen_binop_expr_with_values,
|
||||
irrt::{
|
||||
calculate_len_for_slice_range, call_ndarray_calc_broadcast,
|
||||
call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices,
|
||||
call_ndarray_calc_size,
|
||||
},
|
||||
get_llvm_type, irrt,
|
||||
llvm_intrinsics::{self, call_memcpy_generic},
|
||||
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
|
||||
CodeGenContext, CodeGenerator,
|
||||
|
@ -26,14 +22,27 @@ use crate::{
|
|||
typedef::{FunSignature, Type, TypeEnum},
|
||||
},
|
||||
};
|
||||
use inkwell::types::{AnyTypeEnum, BasicTypeEnum, PointerType};
|
||||
use inkwell::{
|
||||
types::BasicType,
|
||||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate, OptimizationLevel,
|
||||
};
|
||||
use inkwell::{
|
||||
types::{AnyTypeEnum, BasicTypeEnum, IntType, PointerType},
|
||||
values::BasicValue,
|
||||
};
|
||||
use nac3parser::ast::{Operator, StrRef};
|
||||
|
||||
use super::{
|
||||
classes::NpArrayValue,
|
||||
irrt::{
|
||||
call_nac3_ndarray_deduce_ndims_after_slicing, call_nac3_ndarray_set_strides_by_shape,
|
||||
call_nac3_ndarray_size, call_nac3_ndarray_subscript, get_irrt_ndarray_ptr_type,
|
||||
get_opaque_uint8_ptr_type, IrrtNDSliceType, NDSlice,
|
||||
},
|
||||
stmt::gen_return,
|
||||
};
|
||||
|
||||
// /// Creates an uninitialized `NDArray` instance.
|
||||
// fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
|
||||
// generator: &mut G,
|
||||
|
@ -2015,3 +2024,499 @@ use nac3parser::ast::{Operator, StrRef};
|
|||
// Ok(())
|
||||
// }
|
||||
//
|
||||
|
||||
fn simple_assert<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
cond: IntValue<'ctx>,
|
||||
msg: &str,
|
||||
) where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let mut full_msg = String::from("simple_assert failed: ");
|
||||
full_msg.push_str(msg);
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
cond,
|
||||
"0:ValueError",
|
||||
full_msg.as_str(),
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
}
|
||||
|
||||
fn copy_array_slice<'ctx, G, Src, Dst>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
dst: Dst,
|
||||
src: Src,
|
||||
) where
|
||||
G: CodeGenerator + ?Sized,
|
||||
Dst: TypedArrayLikeMutator<'ctx, IntType<'ctx>>,
|
||||
Src: TypedArrayLikeAccessor<'ctx, IntType<'ctx>>,
|
||||
{
|
||||
// Sanity check
|
||||
let len_match = ctx
|
||||
.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::EQ,
|
||||
src.size(ctx, generator),
|
||||
dst.size(ctx, generator),
|
||||
"len_match",
|
||||
)
|
||||
.unwrap();
|
||||
simple_assert(generator, ctx, len_match, "copy_array_slice length mismatched");
|
||||
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let init_val = size_type.const_zero();
|
||||
let max_val = (dst.size(ctx, generator), false);
|
||||
let incr_val = size_type.const_int(1, false);
|
||||
gen_for_callback_incrementing(
|
||||
generator,
|
||||
ctx,
|
||||
init_val,
|
||||
max_val,
|
||||
|generator, ctx, _hooks, idx| {
|
||||
let value = src.get_typed(ctx, generator, &idx, Some("copy_array_slice.tmp"));
|
||||
dst.set_typed(ctx, generator, &idx, value);
|
||||
Ok(())
|
||||
},
|
||||
incr_val,
|
||||
)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
fn alloca_ndarray<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_type: BasicTypeEnum<'ctx>,
|
||||
ndims: IntValue<'ctx>,
|
||||
name: &str,
|
||||
) -> Result<NpArrayValue<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
let ndarray_ty = NpArrayType { size_type, elem_type };
|
||||
let ndarray = ndarray_ty.alloca(ctx, ndims, name);
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
pub struct Producer<'ctx, G: CodeGenerator + ?Sized, T> {
|
||||
pub count: IntValue<'ctx>,
|
||||
pub write_to_slice: Box<
|
||||
dyn Fn(
|
||||
&mut G,
|
||||
&mut CodeGenContext<'ctx, '_>,
|
||||
&TypedArrayLikeAdapter<'ctx, T>,
|
||||
) -> Result<(), String>
|
||||
+ 'ctx,
|
||||
>,
|
||||
}
|
||||
|
||||
/// TODO: UPDATE DOCUMENTATION
|
||||
/// LLVM-typed implementation for generating a [`Producer`] that sets a list of ints.
|
||||
///
|
||||
/// * `elem_ty` - The element type of the `NDArray`.
|
||||
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
|
||||
///
|
||||
/// ### Notes on `shape`
|
||||
///
|
||||
/// Just like numpy, the `shape` argument can be:
|
||||
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
|
||||
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
|
||||
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
///
|
||||
/// See also [`typecheck::type_inferencer::fold_numpy_function_call_shape_argument`] to
|
||||
/// learn how `shape` gets from being a Python user expression to here.
|
||||
fn parse_input_shape_arg<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
shape: BasicValueEnum<'ctx>,
|
||||
shape_ty: Type,
|
||||
) -> Result<Producer<'ctx, G, IntValue<'ctx>>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
|
||||
match &*ctx.unifier.get_ty(shape_ty) {
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
|
||||
|
||||
// A list has to be a PointerValue
|
||||
let shape_list = ListValue::from_ptr_val(shape.into_pointer_value(), size_type, None);
|
||||
|
||||
// Create `Producer`
|
||||
let ndims = shape_list.load_size(ctx, Some("count"));
|
||||
Ok(Producer {
|
||||
count: ndims,
|
||||
write_to_slice: Box::new(move |ctx, generator, dst_slice| {
|
||||
// Basically iterate through the list and write to `dst_slice` accordingly
|
||||
let init_val = size_type.const_zero();
|
||||
let max_val = (ndims, false);
|
||||
let incr_val = size_type.const_int(1, false);
|
||||
gen_for_callback_incrementing(
|
||||
ctx,
|
||||
generator,
|
||||
init_val,
|
||||
max_val,
|
||||
|generator, ctx, _hooks, idx| {
|
||||
// Get the dimension at `idx`
|
||||
let dim =
|
||||
shape_list.data().get(ctx, generator, &idx, None).into_int_value();
|
||||
|
||||
// Cast `dim` to SizeT
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(dim, size_type, "dim_casted")
|
||||
.unwrap();
|
||||
|
||||
// Write
|
||||
dst_slice.set_typed(ctx, generator, &idx, dim);
|
||||
Ok(())
|
||||
},
|
||||
incr_val,
|
||||
)?;
|
||||
Ok(())
|
||||
}),
|
||||
})
|
||||
}
|
||||
TypeEnum::TTuple { ty: tuple_types } => {
|
||||
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
|
||||
|
||||
// Get the length/size of the tuple, which also happens to be the value of `ndims`.
|
||||
let ndims = tuple_types.len();
|
||||
|
||||
// A tuple has to be a StructValue
|
||||
// Read [`codegen::expr::gen_expr`] to see how `nac3core` translates a Python tuple into LLVM.
|
||||
let shape_tuple = shape.into_struct_value();
|
||||
|
||||
Ok(Producer {
|
||||
count: size_type.const_int(ndims as u64, false),
|
||||
write_to_slice: Box::new(move |generator, ctx, dst_slice| {
|
||||
for dim_i in 0..ndims {
|
||||
// Get the dimension at `dim_i`
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_extract_value(
|
||||
shape_tuple,
|
||||
dim_i as u32,
|
||||
format!("dim{dim_i}").as_str(),
|
||||
)
|
||||
.unwrap()
|
||||
.into_int_value();
|
||||
|
||||
// Cast `dim` to SizeT
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(dim, size_type, "dim_casted")
|
||||
.unwrap();
|
||||
|
||||
// Write
|
||||
dst_slice.set_typed(
|
||||
ctx,
|
||||
generator,
|
||||
&size_type.const_int(dim_i as u64, false),
|
||||
dim,
|
||||
);
|
||||
}
|
||||
Ok(())
|
||||
}),
|
||||
})
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. }
|
||||
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
|
||||
{
|
||||
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
|
||||
|
||||
// The value has to be an integer
|
||||
let shape_int = shape.into_int_value();
|
||||
|
||||
Ok(Producer {
|
||||
count: size_type.const_int(1, false),
|
||||
write_to_slice: Box::new(move |generator, ctx, dst_slice| {
|
||||
// Only index 0 is set with the input value
|
||||
let dim_i = size_type.const_zero();
|
||||
|
||||
// Cast `shape_int` to SizeT
|
||||
let dim = ctx
|
||||
.builder
|
||||
.build_int_s_extend_or_bit_cast(shape_int, size_type, "dim_casted")
|
||||
.unwrap();
|
||||
|
||||
// Write
|
||||
dst_slice.set_typed(ctx, generator, &dim_i, dim);
|
||||
Ok(())
|
||||
}),
|
||||
})
|
||||
}
|
||||
_ => panic!("parse_input_shape_arg encountered unknown type"),
|
||||
}
|
||||
}
|
||||
|
||||
enum NDArrayInitMode<'ctx, G: CodeGenerator + ?Sized> {
|
||||
SetNDim { ndim: IntValue<'ctx> },
|
||||
SetShape { shape: Producer<'ctx, G, IntValue<'ctx>> },
|
||||
SetShapeAndAllocaData { shape: Producer<'ctx, G, IntValue<'ctx>> },
|
||||
}
|
||||
|
||||
/// TODO: DOCUMENT ME
|
||||
fn alloca_ndarray_and_init<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_type: BasicTypeEnum<'ctx>,
|
||||
init_mode: NDArrayInitMode<'ctx, G>,
|
||||
name: &str,
|
||||
) -> Result<NpArrayValue<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
// It is implemented verbosely in order to make the initialization modes super clear in their intent.
|
||||
match init_mode {
|
||||
NDArrayInitMode::SetNDim { ndim: ndims } => {
|
||||
let ndarray = alloca_ndarray(generator, ctx, elem_type, ndims, name)?;
|
||||
Ok(ndarray)
|
||||
}
|
||||
NDArrayInitMode::SetShape { shape } => {
|
||||
let ndims = shape.count;
|
||||
let ndarray = alloca_ndarray(generator, ctx, elem_type, ndims, name)?;
|
||||
|
||||
// Fill `ndarray.shape` with `shape_producer`
|
||||
(shape.write_to_slice)(generator, ctx, &ndarray.shape_slice(ctx));
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
NDArrayInitMode::SetShapeAndAllocaData { shape } => {
|
||||
let ndims = shape.count;
|
||||
let ndarray = alloca_ndarray(generator, ctx, elem_type, ndims, name)?;
|
||||
|
||||
// Fill `ndarray.shape` with `shape_producer`
|
||||
(shape.write_to_slice)(generator, ctx, &ndarray.shape_slice(ctx));
|
||||
|
||||
// Now we populate `ndarray.data` by alloca-ing.
|
||||
// But first, we need to know the size of the ndarray to know how many elements to alloca
|
||||
// NOTE: calculating the size of an ndarray requires `ndarray.shape` to be set.
|
||||
let ndarray_size = call_nac3_ndarray_size(ctx, ndarray);
|
||||
|
||||
// Alloca `data` and assign it to `ndarray.data`
|
||||
let data_ptr = ctx.builder.build_array_alloca(elem_type, ndarray_size, "data").unwrap();
|
||||
// We also have to cast `data_ptr` to `uint8_t*` because that is what `NDArray` has.
|
||||
let data_ptr = ctx
|
||||
.builder
|
||||
.build_pointer_cast(data_ptr, get_opaque_uint8_ptr_type(ctx.ctx), "data_casted")
|
||||
.unwrap();
|
||||
ndarray.store_data(ctx, data_ptr);
|
||||
|
||||
// Finally, do `set_strides_by_shape`
|
||||
// Check out https://ajcr.net/stride-guide-part-1/ to see what numpy "strides" are.
|
||||
call_nac3_ndarray_set_strides_by_shape(ctx, ndarray);
|
||||
|
||||
Ok(ndarray)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_ndarray_first_element<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
name: &str,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
let data = ndarray.load_data(ctx);
|
||||
|
||||
// Cast `data` to the actual element the `subndarray` holds
|
||||
// otherwise `subndarray.data` is just a bunch of `uint8_t*`
|
||||
let data = ctx
|
||||
.builder
|
||||
.build_pointer_cast(
|
||||
data,
|
||||
ndarray.ty.elem_type.ptr_type(AddressSpace::default()),
|
||||
"data_casted",
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// Load the element
|
||||
ctx.builder.build_load(data, name).unwrap()
|
||||
}
|
||||
|
||||
pub fn call_ndarray_subscript_impl<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
ndarray: NpArrayValue<'ctx>,
|
||||
ndslices: &Vec<&NDSlice<'ctx>>,
|
||||
) -> Result<NpArrayValue<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
// First we will calculate the correct ndims of the dst_ndarray
|
||||
// Then allocate for dst_ndarray (A known `ndims` value is required for this)
|
||||
// Finally do call the IRRT function that actually does subscript
|
||||
|
||||
let size_type = ndarray.ty.size_type;
|
||||
|
||||
// Prepare the argument `ndims`
|
||||
let ndims = ndarray.load_ndims(ctx);
|
||||
|
||||
// Prepare the argument `num_slices` in LLVM - which conveniently is simply `ndslices.len()`
|
||||
let num_slices = size_type.const_int(ndslices.len() as u64, false);
|
||||
|
||||
// Prepare the argument `slices`
|
||||
let ndslices_ptr = IrrtNDSliceType::alloca_ndslices(ctx, ndslices);
|
||||
|
||||
// Get `dst_ndims`
|
||||
let dst_ndims = call_nac3_ndarray_deduce_ndims_after_slicing(
|
||||
ctx,
|
||||
size_type,
|
||||
ndims,
|
||||
num_slices,
|
||||
ndslices_ptr,
|
||||
);
|
||||
|
||||
// Allocate `dst_ndarray`
|
||||
let dst_ndarray = alloca_ndarray_and_init(
|
||||
generator,
|
||||
ctx,
|
||||
ndarray.ty.elem_type,
|
||||
NDArrayInitMode::SetNDim { ndim: dst_ndims },
|
||||
"subndarray",
|
||||
)?;
|
||||
|
||||
call_nac3_ndarray_subscript(ctx, ndarray, num_slices, ndslices_ptr, dst_ndarray);
|
||||
|
||||
Ok(dst_ndarray)
|
||||
}
|
||||
|
||||
/// LLVM-typed implementation for generating the implementation for constructing an empty `NDArray`.
|
||||
fn call_ndarray_empty_impl<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: BasicValueEnum<'ctx>,
|
||||
shape_ty: Type,
|
||||
name: &str,
|
||||
) -> Result<NpArrayValue<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let elem_type = ctx.get_llvm_type(generator, elem_ty);
|
||||
let shape = parse_input_shape_arg(generator, ctx, shape, shape_ty)?;
|
||||
let ndarray = alloca_ndarray_and_init(
|
||||
generator,
|
||||
ctx,
|
||||
elem_type,
|
||||
NDArrayInitMode::SetShapeAndAllocaData { shape },
|
||||
name,
|
||||
)?;
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
fn call_ndarray_fill_impl<'ctx, G>(
|
||||
generator: &mut G,
|
||||
ctx: &mut CodeGenContext<'ctx, '_>,
|
||||
elem_ty: Type,
|
||||
shape: BasicValueEnum<'ctx>,
|
||||
shape_ty: Type,
|
||||
fill_value: BasicValueEnum<'ctx>,
|
||||
name: &str,
|
||||
) -> Result<NpArrayValue<'ctx>, String>
|
||||
where
|
||||
G: CodeGenerator + ?Sized,
|
||||
{
|
||||
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape, shape_ty, name)?;
|
||||
irrt::call_nac3_ndarray_fill_generic(ctx, ndarray, fill_value);
|
||||
Ok(ndarray)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.empty`.
|
||||
pub fn gen_ndarray_empty<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
// Parse arguments
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
// Implementation
|
||||
let ndarray = call_ndarray_empty_impl(
|
||||
generator,
|
||||
context,
|
||||
context.primitives.float,
|
||||
shape,
|
||||
shape_ty,
|
||||
"empty_ndarray",
|
||||
)?;
|
||||
Ok(ndarray.ptr)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.zeros`.
|
||||
pub fn gen_ndarray_zeros<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
// Parse arguments
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
// Implementation
|
||||
// NOTE: Currently nac3's `np.zeros` is always `float64`.
|
||||
let float64_ty = context.primitives.float;
|
||||
let float64_llvm_type = context.get_llvm_type(generator, float64_ty).into_float_type();
|
||||
|
||||
let ndarray = call_ndarray_fill_impl(
|
||||
generator,
|
||||
context,
|
||||
float64_ty, // `elem_ty` is always `float64`
|
||||
shape,
|
||||
shape_ty,
|
||||
float64_llvm_type.const_zero().as_basic_value_enum(),
|
||||
"zeros_ndarray",
|
||||
)?;
|
||||
Ok(ndarray.ptr)
|
||||
}
|
||||
|
||||
/// Generates LLVM IR for `np.ones`.
|
||||
pub fn gen_ndarray_ones<'ctx>(
|
||||
context: &mut CodeGenContext<'ctx, '_>,
|
||||
obj: &Option<(Type, ValueEnum<'ctx>)>,
|
||||
fun: (&FunSignature, DefinitionId),
|
||||
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
|
||||
generator: &mut dyn CodeGenerator,
|
||||
) -> Result<PointerValue<'ctx>, String> {
|
||||
assert!(obj.is_none());
|
||||
assert_eq!(args.len(), 1);
|
||||
|
||||
// Parse arguments
|
||||
let shape_ty = fun.0.args[0].ty;
|
||||
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
|
||||
|
||||
// Implementation
|
||||
// NOTE: Currently nac3's `np.ones` is always `float64`.
|
||||
let float64_ty = context.primitives.float;
|
||||
let float64_llvm_type = context.get_llvm_type(generator, float64_ty).into_float_type();
|
||||
|
||||
let ndarray = call_ndarray_fill_impl(
|
||||
generator,
|
||||
context,
|
||||
float64_ty, // `elem_ty` is always `float64`
|
||||
shape,
|
||||
shape_ty,
|
||||
float64_llvm_type.const_float(1.0).as_basic_value_enum(),
|
||||
"ones_ndarray",
|
||||
)?;
|
||||
Ok(ndarray.ptr)
|
||||
}
|
||||
|
|
|
@ -0,0 +1,318 @@
|
|||
use std::marker::PhantomData;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, IntType, PointerType, StructType},
|
||||
values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use super::CodeGenContext;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct FieldInfo {
|
||||
gep_index: u32,
|
||||
name: &'static str,
|
||||
}
|
||||
|
||||
impl FieldInfo {
|
||||
pub fn llvm_gep<'ctx>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let index_type = ctx.ctx.i32_type(); // TODO: I think I'm not supposed to *just* use i32 for GEP like that
|
||||
unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(
|
||||
struct_ptr,
|
||||
&[index_type.const_zero(), index_type.const_int(self.gep_index as u64, false)],
|
||||
self.name,
|
||||
)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn llvm_load<'ctx>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
// We will use `self.name` as the LLVM label for debugging purposes
|
||||
ctx.builder.build_load(self.llvm_gep(ctx, struct_ptr), self.name).unwrap()
|
||||
}
|
||||
|
||||
pub fn llvm_store<'ctx>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
value: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
ctx.builder.build_store(self.llvm_gep(ctx, struct_ptr), value).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Object<'ctx, T> {
|
||||
pub ty: T,
|
||||
pub ptr: PointerValue<'ctx>,
|
||||
}
|
||||
|
||||
pub struct Field<'ctx, T: CustomType<'ctx>> {
|
||||
pub info: FieldInfo,
|
||||
pub ty: T,
|
||||
_phantom: PhantomData<&'ctx ()>,
|
||||
}
|
||||
|
||||
pub struct FieldCreator<'ctx> {
|
||||
pub ctx: &'ctx Context,
|
||||
struct_name: &'ctx str,
|
||||
gep_index_counter: u32,
|
||||
fields: Vec<(FieldInfo, BasicTypeEnum<'ctx>)>,
|
||||
}
|
||||
|
||||
impl<'ctx> FieldCreator<'ctx> {
|
||||
pub fn new(ctx: &'ctx Context, struct_name: &'ctx str) -> Self {
|
||||
FieldCreator { ctx, struct_name, gep_index_counter: 0, fields: Vec::new() }
|
||||
}
|
||||
|
||||
fn next_gep_index(&mut self) -> u32 {
|
||||
let index = self.gep_index_counter;
|
||||
self.gep_index_counter += 1;
|
||||
index
|
||||
}
|
||||
|
||||
fn get_struct_field_types(&self) -> Vec<BasicTypeEnum<'ctx>> {
|
||||
self.fields.iter().map(|x| x.1.clone()).collect()
|
||||
}
|
||||
|
||||
pub fn add_field<T: CustomType<'ctx>>(&mut self, name: &'static str, ty: T) -> Field<'ctx, T> {
|
||||
let gep_index = self.next_gep_index();
|
||||
|
||||
let field_type = ty.llvm_basic_type_enum(self.ctx);
|
||||
let field_info = FieldInfo { gep_index, name };
|
||||
let field = Field { info: field_info, ty, _phantom: PhantomData };
|
||||
|
||||
self.fields.push((field_info.clone(), field_type));
|
||||
|
||||
field
|
||||
}
|
||||
|
||||
fn num_fields(&self) -> u32 {
|
||||
self.fields.len() as u32 // casted to u32 because that is what inkwell returns
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomType<'ctx>: Clone {
|
||||
type Value;
|
||||
|
||||
fn llvm_basic_type_enum(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx>;
|
||||
|
||||
fn llvm_field_load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> Self::Value;
|
||||
|
||||
fn llvm_field_store(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
value: &Self::Value,
|
||||
);
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct IntType2<'ctx>(pub IntType<'ctx>);
|
||||
|
||||
impl<'ctx> CustomType<'ctx> for IntType2<'ctx> {
|
||||
type Value = IntValue<'ctx>;
|
||||
|
||||
fn llvm_basic_type_enum(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
|
||||
self.0.as_basic_type_enum()
|
||||
}
|
||||
|
||||
fn llvm_field_load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> Self::Value {
|
||||
let int_value = field.llvm_load(ctx, struct_ptr).into_int_value();
|
||||
assert_eq!(int_value.get_type().get_bit_width(), self.0.get_bit_width());
|
||||
int_value
|
||||
}
|
||||
|
||||
fn llvm_field_store(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
int_value: &Self::Value,
|
||||
) {
|
||||
assert_eq!(int_value.get_type().get_bit_width(), self.0.get_bit_width());
|
||||
field.llvm_store(ctx, struct_ptr, int_value.as_basic_value_enum());
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct PointerType2<'ctx>(pub PointerType<'ctx>);
|
||||
|
||||
impl<'ctx> CustomType<'ctx> for PointerType2<'ctx> {
|
||||
type Value = PointerValue<'ctx>;
|
||||
|
||||
fn llvm_basic_type_enum(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
|
||||
self.0.as_basic_type_enum()
|
||||
}
|
||||
|
||||
fn llvm_field_load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> Self::Value {
|
||||
field.llvm_load(ctx, struct_ptr).into_pointer_value()
|
||||
}
|
||||
|
||||
fn llvm_field_store(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
pointer_value: &Self::Value,
|
||||
) {
|
||||
field.llvm_store(ctx, struct_ptr, pointer_value.as_basic_value_enum());
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct PointingArrayType<'ctx, ElementType: CustomType<'ctx>> {
|
||||
pub element_type: ElementType,
|
||||
_phantom: PhantomData<&'ctx ()>,
|
||||
}
|
||||
|
||||
impl<'ctx, ElementType: CustomType<'ctx>> PointingArrayType<'ctx, ElementType> {
|
||||
pub fn new(element_type: ElementType) -> Self {
|
||||
PointingArrayType { element_type, _phantom: PhantomData }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Element: CustomType<'ctx>> CustomType<'ctx> for PointingArrayType<'ctx, Element> {
|
||||
type Value = Object<'ctx, Self>;
|
||||
|
||||
fn llvm_basic_type_enum(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
|
||||
// Element*
|
||||
self.element_type
|
||||
.llvm_basic_type_enum(ctx)
|
||||
.ptr_type(AddressSpace::default())
|
||||
.as_basic_type_enum()
|
||||
}
|
||||
|
||||
fn llvm_field_load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> Self::Value {
|
||||
// Remember that it is just a pointer
|
||||
Object { ty: self.clone(), ptr: field.llvm_load(ctx, struct_ptr).into_pointer_value() }
|
||||
}
|
||||
|
||||
fn llvm_field_store(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
value: &Self::Value,
|
||||
) {
|
||||
// Remember that it is just a pointer
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn check_basic_types_match<'ctx, A, B>(expected: A, got: B) -> Result<(), String>
|
||||
where
|
||||
A: BasicType<'ctx>,
|
||||
B: BasicType<'ctx>,
|
||||
{
|
||||
let expected = expected.as_basic_type_enum();
|
||||
let got = got.as_basic_type_enum();
|
||||
|
||||
// Put those logic into here,
|
||||
// otherwise there is always a fallback reporting on any kind of mismatch
|
||||
match (expected, got) {
|
||||
(BasicTypeEnum::IntType(expected), BasicTypeEnum::IntType(got)) => {
|
||||
if expected.get_bit_width() != got.get_bit_width() {
|
||||
return Err(format!(
|
||||
"Expected IntType ({expected}-bit(s)), got IntType ({got}-bit(s))"
|
||||
));
|
||||
}
|
||||
}
|
||||
(expected, got) => {
|
||||
if expected != got {
|
||||
return Err(format!("Expected {expected}, got {got}"));
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub trait CustomStructType<'ctx> {
|
||||
type Fields;
|
||||
|
||||
fn llvm_struct_name() -> &'static str;
|
||||
|
||||
fn add_fields_to(&self, creator: &mut FieldCreator<'ctx>) -> Self::Fields;
|
||||
|
||||
fn fields(&self, ctx: &'ctx Context) -> Self::Fields {
|
||||
let mut creator = FieldCreator::new(ctx, Self::llvm_struct_name());
|
||||
let fields = self.add_fields_to(&mut creator);
|
||||
fields
|
||||
}
|
||||
|
||||
fn llvm_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
|
||||
let mut creator = FieldCreator::new(ctx, Self::llvm_struct_name());
|
||||
self.add_fields_to(&mut creator);
|
||||
|
||||
ctx.struct_type(&creator.get_struct_field_types(), false)
|
||||
}
|
||||
|
||||
fn check_struct_type(
|
||||
&self,
|
||||
ctx: &'ctx Context,
|
||||
scrutinee: StructType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let mut creator = FieldCreator::new(ctx, Self::llvm_struct_name());
|
||||
self.add_fields_to(&mut creator);
|
||||
|
||||
// Check scrutinee's number of struct fields
|
||||
let expected_field_count = creator.num_fields();
|
||||
let got_field_count = scrutinee.count_fields();
|
||||
if got_field_count != expected_field_count {
|
||||
return Err(format!(
|
||||
"Expected {expected_count} field(s) in `{struct_name}` type, got {got_count}",
|
||||
struct_name = Self::llvm_struct_name(),
|
||||
expected_count = expected_field_count,
|
||||
got_count = got_field_count,
|
||||
));
|
||||
}
|
||||
|
||||
// Check the scrutinee's field types
|
||||
for (field_info, expected_field_ty) in creator.fields {
|
||||
let got_field_ty = scrutinee.get_field_type_at_index(field_info.gep_index).unwrap();
|
||||
|
||||
if let Err(field_err) = check_basic_types_match(expected_field_ty, got_field_ty) {
|
||||
return Err(format!(
|
||||
"Field GEP index {gep_index} does not match the expected type of ({struct_name}::{field_name}): {field_err}",
|
||||
gep_index = field_info.gep_index,
|
||||
struct_name = Self::llvm_struct_name(),
|
||||
field_name = field_info.name,
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
// Done
|
||||
Ok(())
|
||||
}
|
||||
}
|
|
@ -438,14 +438,15 @@ fn test_classes_range_type_new() {
|
|||
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_ndarray_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
|
||||
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
// #[test]
|
||||
// fn test_classes_ndarray_type_new() {
|
||||
// let ctx = inkwell::context::Context::create();
|
||||
// let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
//
|
||||
// let llvm_i32 = ctx.i32_type();
|
||||
// let llvm_usize = generator.get_size_type(&ctx);
|
||||
//
|
||||
// let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
|
||||
// assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
// }
|
||||
//
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
)]
|
||||
#![warn(clippy::pedantic)]
|
||||
#![allow(
|
||||
unused,
|
||||
dead_code,
|
||||
clippy::cast_possible_truncation,
|
||||
clippy::cast_sign_loss,
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
use std::iter::once;
|
||||
|
||||
use crate::util::SizeVariant;
|
||||
use classes::NpArrayType;
|
||||
use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails};
|
||||
use indexmap::IndexMap;
|
||||
use inkwell::{
|
||||
|
@ -1193,14 +1194,13 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
self.ndarray_float,
|
||||
&[(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
|
||||
Box::new(move |ctx, obj, fun, args, generator| {
|
||||
todo!()
|
||||
// let func = match prim {
|
||||
// PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
|
||||
// PrimDef::FunNpZeros => gen_ndarray_zeros,
|
||||
// PrimDef::FunNpOnes => gen_ndarray_ones,
|
||||
// _ => unreachable!(),
|
||||
// };
|
||||
// func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
|
||||
let func = match prim {
|
||||
PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
|
||||
PrimDef::FunNpZeros => gen_ndarray_zeros,
|
||||
PrimDef::FunNpOnes => gen_ndarray_ones, // gen_ndarray_ones,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
|
||||
}),
|
||||
)
|
||||
}
|
||||
|
@ -1461,51 +1461,65 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
}
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
// TODO: Check is unsized and throw error if so
|
||||
|
||||
let arg = NDArrayValue::from_ptr_val(
|
||||
arg.into_pointer_value(),
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
// Parse `arg`
|
||||
let ndarray_ptr = arg.into_pointer_value(); // It has to be an ndarray
|
||||
|
||||
let ndims = arg.dim_sizes().size(ctx, generator);
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::NE,
|
||||
ndims,
|
||||
llvm_usize.const_zero(),
|
||||
"",
|
||||
)
|
||||
.unwrap(),
|
||||
"0:TypeError",
|
||||
&format!("{name}() of unsized object", name = prim.name()),
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
let ndarray_ty = NpArrayType::new_opaque_elem(ctx.ctx, size_type); // We don't need to care about the element type - we only want the shape
|
||||
let ndarray = ndarray_ty.value_from_ptr(ctx.ctx, ndarray_ptr);
|
||||
|
||||
let len = unsafe {
|
||||
arg.dim_sizes().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_zero(),
|
||||
None,
|
||||
)
|
||||
};
|
||||
let result = call_nac3_len(ctx, ndarray).as_basic_value_enum();
|
||||
Some(result)
|
||||
|
||||
if len.get_type().get_bit_width() == 32 {
|
||||
Some(len.into())
|
||||
} else {
|
||||
Some(
|
||||
ctx.builder
|
||||
.build_int_truncate(len, llvm_i32, "len")
|
||||
.map(Into::into)
|
||||
.unwrap(),
|
||||
)
|
||||
}
|
||||
// Some(.as_basic_value_enum())
|
||||
|
||||
// let llvm_i32 = ctx.ctx.i32_type();
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// let arg = NDArrayValue::from_ptr_val(
|
||||
// arg.into_pointer_value(),
|
||||
// llvm_usize,
|
||||
// None,
|
||||
// );
|
||||
|
||||
// let ndims = arg.dim_sizes().size(ctx, generator);
|
||||
// ctx.make_assert(
|
||||
// generator,
|
||||
// ctx.builder
|
||||
// .build_int_compare(
|
||||
// IntPredicate::NE,
|
||||
// ndims,
|
||||
// llvm_usize.const_zero(),
|
||||
// "",
|
||||
// )
|
||||
// .unwrap(),
|
||||
// "0:TypeError",
|
||||
// &format!("{name}() of unsized object", name = prim.name()),
|
||||
// [None, None, None],
|
||||
// ctx.current_loc,
|
||||
// );
|
||||
|
||||
// let len = unsafe {
|
||||
// arg.dim_sizes().get_typed_unchecked(
|
||||
// ctx,
|
||||
// generator,
|
||||
// &llvm_usize.const_zero(),
|
||||
// None,
|
||||
// )
|
||||
// };
|
||||
|
||||
// if len.get_type().get_bit_width() == 32 {
|
||||
// Some(len.into())
|
||||
// } else {
|
||||
// Some(
|
||||
// ctx.builder
|
||||
// .build_int_truncate(len, llvm_i32, "len")
|
||||
// .map(Into::into)
|
||||
// .unwrap(),
|
||||
// )
|
||||
// }
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
|
|
|
@ -0,0 +1,5 @@
|
|||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub(crate) enum SizeVariant {
|
||||
Bits32,
|
||||
Bits64,
|
||||
}
|
|
@ -0,0 +1,18 @@
|
|||
@extern
|
||||
def output_float64(x: float):
|
||||
...
|
||||
|
||||
def output_ndarray_float_1(n: ndarray[float, Literal[1]]):
|
||||
for i in range(len(n)):
|
||||
output_float64(n[i])
|
||||
|
||||
def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
|
||||
for r in range(len(n)):
|
||||
for c in range(len(n[r])):
|
||||
output_float64(n[r][c])
|
||||
|
||||
def run() -> int32:
|
||||
hello = np_ones((3, 4))
|
||||
# output_float64(hello[2, 3])
|
||||
output_ndarray_float_1(hello[::-2, 2])
|
||||
return 0
|
|
@ -449,6 +449,11 @@ fn main() {
|
|||
.create_target_machine(llvm_options.opt_level)
|
||||
.expect("couldn't create target machine");
|
||||
|
||||
// Debug print if DEBUG_STANDALONE_DUMP_IR is defined
|
||||
if std::env::var("DEBUG_STANDALONE_DUMP_IR").is_ok() {
|
||||
main.print_to_file("standalone.ll").unwrap();
|
||||
}
|
||||
|
||||
let pass_options = PassBuilderOptions::create();
|
||||
pass_options.set_merge_functions(true);
|
||||
let passes = format!("default<O{}>", opt_level as u32);
|
||||
|
|
Loading…
Reference in New Issue