1
0
forked from M-Labs/nac3

WIP: core: new ndarray integration

This commit is contained in:
lyken 2024-07-11 00:34:06 +08:00
parent 0774dd1685
commit d6451b11c1
11 changed files with 1156 additions and 187 deletions

View File

@ -163,7 +163,10 @@
clippy
pre-commit
rustfmt
rust-analyzer
];
# https://nixos.wiki/wiki/Rust#Shell.nix_example
RUST_SRC_PATH = "${pkgs.rust.packages.stable.rustPlatform.rustLibSrc}";
};
devShells.x86_64-linux.msys2 = pkgs.mkShell {
name = "nac3-dev-shell-msys2";

View File

@ -130,29 +130,29 @@ namespace {
}
}
template <typename SizeT>
struct NDArrayIndicesIter {
SizeT ndims;
const SizeT *shape;
SizeT *indices;
// template <typename SizeT>
// struct NDArrayIndicesIter {
// SizeT ndims;
// const SizeT *shape;
// SizeT *indices;
void set_indices_zero() {
__builtin_memset(indices, 0, sizeof(SizeT) * ndims);
}
// void set_indices_zero() {
// __builtin_memset(indices, 0, sizeof(SizeT) * ndims);
// }
void next() {
for (SizeT i = 0; i < ndims; i++) {
SizeT dim_i = ndims - i - 1;
// void next() {
// for (SizeT i = 0; i < ndims; i++) {
// SizeT dim_i = ndims - i - 1;
indices[dim_i]++;
if (indices[dim_i] < shape[dim_i]) {
break;
} else {
indices[dim_i] = 0;
}
}
}
};
// indices[dim_i]++;
// if (indices[dim_i] < shape[dim_i]) {
// break;
// } else {
// indices[dim_i] = 0;
// }
// }
// }
// };
// The NDArray object. `SizeT` is the *signed* size type of this ndarray.
//
@ -212,11 +212,12 @@ namespace {
return this->size() * itemsize;
}
void set_value_at_pelement(uint8_t* pelement, const uint8_t* pvalue) {
__builtin_memcpy(pelement, pvalue, itemsize);
void set_pelement_value(uint8_t* pelement, const uint8_t* pvalue) {
// *pelement = 0;
// __builtin_memcpy(pelement, pvalue, itemsize);
}
uint8_t* get_pelement(const SizeT *indices) {
uint8_t* get_pelement_by_indices(const SizeT *indices) {
uint8_t* element = data;
for (SizeT dim_i = 0; dim_i < ndims; dim_i++)
element += indices[dim_i] * strides[dim_i];
@ -229,7 +230,7 @@ namespace {
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * this->ndims);
ndarray_util::set_indices_by_nth(this->ndims, this->shape, indices, nth);
return get_pelement(indices);
return get_pelement_by_indices(indices);
}
// Get pointer to the first element of this ndarray, assuming
@ -252,15 +253,10 @@ namespace {
// Fill the ndarray with a value
void fill_generic(const uint8_t* pvalue) {
NDArrayIndicesIter<SizeT> iter;
iter.ndims = this->ndims;
iter.shape = this->shape;
iter.indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndims);
iter.set_indices_zero();
for (SizeT i = 0; i < this->size(); i++, iter.next()) {
uint8_t* pelement = get_pelement(iter.indices);
set_value_at_pelement(pelement, pvalue);
const SizeT size = this->size();
for (SizeT i = 0; i < size; i++) {
uint8_t* pelement = get_nth_pelement(i);
set_pelement_value(pelement, pvalue);
}
}
@ -283,8 +279,8 @@ namespace {
if (!in_bounds(indices)) continue;
uint8_t* pelement = get_pelement(indices);
set_value_at_pelement(pelement, one_pvalue);
uint8_t* pelement = get_pelement_by_indices(indices);
set_pelement_value(pelement, one_pvalue);
}
}
@ -403,6 +399,36 @@ namespace {
}
}
}
// Simulates `this_ndarray[:] = src_ndarray`, with automatic broadcasting.
// Caution on https://github.com/numpy/numpy/issues/21744
// Also see `NDArray::broadcast_to`
void assign_with(NDArray<SizeT>* src_ndarray) {
irrt_assert(
ndarray_util::can_broadcast_shape_to(
this->ndims,
this->shape,
src_ndarray->ndims,
src_ndarray->shape
)
);
// Broadcast the `src_ndarray` to make the reading process *much* easier
SizeT* broadcasted_src_ndarray_strides = __builtin_alloca(sizeof(SizeT) * this->ndims); // Remember to allocate strides beforehand
NDArray<SizeT> broadcasted_src_ndarray = {
.ndims = this->ndims,
.shape = this->shape,
.strides = broadcasted_src_ndarray_strides
};
src_ndarray->broadcast_to(&broadcasted_src_ndarray);
const SizeT size = this->size();
for (SizeT i = 0; i < size; i++) {
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_nth_pelement(i);
uint8_t* this_pelement = this->get_nth_pelement(i);
this->set_pelement_value(src_pelement, src_pelement);
}
}
};
}
@ -415,6 +441,14 @@ extern "C" {
return ndarray->size();
}
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
ndarray->set_strides_by_shape();
}
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
ndarray->set_strides_by_shape();
}
void __nac3_ndarray_fill_generic(NDArray<int32_t>* ndarray, uint8_t* pvalue) {
ndarray->fill_generic(pvalue);
}

View File

@ -81,7 +81,7 @@ void __print_ndarray_aux(const char *format, bool first, bool last, SizeT* curso
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndarray->ndims);
for (SizeT i = 0; i < dim; i++) {
ndarray_util::set_indices_by_nth(ndarray->ndims, ndarray->shape, indices, *cursor);
ElementT* pelement = (ElementT*) ndarray->get_pelement(indices);
ElementT* pelement = (ElementT*) ndarray->get_pelement_by_indices(indices);
ElementT element = *pelement;
if (i != 0) printf(", "); // List delimiter
@ -158,34 +158,34 @@ void test_set_strides_by_shape() {
assert_arrays_match("strides", "%u", 4u, expected_strides, strides);
}
void test_ndarray_indices_iter_normal() {
// Test NDArrayIndicesIter normal behavior
BEGIN_TEST();
int32_t shape[3] = { 1, 2, 3 };
int32_t indices[3] = { 0, 0, 0 };
auto iter = NDArrayIndicesIter<int32_t> {
.ndims = 3u,
.shape = shape,
.indices = indices
};
assert_arrays_match("indices #0", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 });
iter.next();
assert_arrays_match("indices #1", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
iter.next();
assert_arrays_match("indices #2", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 2 });
iter.next();
assert_arrays_match("indices #3", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 0 });
iter.next();
assert_arrays_match("indices #4", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 1 });
iter.next();
assert_arrays_match("indices #5", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 2 });
iter.next();
assert_arrays_match("indices #6", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 }); // Loops back
iter.next();
assert_arrays_match("indices #7", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
}
// void test_ndarray_indices_iter_normal() {
// // Test NDArrayIndicesIter normal behavior
// BEGIN_TEST();
//
// int32_t shape[3] = { 1, 2, 3 };
// int32_t indices[3] = { 0, 0, 0 };
// auto iter = NDArrayIndicesIter<int32_t> {
// .ndims = 3,
// .shape = shape,
// .indices = indices
// };
//
// assert_arrays_match("indices #0", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 });
// iter.next();
// assert_arrays_match("indices #1", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
// iter.next();
// assert_arrays_match("indices #2", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 2 });
// iter.next();
// assert_arrays_match("indices #3", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 0 });
// iter.next();
// assert_arrays_match("indices #4", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 1 });
// iter.next();
// assert_arrays_match("indices #5", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 2 });
// iter.next();
// assert_arrays_match("indices #6", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 }); // Loops back
// iter.next();
// assert_arrays_match("indices #7", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
// }
void test_ndarray_fill_generic() {
// Test ndarray fill_generic
@ -394,10 +394,10 @@ void test_ndslice_1() {
assert_arrays_match("shape", "%d", dst_ndims, expected_shape, dst_ndarray.shape);
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
assert_values_match("dst_ndarray[0, 0]", "%f", 5.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 0 })));
assert_values_match("dst_ndarray[0, 1]", "%f", 7.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0, 1 })));
assert_values_match("dst_ndarray[1, 0]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 0 })));
assert_values_match("dst_ndarray[1, 1]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1, 1 })));
assert_values_match("dst_ndarray[0, 0]", "%f", 5.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0, 0 })));
assert_values_match("dst_ndarray[0, 1]", "%f", 7.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0, 1 })));
assert_values_match("dst_ndarray[1, 0]", "%f", 9.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1, 0 })));
assert_values_match("dst_ndarray[1, 1]", "%f", 11.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1, 1 })));
}
void test_ndslice_2() {
@ -471,8 +471,8 @@ void test_ndslice_2() {
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
// [5.0, 3.0]
assert_values_match("dst_ndarray[0]", "%f", 11.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 0 })));
assert_values_match("dst_ndarray[1]", "%f", 9.0, *((double *) dst_ndarray.get_pelement((int32_t[dst_ndims]) { 1 })));
assert_values_match("dst_ndarray[0]", "%f", 11.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0 })));
assert_values_match("dst_ndarray[1]", "%f", 9.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1 })));
}
void test_can_broadcast_shape() {
@ -576,19 +576,21 @@ void test_can_broadcast_shape() {
void test_ndarray_broadcast_1() {
/*
# array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
# >>> [[19.9 29.9 39.9 49.9]]
#
# array = np.broadcast_to(array, (2, 3, 4))
# >>> [[[19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]]
# >>> [[19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]
# >>> [19.9 29.9 39.9 49.9]]]
#
# assery array.strides == (0, 0, 8)
```python
array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
>>> [[19.9 29.9 39.9 49.9]]
array = np.broadcast_to(array, (2, 3, 4))
>>> [[[19.9 29.9 39.9 49.9]
>>> [19.9 29.9 39.9 49.9]
>>> [19.9 29.9 39.9 49.9]]
>>> [[19.9 29.9 39.9 49.9]
>>> [19.9 29.9 39.9 49.9]
>>> [19.9 29.9 39.9 49.9]]]
assert array.strides == (0, 0, 8)
# and then pick some values in `array` and check them...
```
*/
BEGIN_TEST();
@ -618,22 +620,22 @@ void test_ndarray_broadcast_1() {
assert_arrays_match("dst_ndarray->strides", "%d", dst_ndims, (int32_t[]) { 0, 0, 8 }, dst_ndarray.strides);
assert_values_match("dst_ndarray[0, 0, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 0})));
assert_values_match("dst_ndarray[0, 0, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 1})));
assert_values_match("dst_ndarray[0, 0, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 2})));
assert_values_match("dst_ndarray[0, 0, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 0, 3})));
assert_values_match("dst_ndarray[0, 1, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 0})));
assert_values_match("dst_ndarray[0, 1, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 1})));
assert_values_match("dst_ndarray[0, 1, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 2})));
assert_values_match("dst_ndarray[0, 1, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {0, 1, 3})));
assert_values_match("dst_ndarray[1, 2, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement((int32_t[]) {1, 2, 3})));
assert_values_match("dst_ndarray[0, 0, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 0})));
assert_values_match("dst_ndarray[0, 0, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 1})));
assert_values_match("dst_ndarray[0, 0, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 2})));
assert_values_match("dst_ndarray[0, 0, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 3})));
assert_values_match("dst_ndarray[0, 1, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 0})));
assert_values_match("dst_ndarray[0, 1, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 1})));
assert_values_match("dst_ndarray[0, 1, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 2})));
assert_values_match("dst_ndarray[0, 1, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 3})));
assert_values_match("dst_ndarray[1, 2, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {1, 2, 3})));
}
int main() {
test_calc_size_from_shape_normal();
test_calc_size_from_shape_has_zero();
test_set_strides_by_shape();
test_ndarray_indices_iter_normal();
// test_ndarray_indices_iter_normal();
test_ndarray_fill_generic();
test_ndarray_set_to_eye();
test_slice_1();

View File

@ -2,7 +2,8 @@ use crate::codegen::{
// irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
llvm_intrinsics::call_int_umin,
stmt::gen_for_callback_incrementing,
CodeGenContext, CodeGenerator,
CodeGenContext,
CodeGenerator,
};
use inkwell::context::Context;
use inkwell::types::{ArrayType, BasicType, StructType};
@ -12,6 +13,7 @@ use inkwell::{
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate,
};
use itertools::Itertools;
/// A LLVM type that is used to represent a non-primitive type in NAC3.
pub trait ProxyType<'ctx>: Into<Self::Base> {
@ -1208,25 +1210,27 @@ impl<'ctx> NDArrayType<'ctx> {
ctx: &'ctx Context,
dtype: BasicTypeEnum<'ctx>,
) -> Self {
let llvm_usize = generator.get_size_type(ctx);
todo!()
// struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
//
// * num_dims: Number of dimensions in the array
// * dims: Pointer to an array containing the size of each dimension
// * data: Pointer to an array containing the array data
let llvm_ndarray = ctx
.struct_type(
&[
llvm_usize.into(),
llvm_usize.ptr_type(AddressSpace::default()).into(),
dtype.ptr_type(AddressSpace::default()).into(),
],
false,
)
.ptr_type(AddressSpace::default());
// let llvm_usize = generator.get_size_type(ctx);
NDArrayType::from_type(llvm_ndarray, llvm_usize)
// // struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
// //
// // * num_dims: Number of dimensions in the array
// // * dims: Pointer to an array containing the size of each dimension
// // * data: Pointer to an array containing the array data
// let llvm_ndarray = ctx
// .struct_type(
// &[
// llvm_usize.into(),
// llvm_usize.ptr_type(AddressSpace::default()).into(),
// dtype.ptr_type(AddressSpace::default()).into(),
// ],
// false,
// )
// .ptr_type(AddressSpace::default());
// NDArrayType::from_type(llvm_ndarray, llvm_usize)
}
/// Creates an [`NDArrayType`] from a [`PointerType`].
@ -1763,3 +1767,346 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx,
for NDArrayDataProxy<'ctx, '_>
{
}
#[derive(Debug, Clone, Copy)]
pub struct StructField<'ctx> {
/// The GEP index of this struct field.
pub gep_index: u32,
/// Name of this struct field.
///
/// Used for generating names.
pub name: &'static str,
/// The type of this struct field.
pub ty: BasicTypeEnum<'ctx>,
}
pub struct StructFields<'ctx> {
/// Name of the struct.
///
/// Used for generating names.
pub name: &'static str,
/// All the [`StructField`]s of this struct.
///
/// **NOTE:** The index position of a [`StructField`]
/// matches the element's [`StructField::index`].
pub fields: Vec<StructField<'ctx>>,
}
struct StructFieldsBuilder<'ctx> {
gep_index_counter: u32,
/// Name of the struct to be built.
name: &'static str,
fields: Vec<StructField<'ctx>>,
}
impl<'ctx> StructField<'ctx> {
/// TODO: DOCUMENT ME
pub fn gep(
&self,
ctx: &CodeGenContext<'ctx, '_>,
struct_ptr: PointerValue<'ctx>,
) -> PointerValue<'ctx> {
let index_type = ctx.ctx.i32_type(); // TODO: I think I'm not supposed to use i32 for GEP like that
unsafe {
ctx.builder
.build_in_bounds_gep(
struct_ptr,
&[index_type.const_zero(), index_type.const_int(self.gep_index as u64, false)],
self.name,
)
.unwrap()
}
}
/// TODO: DOCUMENT ME
pub fn load(
&self,
ctx: &CodeGenContext<'ctx, '_>,
struct_ptr: PointerValue<'ctx>,
) -> BasicValueEnum<'ctx> {
ctx.builder.build_load(self.gep(ctx, struct_ptr), self.name).unwrap()
}
/// TODO: DOCUMENT ME
pub fn store<V>(&self, ctx: &CodeGenContext<'ctx, '_>, struct_ptr: PointerValue<'ctx>, value: V)
where
V: BasicValue<'ctx>,
{
ctx.builder.build_store(self.gep(ctx, struct_ptr), value).unwrap();
}
}
type IsInstanceError = String;
type IsInstanceResult = Result<(), IsInstanceError>;
pub fn check_basic_types_match<'ctx, A, B>(expected: A, got: B) -> IsInstanceResult
where
A: BasicType<'ctx>,
B: BasicType<'ctx>,
{
let expected = expected.as_basic_type_enum();
let got = got.as_basic_type_enum();
// Put those logic into here,
// otherwise there is always a fallback reporting on any kind of mismatch
match (expected, got) {
(BasicTypeEnum::IntType(expected), BasicTypeEnum::IntType(got)) => {
if expected.get_bit_width() != got.get_bit_width() {
return Err(format!(
"Expected IntType ({expected}-bit(s)), got IntType ({got}-bit(s))"
));
}
}
(expected, got) => {
if expected != got {
return Err(format!("Expected {expected}, got {got}"));
}
}
}
Ok(())
}
impl<'ctx> StructFields<'ctx> {
pub fn num_fields(&self) -> u32 {
self.fields.len() as u32
}
pub fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
let llvm_fields = self.fields.iter().map(|field| field.ty).collect_vec();
ctx.struct_type(llvm_fields.as_slice(), false)
}
pub fn is_type(&self, scrutinee: StructType<'ctx>) -> IsInstanceResult {
// Check scrutinee's number of struct fields
if scrutinee.count_fields() != self.num_fields() {
return Err(format!(
"Expected {expected_count} field(s) in `{struct_name}` type, got {got_count}",
struct_name = self.name,
expected_count = self.num_fields(),
got_count = scrutinee.count_fields(),
));
}
// Check the scrutinee's field types
for field in self.fields.iter() {
let expected_field_ty = field.ty;
let got_field_ty = scrutinee.get_field_type_at_index(field.gep_index).unwrap();
if let Err(field_err) = check_basic_types_match(expected_field_ty, got_field_ty) {
return Err(format!(
"Field GEP index {gep_index} does not match the expected type of ({struct_name}::{field_name}): {field_err}",
gep_index = field.gep_index,
struct_name = self.name,
field_name = field.name,
));
}
}
// Done
Ok(())
}
}
impl<'ctx> StructFieldsBuilder<'ctx> {
fn start(name: &'static str) -> Self {
StructFieldsBuilder { gep_index_counter: 0, name, fields: Vec::new() }
}
fn add_field(&mut self, name: &'static str, ty: BasicTypeEnum<'ctx>) -> StructField<'ctx> {
let index = self.gep_index_counter;
self.gep_index_counter += 1;
let field = StructField { gep_index: index, name, ty };
self.fields.push(field); // Register into self.fields
field // Return to the caller to conveniently let them do whatever they want
}
fn end(self) -> StructFields<'ctx> {
StructFields { name: self.name, fields: self.fields }
}
}
#[derive(Debug, Clone, Copy)]
pub struct NpArrayType<'ctx> {
pub size_type: IntType<'ctx>,
pub elem_type: BasicTypeEnum<'ctx>,
}
pub struct NpArrayStructFields<'ctx> {
pub whole_struct: StructFields<'ctx>,
pub data: StructField<'ctx>,
pub itemsize: StructField<'ctx>,
pub ndims: StructField<'ctx>,
pub shape: StructField<'ctx>,
pub strides: StructField<'ctx>,
}
impl<'ctx> NpArrayType<'ctx> {
pub fn new_opaque_elem(
ctx: &CodeGenContext<'ctx, '_>,
size_type: IntType<'ctx>,
) -> NpArrayType<'ctx> {
NpArrayType { size_type, elem_type: ctx.ctx.i8_type().as_basic_type_enum() }
}
pub fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
self.fields().whole_struct.get_struct_type(ctx)
}
pub fn fields(&self) -> NpArrayStructFields<'ctx> {
let mut builder = StructFieldsBuilder::start("NpArray");
let addrspace = AddressSpace::default();
let byte_type = self.size_type.get_context().i8_type();
// Make sure the struct matches PERFECTLY with that defined in `nac3core/irrt`.
let data = builder.add_field("data", byte_type.ptr_type(addrspace).into());
let itemsize = builder.add_field("itemsize", self.size_type.into());
let ndims = builder.add_field("ndims", self.size_type.into());
let shape = builder.add_field("shape", self.size_type.ptr_type(addrspace).into());
let strides = builder.add_field("strides", self.size_type.ptr_type(addrspace).into());
NpArrayStructFields { whole_struct: builder.end(), data, itemsize, ndims, shape, strides }
}
/// Allocate an `ndarray` on stack, with the following notes:
///
/// - `ndarray.ndims` will be initialized to `in_ndims`.
/// - `ndarray.itemsize` will be initialized to the size of `self.elem_type.size_of()`.
/// - `ndarray.shape` and `ndarray.strides` will be allocated on the stack with number of elements being `in_ndims`,
/// all with empty/uninitialized values.
pub fn var_alloc<G>(
&self,
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
in_ndims: IntValue<'ctx>,
name: Option<&str>,
) -> NpArrayValue<'ctx>
where
G: CodeGenerator + ?Sized,
{
let ptr = generator
.gen_var_alloc(ctx, self.get_struct_type(ctx.ctx).as_basic_type_enum(), name)
.unwrap();
// Allocate `in_dims` number of `size_type` on the stack for `shape` and `strides`
let allocated_shape = generator
.gen_array_var_alloc(
ctx,
self.size_type.as_basic_type_enum(),
in_ndims,
Some("allocated_shape"),
)
.unwrap();
let allocated_strides = generator
.gen_array_var_alloc(
ctx,
self.size_type.as_basic_type_enum(),
in_ndims,
Some("allocated_strides"),
)
.unwrap();
let value = NpArrayValue { ty: *self, ptr };
value.store_ndims(ctx, in_ndims);
value.store_itemsize(ctx, self.elem_type.size_of().unwrap());
value.store_shape(ctx, allocated_shape.base_ptr(ctx, generator));
value.store_strides(ctx, allocated_strides.base_ptr(ctx, generator));
return value;
}
}
#[derive(Debug, Clone, Copy)]
pub struct NpArrayValue<'ctx> {
pub ty: NpArrayType<'ctx>,
pub ptr: PointerValue<'ctx>,
}
impl<'ctx> NpArrayValue<'ctx> {
pub fn store_data(&self, ctx: &CodeGenContext<'ctx, '_>, new_data_ptr: PointerValue<'ctx>) {
let field = self.ty.fields().data;
field.store(ctx, self.ptr, new_data_ptr);
}
pub fn load_ndims(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
let field = self.ty.fields().ndims;
field.load(ctx, self.ptr).into_int_value()
}
pub fn store_ndims(&self, ctx: &CodeGenContext<'ctx, '_>, new_ndims: IntValue<'ctx>) {
let field = self.ty.fields().ndims;
field.store(ctx, self.ptr, new_ndims);
}
pub fn load_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>) -> IntValue<'ctx> {
let field = self.ty.fields().itemsize;
field.load(ctx, self.ptr).into_int_value()
}
pub fn store_itemsize(&self, ctx: &CodeGenContext<'ctx, '_>, new_itemsize: IntValue<'ctx>) {
let field = self.ty.fields().itemsize;
field.store(ctx, self.ptr, new_itemsize);
}
pub fn load_shape(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let field = self.ty.fields().shape;
field.load(ctx, self.ptr).into_pointer_value()
}
pub fn store_shape(&self, ctx: &CodeGenContext<'ctx, '_>, new_shape_ptr: PointerValue<'ctx>) {
let field = self.ty.fields().shape;
field.store(ctx, self.ptr, new_shape_ptr);
}
pub fn load_strides(&self, ctx: &CodeGenContext<'ctx, '_>) -> PointerValue<'ctx> {
let field = self.ty.fields().strides;
field.load(ctx, self.ptr).into_pointer_value()
}
pub fn store_strides(&self, ctx: &CodeGenContext<'ctx, '_>, value: PointerValue<'ctx>) {
let field = self.ty.fields().strides;
field.store(ctx, self.ptr, value);
}
/// TODO: DOCUMENT ME -- NDIMS WOULD NEVER CHANGE!!!!!
pub fn shape_slice(
&self,
ctx: &CodeGenContext<'ctx, '_>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
// Get the pointer to `shape`
let field = self.ty.fields().shape;
let shape = field.load(ctx, self.ptr).into_pointer_value();
// Load `ndims`
let ndims = self.load_ndims(ctx);
TypedArrayLikeAdapter {
adapted: ArraySliceValue(shape, ndims, Some(field.name)),
downcast_fn: Box::new(|_ctx, x| x.into_int_value()),
upcast_fn: Box::new(|_ctx, x| x.as_basic_value_enum()),
}
}
/// TODO: DOCUMENT ME -- NDIMS WOULD NEVER CHANGE!!!!!
pub fn strides_slice(
&self,
ctx: &CodeGenContext<'ctx, '_>,
) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
// Get the pointer to `strides`
let field = self.ty.fields().strides;
let strides = field.load(ctx, self.ptr).into_pointer_value();
// Load `ndims`
let ndims = self.load_ndims(ctx);
TypedArrayLikeAdapter {
adapted: ArraySliceValue(strides, ndims, Some(field.name)),
downcast_fn: Box::new(|_ctx, x| x.into_int_value()),
upcast_fn: Box::new(|_ctx, x| x.as_basic_value_enum()),
}
}
}

View File

@ -1,11 +1,11 @@
use crate::typecheck::typedef::Type;
use crate::{typecheck::typedef::Type, util::SizeVariant};
mod test;
use super::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue, NDArrayValue,
TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
check_basic_types_match, ArrayLikeIndexer, ArrayLikeValue, ArraySliceValue, ListValue,
NDArrayValue, NpArrayType, NpArrayValue, TypedArrayLikeAdapter, UntypedArrayLikeAccessor,
},
llvm_intrinsics, CodeGenContext, CodeGenerator,
};
@ -16,8 +16,8 @@ use inkwell::{
context::Context,
memory_buffer::MemoryBuffer,
module::Module,
types::{BasicTypeEnum, IntType},
values::{BasicValueEnum, CallSiteValue, FloatValue, IntValue},
types::{BasicType, BasicTypeEnum, FunctionType, IntType, PointerType},
values::{BasicValue, BasicValueEnum, CallSiteValue, FloatValue, FunctionValue, IntValue},
AddressSpace, IntPredicate,
};
use itertools::Either;
@ -583,7 +583,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// {
// let llvm_usize = generator.get_size_type(ctx.ctx);
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
//
//
// let ndarray_calc_size_fn_name = match llvm_usize.get_bit_width() {
// 32 => "__nac3_ndarray_calc_size",
// 64 => "__nac3_ndarray_calc_size64",
@ -597,7 +597,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// ctx.module.get_function(ndarray_calc_size_fn_name).unwrap_or_else(|| {
// ctx.module.add_function(ndarray_calc_size_fn_name, ndarray_calc_size_fn_t, None)
// });
//
//
// let begin = begin.unwrap_or_else(|| llvm_usize.const_zero());
// let end = end.unwrap_or_else(|| dims.size(ctx, generator));
// ctx.builder
@ -616,7 +616,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// .map(Either::unwrap_left)
// .unwrap()
// }
//
//
// /// Generates a call to `__nac3_ndarray_calc_nd_indices`. Returns a [`TypeArrayLikeAdpater`]
// /// containing `i32` indices of the flattened index.
// ///
@ -634,7 +634,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// let llvm_usize = generator.get_size_type(ctx.ctx);
// let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
//
//
// let ndarray_calc_nd_indices_fn_name = match llvm_usize.get_bit_width() {
// 32 => "__nac3_ndarray_calc_nd_indices",
// 64 => "__nac3_ndarray_calc_nd_indices64",
@ -646,15 +646,15 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// &[llvm_usize.into(), llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into()],
// false,
// );
//
//
// ctx.module.add_function(ndarray_calc_nd_indices_fn_name, fn_type, None)
// });
//
//
// let ndarray_num_dims = ndarray.load_ndims(ctx);
// let ndarray_dims = ndarray.dim_sizes();
//
//
// let indices = ctx.builder.build_array_alloca(llvm_i32, ndarray_num_dims, "").unwrap();
//
//
// ctx.builder
// .build_call(
// ndarray_calc_nd_indices_fn,
@ -667,14 +667,14 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// "",
// )
// .unwrap();
//
//
// TypedArrayLikeAdapter::from(
// ArraySliceValue::from_ptr_val(indices, ndarray_num_dims, None),
// Box::new(|_, v| v.into_int_value()),
// Box::new(|_, v| v.into()),
// )
// }
//
//
// fn call_ndarray_flatten_index_impl<'ctx, G, Indices>(
// generator: &G,
// ctx: &CodeGenContext<'ctx, '_>,
@ -687,10 +687,10 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// {
// let llvm_i32 = ctx.ctx.i32_type();
// let llvm_usize = generator.get_size_type(ctx.ctx);
//
//
// let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
//
//
// debug_assert_eq!(
// IntType::try_from(indices.element_type(ctx, generator))
// .map(IntType::get_bit_width)
@ -703,7 +703,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// llvm_usize.get_bit_width(),
// "Expected usize integer value for argument `indices_size` to `call_ndarray_flatten_index_impl`"
// );
//
//
// let ndarray_flatten_index_fn_name = match llvm_usize.get_bit_width() {
// 32 => "__nac3_ndarray_flatten_index",
// 64 => "__nac3_ndarray_flatten_index64",
@ -715,13 +715,13 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// &[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_usize.into()],
// false,
// );
//
//
// ctx.module.add_function(ndarray_flatten_index_fn_name, fn_type, None)
// });
//
//
// let ndarray_num_dims = ndarray.load_ndims(ctx);
// let ndarray_dims = ndarray.dim_sizes();
//
//
// let index = ctx
// .builder
// .build_call(
@ -738,10 +738,10 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// .map(|v| v.map_left(BasicValueEnum::into_int_value))
// .map(Either::unwrap_left)
// .unwrap();
//
//
// index
// }
//
//
// /// Generates a call to `__nac3_ndarray_flatten_index`. Returns the flattened index for the
// /// multidimensional index.
// ///
@ -760,7 +760,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// {
// call_ndarray_flatten_index_impl(generator, ctx, ndarray, indices)
// }
//
//
// /// Generates a call to `__nac3_ndarray_calc_broadcast`. Returns a tuple containing the number of
// /// dimension and size of each dimension of the resultant `ndarray`.
// pub fn call_ndarray_calc_broadcast<'ctx, G: CodeGenerator + ?Sized>(
@ -771,7 +771,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// ) -> TypedArrayLikeAdapter<'ctx, IntValue<'ctx>> {
// let llvm_usize = generator.get_size_type(ctx.ctx);
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
//
//
// let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
// 32 => "__nac3_ndarray_calc_broadcast",
// 64 => "__nac3_ndarray_calc_broadcast64",
@ -789,14 +789,14 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// ],
// false,
// );
//
//
// ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
// });
//
//
// let lhs_ndims = lhs.load_ndims(ctx);
// let rhs_ndims = rhs.load_ndims(ctx);
// let min_ndims = llvm_intrinsics::call_int_umin(ctx, lhs_ndims, rhs_ndims, None);
//
//
// gen_for_callback_incrementing(
// generator,
// ctx,
@ -810,7 +810,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// rhs.dim_sizes().get_typed_unchecked(ctx, generator, &idx, None),
// )
// };
//
//
// let llvm_usize_const_one = llvm_usize.const_int(1, false);
// let lhs_eqz = ctx
// .builder
@ -821,14 +821,14 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// .build_int_compare(IntPredicate::EQ, rhs_dim_sz, llvm_usize_const_one, "")
// .unwrap();
// let lhs_or_rhs_eqz = ctx.builder.build_or(lhs_eqz, rhs_eqz, "").unwrap();
//
//
// let lhs_eq_rhs = ctx
// .builder
// .build_int_compare(IntPredicate::EQ, lhs_dim_sz, rhs_dim_sz, "")
// .unwrap();
//
//
// let is_compatible = ctx.builder.build_or(lhs_or_rhs_eqz, lhs_eq_rhs, "").unwrap();
//
//
// ctx.make_assert(
// generator,
// is_compatible,
@ -837,13 +837,13 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// [None, None, None],
// ctx.current_loc,
// );
//
//
// Ok(())
// },
// llvm_usize.const_int(1, false),
// )
// .unwrap();
//
//
// let max_ndims = llvm_intrinsics::call_int_umax(ctx, lhs_ndims, rhs_ndims, None);
// let lhs_dims = lhs.dim_sizes().base_ptr(ctx, generator);
// let lhs_ndims = lhs.load_ndims(ctx);
@ -851,7 +851,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// let rhs_ndims = rhs.load_ndims(ctx);
// let out_dims = ctx.builder.build_array_alloca(llvm_usize, max_ndims, "").unwrap();
// let out_dims = ArraySliceValue::from_ptr_val(out_dims, max_ndims, None);
//
//
// ctx.builder
// .build_call(
// ndarray_calc_broadcast_fn,
@ -865,14 +865,14 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// "",
// )
// .unwrap();
//
//
// TypedArrayLikeAdapter::from(
// out_dims,
// Box::new(|_, v| v.into_int_value()),
// Box::new(|_, v| v.into()),
// )
// }
//
//
// /// Generates a call to `__nac3_ndarray_calc_broadcast_idx`. Returns an [`ArrayAllocaValue`]
// /// containing the indices used for accessing `array` corresponding to the index of the broadcasted
// /// array `broadcast_idx`.
@ -890,7 +890,7 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// let llvm_usize = generator.get_size_type(ctx.ctx);
// let llvm_pi32 = llvm_i32.ptr_type(AddressSpace::default());
// let llvm_pusize = llvm_usize.ptr_type(AddressSpace::default());
//
//
// let ndarray_calc_broadcast_fn_name = match llvm_usize.get_bit_width() {
// 32 => "__nac3_ndarray_calc_broadcast_idx",
// 64 => "__nac3_ndarray_calc_broadcast_idx64",
@ -902,19 +902,19 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// &[llvm_pusize.into(), llvm_usize.into(), llvm_pi32.into(), llvm_pi32.into()],
// false,
// );
//
//
// ctx.module.add_function(ndarray_calc_broadcast_fn_name, fn_type, None)
// });
//
//
// let broadcast_size = broadcast_idx.size(ctx, generator);
// let out_idx = ctx.builder.build_array_alloca(llvm_i32, broadcast_size, "").unwrap();
//
//
// let array_dims = array.dim_sizes().base_ptr(ctx, generator);
// let array_ndims = array.load_ndims(ctx);
// let broadcast_idx_ptr = unsafe {
// broadcast_idx.ptr_offset_unchecked(ctx, generator, &llvm_usize.const_zero(), None)
// };
//
//
// ctx.builder
// .build_call(
// ndarray_calc_broadcast_fn,
@ -922,10 +922,150 @@ pub fn call_j0<'ctx>(ctx: &CodeGenContext<'ctx, '_>, v: FloatValue<'ctx>) -> Flo
// "",
// )
// .unwrap();
//
//
// TypedArrayLikeAdapter::from(
// ArraySliceValue::from_ptr_val(out_idx, broadcast_size, None),
// Box::new(|_, v| v.into_int_value()),
// Box::new(|_, v| v.into()),
// )
// }
fn get_size_variant<'ctx>(ty: IntType<'ctx>) -> SizeVariant {
match ty.get_bit_width() {
32 => SizeVariant::Bits32,
64 => SizeVariant::Bits64,
_ => unreachable!("Unsupported int type bit width {}", ty.get_bit_width()),
}
}
fn get_size_type_dependent_function<'ctx, BuildFuncTypeFn>(
ctx: &CodeGenContext<'ctx, '_>,
size_type: IntType<'ctx>,
base_name: &str,
build_func_type: BuildFuncTypeFn,
) -> FunctionValue<'ctx>
where
BuildFuncTypeFn: Fn() -> FunctionType<'ctx>,
{
let mut fn_name = base_name.to_owned();
match get_size_variant(size_type) {
SizeVariant::Bits32 => {
// The original fn_name is the correct function name
}
SizeVariant::Bits64 => {
// Append "64" at the end, this is the naming convention for 64-bit
fn_name.push_str("64");
}
}
// Get (or declare then get if does not exist) the corresponding function
ctx.module.get_function(&fn_name).unwrap_or_else(|| {
let fn_type = build_func_type();
ctx.module.add_function(&fn_name, fn_type, None)
})
}
pub fn get_irrt_ndarray_ptr_type<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
size_type: IntType<'ctx>,
) -> PointerType<'ctx> {
let i8_type = ctx.ctx.i8_type();
let ndarray_ty = NpArrayType { size_type, elem_type: i8_type.as_basic_type_enum() };
let struct_ty = ndarray_ty.get_struct_type(ctx.ctx);
struct_ty.ptr_type(AddressSpace::default())
}
pub fn get_irrt_opaque_uint8_ptr_type<'ctx>(ctx: &CodeGenContext<'ctx, '_>) -> PointerType<'ctx> {
ctx.ctx.i8_type().ptr_type(AddressSpace::default())
}
pub fn call_nac3_ndarray_size<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NpArrayValue<'ctx>,
) -> IntValue<'ctx> {
// Get the IRRT function
let size_type = ndarray.ty.size_type;
let function = get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_size", || {
size_type.fn_type(&[get_irrt_ndarray_ptr_type(ctx, size_type).into()], false)
});
// Call the IRRT function
ctx.builder
.build_call(function, &[ndarray.ptr.into()], "size")
.unwrap()
.try_as_basic_value()
.unwrap_left()
.into_int_value()
}
pub fn call_nac3_ndarray_fill_generic<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NpArrayValue<'ctx>,
fill_value: BasicValueEnum<'ctx>,
) {
// Sanity check on type of `fill_value`
check_basic_types_match(ndarray.ty.elem_type, fill_value.get_type().as_basic_type_enum())
.unwrap();
// Get the IRRT function
let size_type = ndarray.ty.size_type;
let function =
get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_fill_generic", || {
ctx.ctx.void_type().fn_type(
&[
get_irrt_ndarray_ptr_type(ctx, size_type).into(), // NDArray<SizeT>* ndarray
get_irrt_opaque_uint8_ptr_type(ctx).into(), // uint8_t* pvalue
],
false,
)
});
// Put `fill_value` onto the stack and get a pointer to it, and that pointer will be `pvalue`
let pvalue = ctx.builder.build_alloca(ndarray.ty.elem_type, "fill_value").unwrap();
ctx.builder.build_store(pvalue, fill_value).unwrap();
// Cast pvalue to `uint8_t*`
let pvalue = ctx.builder.build_pointer_cast(pvalue, get_irrt_opaque_uint8_ptr_type(ctx), "").unwrap();
// Call the IRRT function
ctx.builder
.build_call(
function,
&[
ndarray.ptr.into(), // ndarray
pvalue.into(), // pvalue
],
"",
)
.unwrap();
}
pub fn call_nac3_ndarray_set_strides_by_shape<'ctx>(
ctx: &CodeGenContext<'ctx, '_>,
ndarray: NpArrayValue<'ctx>,
) {
// Get the IRRT function
let size_type = ndarray.ty.size_type;
let function =
get_size_type_dependent_function(ctx, size_type, "__nac3_ndarray_set_strides_by_shape", || {
ctx.ctx.void_type().fn_type(
&[
get_irrt_ndarray_ptr_type(ctx, size_type).into(), // NDArray<SizeT>* ndarray
],
false,
)
});
// Call the IRRT function
ctx.builder
.build_call(
function,
&[
ndarray.ptr.into(), // ndarray
],
"",
)
.unwrap();
}

View File

@ -7,6 +7,7 @@ use crate::{
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
},
};
use classes::NpArrayType;
use crossbeam::channel::{unbounded, Receiver, Sender};
use inkwell::{
attributes::{Attribute, AttributeLoc},
@ -476,7 +477,14 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
ctx, module, generator, unifier, top_level, type_cache, dtype,
);
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
let ndarray_ty = NpArrayType {
size_type: generator.get_size_type(ctx),
elem_type: element_type,
};
ndarray_ty
.get_struct_type(ctx)
.ptr_type(AddressSpace::default())
.as_basic_type_enum()
}
_ => unreachable!(

View File

@ -2,15 +2,11 @@ use crate::{
codegen::{
classes::{
ArrayLikeIndexer, ArrayLikeValue, ListType, ListValue, NDArrayType, NDArrayValue,
ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
NpArrayType, ProxyType, ProxyValue, TypedArrayLikeAccessor, TypedArrayLikeAdapter,
TypedArrayLikeMutator, UntypedArrayLikeAccessor, UntypedArrayLikeMutator,
},
expr::gen_binop_expr_with_values,
irrt::{
// calculate_len_for_slice_range, call_ndarray_calc_broadcast,
// call_ndarray_calc_broadcast_index, call_ndarray_calc_nd_indices,
// call_ndarray_calc_size,
},
get_llvm_type, irrt,
llvm_intrinsics::{self, call_memcpy_generic},
stmt::{gen_for_callback_incrementing, gen_for_range_callback, gen_if_else_expr_callback},
CodeGenContext, CodeGenerator,
@ -26,14 +22,26 @@ use crate::{
typedef::{FunSignature, Type, TypeEnum},
},
};
use inkwell::types::{AnyTypeEnum, BasicTypeEnum, PointerType};
use inkwell::{
types::BasicType,
values::{BasicValueEnum, IntValue, PointerValue},
AddressSpace, IntPredicate, OptimizationLevel,
};
use inkwell::{
types::{AnyTypeEnum, BasicTypeEnum, IntType, PointerType},
values::BasicValue,
};
use nac3parser::ast::{Operator, StrRef};
use super::{
classes::NpArrayValue,
irrt::{
call_nac3_ndarray_set_strides_by_shape, call_nac3_ndarray_size, get_irrt_ndarray_ptr_type,
get_irrt_opaque_uint8_ptr_type,
},
stmt::gen_return,
};
// /// Creates an uninitialized `NDArray` instance.
// fn create_ndarray_uninitialized<'ctx, G: CodeGenerator + ?Sized>(
// generator: &mut G,
@ -2015,3 +2023,430 @@ use nac3parser::ast::{Operator, StrRef};
// Ok(())
// }
//
fn simple_assert<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
cond: IntValue<'ctx>,
msg: &str,
) where
G: CodeGenerator + ?Sized,
{
let mut full_msg = String::from("simple_assert failed: ");
full_msg.push_str(msg);
ctx.make_assert(
generator,
cond,
"0:ValueError",
full_msg.as_str(),
[None, None, None],
ctx.current_loc,
);
}
fn copy_array_slice<'ctx, G, Src, Dst>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
dst: Dst,
src: Src,
) where
G: CodeGenerator + ?Sized,
Dst: TypedArrayLikeMutator<'ctx, IntType<'ctx>>,
Src: TypedArrayLikeAccessor<'ctx, IntType<'ctx>>,
{
// Sanity check
let len_match = ctx
.builder
.build_int_compare(
IntPredicate::EQ,
src.size(ctx, generator),
dst.size(ctx, generator),
"len_match",
)
.unwrap();
simple_assert(generator, ctx, len_match, "copy_array_slice length mismatched");
let size_type = generator.get_size_type(ctx.ctx);
let init_val = size_type.const_zero();
let max_val = (dst.size(ctx, generator), false);
let incr_val = size_type.const_int(1, false);
gen_for_callback_incrementing(
generator,
ctx,
init_val,
max_val,
|generator, ctx, _hooks, idx| {
let value = src.get_typed(ctx, generator, &idx, Some("copy_array_slice.tmp"));
dst.set_typed(ctx, generator, &idx, value);
Ok(())
},
incr_val,
)
.unwrap();
}
fn var_alloc_ndarray<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_type: BasicTypeEnum<'ctx>,
ndims: IntValue<'ctx>,
name: Option<&str>,
) -> Result<NpArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
{
let size_type = generator.get_size_type(ctx.ctx);
let ndarray_ty = NpArrayType { size_type, elem_type };
let ndarray = ndarray_ty.var_alloc(generator, ctx, ndims, name);
Ok(ndarray)
}
pub struct Producer<'ctx, G: CodeGenerator + ?Sized, T> {
pub count: IntValue<'ctx>,
pub write_to_slice: Box<
dyn Fn(
&mut G,
&mut CodeGenContext<'ctx, '_>,
&TypedArrayLikeAdapter<'ctx, T>,
) -> Result<(), String>
+ 'ctx,
>,
}
/// TODO: UPDATE DOCUMENTATION
/// LLVM-typed implementation for generating a [`Producer`] that sets a list of ints.
///
/// * `elem_ty` - The element type of the `NDArray`.
/// * `shape` - The `shape` parameter used to construct the `NDArray`.
///
/// ### Notes on `shape`
///
/// Just like numpy, the `shape` argument can be:
/// 1. A list of `int32`; e.g., `np.empty([600, 800, 3])`
/// 2. A tuple of `int32`; e.g., `np.empty((600, 800, 3))`
/// 3. A scalar `int32`; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
///
/// See also [`typecheck::type_inferencer::fold_numpy_function_call_shape_argument`] to
/// learn how `shape` gets from being a Python user expression to here.
fn parse_input_shape_arg<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
) -> Result<Producer<'ctx, G, IntValue<'ctx>>, String>
where
G: CodeGenerator + ?Sized,
{
let size_type = generator.get_size_type(ctx.ctx);
match &*ctx.unifier.get_ty(shape_ty) {
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.list.obj_id(&ctx.unifier).unwrap() =>
{
// 1. A list of ints; e.g., `np.empty([600, 800, 3])`
// A list has to be a PointerValue
let shape_list = ListValue::from_ptr_val(shape.into_pointer_value(), size_type, None);
// Create `Producer`
let ndims = shape_list.load_size(ctx, Some("count"));
Ok(Producer {
count: ndims,
write_to_slice: Box::new(move |ctx, generator, dst_slice| {
// Basically iterate through the list and write to `dst_slice` accordingly
let init_val = size_type.const_zero();
let max_val = (ndims, false);
let incr_val = size_type.const_int(1, false);
gen_for_callback_incrementing(
ctx,
generator,
init_val,
max_val,
|generator, ctx, _hooks, idx| {
// Get the dimension at `idx`
let dim =
shape_list.data().get(ctx, generator, &idx, None).into_int_value();
// Cast `dim` to SizeT
let dim = ctx
.builder
.build_int_s_extend_or_bit_cast(dim, size_type, "dim_casted")
.unwrap();
// Write
dst_slice.set_typed(ctx, generator, &idx, dim);
Ok(())
},
incr_val,
)?;
Ok(())
}),
})
}
TypeEnum::TTuple { ty: tuple_types } => {
// 2. A tuple of ints; e.g., `np.empty((600, 800, 3))`
// Get the length/size of the tuple, which also happens to be the value of `ndims`.
let ndims = tuple_types.len();
// A tuple has to be a StructValue
// Read [`codegen::expr::gen_expr`] to see how `nac3core` translates a Python tuple into LLVM.
let shape_tuple = shape.into_struct_value();
Ok(Producer {
count: size_type.const_int(ndims as u64, false),
write_to_slice: Box::new(move |generator, ctx, dst_slice| {
for dim_i in 0..ndims {
// Get the dimension at `dim_i`
let dim = ctx
.builder
.build_extract_value(
shape_tuple,
dim_i as u32,
format!("dim{dim_i}").as_str(),
)
.unwrap()
.into_int_value();
// Cast `dim` to SizeT
let dim = ctx
.builder
.build_int_s_extend_or_bit_cast(dim, size_type, "dim_casted")
.unwrap();
// Write
dst_slice.set_typed(
ctx,
generator,
&size_type.const_int(dim_i as u64, false),
dim,
);
}
Ok(())
}),
})
}
TypeEnum::TObj { obj_id, .. }
if *obj_id == ctx.primitives.int32.obj_id(&ctx.unifier).unwrap() =>
{
// 3. A scalar int; e.g., `np.empty(3)`, this is functionally equivalent to `np.empty([3])`
// The value has to be an integer
let shape_int = shape.into_int_value();
Ok(Producer {
count: size_type.const_int(1, false),
write_to_slice: Box::new(move |generator, ctx, dst_slice| {
// Only index 0 is set with the input value
let dim_i = size_type.const_zero();
// Cast `shape_int` to SizeT
let dim = ctx
.builder
.build_int_s_extend_or_bit_cast(shape_int, size_type, "dim_casted")
.unwrap();
// Write
dst_slice.set_typed(ctx, generator, &dim_i, dim);
Ok(())
}),
})
}
_ => panic!("parse_input_shape_arg encountered unknown type"),
}
}
enum NDArrayInitMode<'ctx, G: CodeGenerator + ?Sized> {
SetNDim { ndim: IntValue<'ctx> },
SetShape { shape: Producer<'ctx, G, IntValue<'ctx>> },
SetShapeAndAllocaData { shape: Producer<'ctx, G, IntValue<'ctx>> },
}
/// TODO: DOCUMENT ME
fn alloca_ndarray_and_init<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_type: BasicTypeEnum<'ctx>,
init_mode: NDArrayInitMode<'ctx, G>,
name: Option<&str>,
) -> Result<NpArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
{
// It is implemented verbosely in order to make the initialization modes super clear in their intent.
match init_mode {
NDArrayInitMode::SetNDim { ndim: ndims } => {
let ndarray = var_alloc_ndarray(generator, ctx, elem_type, ndims, name)?;
Ok(ndarray)
}
NDArrayInitMode::SetShape { shape } => {
let ndims = shape.count;
let ndarray = var_alloc_ndarray(generator, ctx, elem_type, ndims, name)?;
// Fill `ndarray.shape` with `shape_producer`
(shape.write_to_slice)(generator, ctx, &ndarray.shape_slice(ctx));
Ok(ndarray)
}
NDArrayInitMode::SetShapeAndAllocaData { shape } => {
let ndims = shape.count;
let ndarray = var_alloc_ndarray(generator, ctx, elem_type, ndims, name)?;
// Fill `ndarray.shape` with `shape_producer`
(shape.write_to_slice)(generator, ctx, &ndarray.shape_slice(ctx));
// Now we populate `ndarray.data` by alloca-ing.
// But first, we need to know the size of the ndarray to know how many elements to alloca
// NOTE: calculating the size of an ndarray requires `ndarray.shape` to be set.
let ndarray_size = call_nac3_ndarray_size(ctx, ndarray);
// Alloca `data` and assign it to `ndarray.data`
let data_ptr = ctx.builder.build_array_alloca(elem_type, ndarray_size, "data").unwrap();
// We also have to cast `data_ptr` to `uint8_t*` because that is what `NDArray` has.
let data_ptr = ctx
.builder
.build_pointer_cast(data_ptr, get_irrt_opaque_uint8_ptr_type(ctx), "data_casted")
.unwrap();
ndarray.store_data(ctx, data_ptr);
// Finally, do `set_strides_by_shape`
// Check out https://ajcr.net/stride-guide-part-1/ to see what numpy "strides" are.
call_nac3_ndarray_set_strides_by_shape(ctx, ndarray);
Ok(ndarray)
}
}
}
/// LLVM-typed implementation for generating the implementation for constructing an empty `NDArray`.
fn call_ndarray_empty_impl<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
name: Option<&str>,
) -> Result<NpArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
{
let elem_type = ctx.get_llvm_type(generator, elem_ty);
let shape = parse_input_shape_arg(generator, ctx, shape, shape_ty)?;
let ndarray = alloca_ndarray_and_init(
generator,
ctx,
elem_type,
NDArrayInitMode::SetShapeAndAllocaData { shape },
name,
)?;
Ok(ndarray)
}
fn call_ndarray_fill_impl<'ctx, G>(
generator: &mut G,
ctx: &mut CodeGenContext<'ctx, '_>,
elem_ty: Type,
shape: BasicValueEnum<'ctx>,
shape_ty: Type,
fill_value: BasicValueEnum<'ctx>,
name: Option<&str>,
) -> Result<NpArrayValue<'ctx>, String>
where
G: CodeGenerator + ?Sized,
{
let ndarray = call_ndarray_empty_impl(generator, ctx, elem_ty, shape, shape_ty, name)?;
irrt::call_nac3_ndarray_fill_generic(ctx, ndarray, fill_value);
Ok(ndarray)
}
/// Generates LLVM IR for `np.empty`.
pub fn gen_ndarray_empty<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse arguments
let shape_ty = fun.0.args[0].ty;
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
// Implementation
let ndarray = call_ndarray_empty_impl(
generator,
context,
context.primitives.float,
shape,
shape_ty,
None,
)?;
Ok(ndarray.ptr)
}
/// Generates LLVM IR for `np.zeros`.
pub fn gen_ndarray_zeros<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse arguments
let shape_ty = fun.0.args[0].ty;
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
// Implementation
// NOTE: Currently nac3's `np.zeros` is always `float64`.
let float64_ty = context.primitives.float;
let float64_llvm_type = context.get_llvm_type(generator, float64_ty).into_float_type();
let ndarray = call_ndarray_fill_impl(
generator,
context,
float64_ty,
shape,
shape_ty,
float64_llvm_type.const_zero().as_basic_value_enum(),
Some("np_zeros.result"),
)?;
Ok(ndarray.ptr)
}
/// Generates LLVM IR for `np.ones`.
pub fn gen_ndarray_ones<'ctx>(
context: &mut CodeGenContext<'ctx, '_>,
obj: &Option<(Type, ValueEnum<'ctx>)>,
fun: (&FunSignature, DefinitionId),
args: &[(Option<StrRef>, ValueEnum<'ctx>)],
generator: &mut dyn CodeGenerator,
) -> Result<PointerValue<'ctx>, String> {
assert!(obj.is_none());
assert_eq!(args.len(), 1);
// Parse arguments
let shape_ty = fun.0.args[0].ty;
let shape = args[0].1.clone().to_basic_value_enum(context, generator, shape_ty)?;
// Implementation
// NOTE: Currently nac3's `np.ones` is always `float64`.
let float64_ty = context.primitives.float;
let float64_llvm_type = context.get_llvm_type(generator, float64_ty).into_float_type();
let ndarray = call_ndarray_fill_impl(
generator,
context,
float64_ty,
shape,
shape_ty,
float64_llvm_type.const_float(1.0).as_basic_value_enum(),
Some("np_zeros.result"),
)?;
Ok(ndarray.ptr)
}

View File

@ -24,3 +24,4 @@ pub mod codegen;
pub mod symbol_resolver;
pub mod toplevel;
pub mod typecheck;
pub mod util;

View File

@ -1,5 +1,6 @@
use std::iter::once;
use crate::util::SizeVariant;
use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails};
use indexmap::IndexMap;
use inkwell::{
@ -278,19 +279,10 @@ pub fn get_builtins(unifier: &mut Unifier, primitives: &PrimitiveStore) -> Built
.collect()
}
/// A helper enum used by [`BuiltinBuilder`]
#[derive(Clone, Copy)]
enum SizeVariant {
Bits32,
Bits64,
}
impl SizeVariant {
fn of_int(self, primitives: &PrimitiveStore) -> Type {
match self {
SizeVariant::Bits32 => primitives.int32,
SizeVariant::Bits64 => primitives.int64,
}
fn size_variant_to_int_type(variant: SizeVariant, primitives: &PrimitiveStore) -> Type {
match variant {
SizeVariant::Bits32 => primitives.int32,
SizeVariant::Bits64 => primitives.int64,
}
}
@ -1061,7 +1053,7 @@ impl<'a> BuiltinBuilder<'a> {
);
// The size variant of the function determines the size of the returned int.
let int_sized = size_variant.of_int(self.primitives);
let int_sized = size_variant_to_int_type(size_variant, self.primitives);
let ndarray_int_sized =
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
@ -1086,7 +1078,7 @@ impl<'a> BuiltinBuilder<'a> {
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
let ret_elem_ty = size_variant_to_int_type(size_variant, &ctx.primitives);
Ok(Some(builtin_fns::call_round(generator, ctx, (arg_ty, arg), ret_elem_ty)?))
}),
)
@ -1127,7 +1119,7 @@ impl<'a> BuiltinBuilder<'a> {
make_ndarray_ty(self.unifier, self.primitives, Some(float), Some(common_ndim.ty));
// The size variant of the function determines the type of int returned
let int_sized = size_variant.of_int(self.primitives);
let int_sized = size_variant_to_int_type(size_variant, self.primitives);
let ndarray_int_sized =
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
@ -1150,7 +1142,7 @@ impl<'a> BuiltinBuilder<'a> {
let arg_ty = fun.0.args[0].ty;
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
let ret_elem_ty = size_variant_to_int_type(size_variant, &ctx.primitives);
let func = match kind {
Kind::Ceil => builtin_fns::call_ceil,
Kind::Floor => builtin_fns::call_floor,
@ -1201,14 +1193,13 @@ impl<'a> BuiltinBuilder<'a> {
self.ndarray_float,
&[(self.ndarray_factory_fn_shape_arg_tvar.ty, "shape")],
Box::new(move |ctx, obj, fun, args, generator| {
todo!()
// let func = match prim {
// PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
// PrimDef::FunNpZeros => gen_ndarray_zeros,
// PrimDef::FunNpOnes => gen_ndarray_ones,
// _ => unreachable!(),
// };
// func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
let func = match prim {
PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
PrimDef::FunNpZeros => gen_ndarray_zeros,
PrimDef::FunNpOnes => todo!(), // gen_ndarray_ones,
_ => unreachable!(),
};
func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
}),
)
}

5
nac3core/src/util.rs Normal file
View File

@ -0,0 +1,5 @@
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum SizeVariant {
Bits32,
Bits64,
}

View File

@ -0,0 +1,3 @@
def run() -> int32:
hello = np_zeros((3, 4))
return 0