forked from M-Labs/nac3
Compare commits
18 Commits
ndarray-st
...
ndarray-st
Author | SHA1 | Date |
---|---|---|
lyken | 3f4ee433f1 | |
lyken | ab7ff2ae9d | |
lyken | e75db2c26f | |
lyken | 635542a36d | |
lyken | 39a05d6be6 | |
lyken | d6451b11c1 | |
lyken | 0774dd1685 | |
lyken | dec1658e13 | |
lyken | c192256b78 | |
lyken | 94c547ee22 | |
lyken | 262a99ff26 | |
lyken | 5fe74303ee | |
lyken | 84fc095800 | |
lyken | b0f97b4d36 | |
lyken | 8f191631f2 | |
lyken | 851cef57aa | |
lyken | 0300c81bb7 | |
lyken | 600acc8e5e |
|
@ -13,6 +13,7 @@
|
|||
''
|
||||
mkdir -p $out/bin
|
||||
ln -s ${pkgs.llvmPackages_14.clang-unwrapped}/bin/clang $out/bin/clang-irrt
|
||||
ln -s ${pkgs.llvmPackages_14.clang}/bin/clang $out/bin/clang-irrt-test
|
||||
ln -s ${pkgs.llvmPackages_14.llvm.out}/bin/llvm-as $out/bin/llvm-as-irrt
|
||||
'';
|
||||
nac3artiq = pkgs.python3Packages.toPythonModule (
|
||||
|
@ -23,6 +24,7 @@
|
|||
cargoLock = {
|
||||
lockFile = ./Cargo.lock;
|
||||
};
|
||||
cargoTestFlags = [ "--features" "test" ];
|
||||
passthru.cargoLock = cargoLock;
|
||||
nativeBuildInputs = [ pkgs.python3 pkgs.llvmPackages_14.clang llvm-tools-irrt pkgs.llvmPackages_14.llvm.out llvm-nac3 ];
|
||||
buildInputs = [ pkgs.python3 llvm-nac3 ];
|
||||
|
@ -161,7 +163,10 @@
|
|||
clippy
|
||||
pre-commit
|
||||
rustfmt
|
||||
rust-analyzer
|
||||
];
|
||||
# https://nixos.wiki/wiki/Rust#Shell.nix_example
|
||||
RUST_SRC_PATH = "${pkgs.rust.packages.stable.rustPlatform.rustLibSrc}";
|
||||
};
|
||||
devShells.x86_64-linux.msys2 = pkgs.mkShell {
|
||||
name = "nac3-dev-shell-msys2";
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
[features]
|
||||
test = []
|
||||
|
||||
[package]
|
||||
name = "nac3core"
|
||||
version = "0.1.0"
|
||||
|
|
|
@ -7,8 +7,8 @@ use std::{
|
|||
process::{Command, Stdio},
|
||||
};
|
||||
|
||||
fn main() {
|
||||
const FILE: &str = "src/codegen/irrt/irrt.cpp";
|
||||
fn compile_irrt(irrt_dir: &Path, out_dir: &Path) {
|
||||
let irrt_cpp_path = irrt_dir.join("irrt.cpp");
|
||||
|
||||
/*
|
||||
* HACK: Sadly, clang doesn't let us emit generic LLVM bitcode.
|
||||
|
@ -16,7 +16,7 @@ fn main() {
|
|||
*/
|
||||
let flags: &[&str] = &[
|
||||
"--target=wasm32",
|
||||
FILE,
|
||||
irrt_cpp_path.to_str().unwrap(),
|
||||
"-x",
|
||||
"c++",
|
||||
"-fno-discard-value-names",
|
||||
|
@ -31,13 +31,14 @@ fn main() {
|
|||
"-S",
|
||||
"-Wall",
|
||||
"-Wextra",
|
||||
"-Werror=return-type",
|
||||
"-I",
|
||||
irrt_dir.to_str().unwrap(),
|
||||
"-o",
|
||||
"-",
|
||||
];
|
||||
|
||||
println!("cargo:rerun-if-changed={FILE}");
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_path = Path::new(&out_dir);
|
||||
println!("cargo:rerun-if-changed={}", out_dir.to_str().unwrap());
|
||||
|
||||
let output = Command::new("clang-irrt")
|
||||
.args(flags)
|
||||
|
@ -52,7 +53,11 @@ fn main() {
|
|||
let output = std::str::from_utf8(&output.stdout).unwrap().replace("\r\n", "\n");
|
||||
let mut filtered_output = String::with_capacity(output.len());
|
||||
|
||||
let regex_filter = Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)").unwrap();
|
||||
// (?ms:^define.*?\}$) to capture `define` blocks
|
||||
// (?m:^declare.*?$) to capture `declare` blocks
|
||||
// (?m:^%.+?=\s*type\s*\{.+?\}$) to capture `type` declarations
|
||||
let regex_filter =
|
||||
Regex::new(r"(?ms:^define.*?\}$)|(?m:^declare.*?$)|(?m:^%.+?=\s*type\s*\{.+?\}$)").unwrap();
|
||||
for f in regex_filter.captures_iter(&output) {
|
||||
assert_eq!(f.len(), 1);
|
||||
filtered_output.push_str(&f[0]);
|
||||
|
@ -65,18 +70,65 @@ fn main() {
|
|||
|
||||
println!("cargo:rerun-if-env-changed=DEBUG_DUMP_IRRT");
|
||||
if env::var("DEBUG_DUMP_IRRT").is_ok() {
|
||||
let mut file = File::create(out_path.join("irrt.ll")).unwrap();
|
||||
let mut file = File::create(out_dir.join("irrt.ll")).unwrap();
|
||||
file.write_all(output.as_bytes()).unwrap();
|
||||
let mut file = File::create(out_path.join("irrt-filtered.ll")).unwrap();
|
||||
let mut file = File::create(out_dir.join("irrt-filtered.ll")).unwrap();
|
||||
file.write_all(filtered_output.as_bytes()).unwrap();
|
||||
}
|
||||
|
||||
let mut llvm_as = Command::new("llvm-as-irrt")
|
||||
.stdin(Stdio::piped())
|
||||
.arg("-o")
|
||||
.arg(out_path.join("irrt.bc"))
|
||||
.arg(out_dir.join("irrt.bc"))
|
||||
.spawn()
|
||||
.unwrap();
|
||||
llvm_as.stdin.as_mut().unwrap().write_all(filtered_output.as_bytes()).unwrap();
|
||||
assert!(llvm_as.wait().unwrap().success());
|
||||
}
|
||||
|
||||
fn compile_irrt_test(irrt_dir: &Path, out_dir: &Path) {
|
||||
let irrt_test_cpp_path = irrt_dir.join("irrt_test.cpp");
|
||||
let exe_path = out_dir.join("irrt_test.out");
|
||||
|
||||
let flags: &[&str] = &[
|
||||
irrt_test_cpp_path.to_str().unwrap(),
|
||||
"-x",
|
||||
"c++",
|
||||
"-I",
|
||||
irrt_dir.to_str().unwrap(),
|
||||
"-g",
|
||||
"-fno-discard-value-names",
|
||||
"-O0",
|
||||
"-Wall",
|
||||
"-Wextra",
|
||||
"-Werror=return-type",
|
||||
"-lm", // for `tgamma()`, `lgamma()`
|
||||
"-o",
|
||||
exe_path.to_str().unwrap(),
|
||||
];
|
||||
|
||||
Command::new("clang-irrt-test")
|
||||
.args(flags)
|
||||
.output()
|
||||
.map(|o| {
|
||||
assert!(o.status.success(), "{}", std::str::from_utf8(&o.stderr).unwrap());
|
||||
o
|
||||
})
|
||||
.unwrap();
|
||||
println!("cargo:rerun-if-changed={}", out_dir.to_str().unwrap());
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let out_dir = env::var("OUT_DIR").unwrap();
|
||||
let out_dir = Path::new(&out_dir);
|
||||
|
||||
let irrt_dir = Path::new("./irrt");
|
||||
|
||||
compile_irrt(irrt_dir, out_dir);
|
||||
|
||||
// https://github.com/rust-lang/cargo/issues/2549
|
||||
// `cargo test -F test` to also build `irrt_test.cpp
|
||||
if cfg!(feature = "test") {
|
||||
compile_irrt_test(irrt_dir, out_dir);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,5 @@
|
|||
#include "irrt_everything.hpp"
|
||||
|
||||
/*
|
||||
This file will be read by `clang-irrt` to conveniently produce LLVM IR for `nac3core/codegen`.
|
||||
*/
|
|
@ -0,0 +1,437 @@
|
|||
#ifndef IRRT_DONT_TYPEDEF_INTS
|
||||
typedef _BitInt(8) int8_t;
|
||||
typedef unsigned _BitInt(8) uint8_t;
|
||||
typedef _BitInt(32) int32_t;
|
||||
typedef unsigned _BitInt(32) uint32_t;
|
||||
typedef _BitInt(64) int64_t;
|
||||
typedef unsigned _BitInt(64) uint64_t;
|
||||
#endif
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
typedef uint32_t NDIndex;
|
||||
// The type of an index or a value describing the length of a range/slice is
|
||||
// always `int32_t`.
|
||||
typedef int32_t SliceIndex;
|
||||
|
||||
template <typename T>
|
||||
static T max(T a, T b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static T min(T a, T b) {
|
||||
return a > b ? b : a;
|
||||
}
|
||||
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T>
|
||||
static T __nac3_int_exp_impl(T base, T exp) {
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do {
|
||||
if (exp & 1) {
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static SizeT __nac3_ndarray_calc_size_impl(
|
||||
const SizeT *list_data,
|
||||
SizeT list_len,
|
||||
SizeT begin_idx,
|
||||
SizeT end_idx
|
||||
) {
|
||||
__builtin_assume(end_idx <= list_len);
|
||||
|
||||
SizeT num_elems = 1;
|
||||
for (SizeT i = begin_idx; i < end_idx; ++i) {
|
||||
SizeT val = list_data[i];
|
||||
__builtin_assume(val > 0);
|
||||
num_elems *= val;
|
||||
}
|
||||
return num_elems;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static void __nac3_ndarray_calc_nd_indices_impl(
|
||||
SizeT index,
|
||||
const SizeT *dims,
|
||||
SizeT num_dims,
|
||||
NDIndex *idxs
|
||||
) {
|
||||
SizeT stride = 1;
|
||||
for (SizeT dim = 0; dim < num_dims; dim++) {
|
||||
SizeT i = num_dims - dim - 1;
|
||||
__builtin_assume(dims[i] > 0);
|
||||
idxs[i] = (index / stride) % dims[i];
|
||||
stride *= dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static SizeT __nac3_ndarray_flatten_index_impl(
|
||||
const SizeT *dims,
|
||||
SizeT num_dims,
|
||||
const NDIndex *indices,
|
||||
SizeT num_indices
|
||||
) {
|
||||
SizeT idx = 0;
|
||||
SizeT stride = 1;
|
||||
for (SizeT i = 0; i < num_dims; ++i) {
|
||||
SizeT ri = num_dims - i - 1;
|
||||
if (ri < num_indices) {
|
||||
idx += stride * indices[ri];
|
||||
}
|
||||
|
||||
__builtin_assume(dims[i] > 0);
|
||||
stride *= dims[ri];
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static void __nac3_ndarray_calc_broadcast_impl(
|
||||
const SizeT *lhs_dims,
|
||||
SizeT lhs_ndims,
|
||||
const SizeT *rhs_dims,
|
||||
SizeT rhs_ndims,
|
||||
SizeT *out_dims
|
||||
) {
|
||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||
|
||||
for (SizeT i = 0; i < max_ndims; ++i) {
|
||||
const SizeT *lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||
const SizeT *rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||
SizeT *out_dim = &out_dims[max_ndims - i - 1];
|
||||
|
||||
if (lhs_dim_sz == nullptr) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (rhs_dim_sz == nullptr) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == 1) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (*rhs_dim_sz == 1) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == *rhs_dim_sz) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static void __nac3_ndarray_calc_broadcast_idx_impl(
|
||||
const SizeT *src_dims,
|
||||
SizeT src_ndims,
|
||||
const NDIndex *in_idx,
|
||||
NDIndex *out_idx
|
||||
) {
|
||||
for (SizeT i = 0; i < src_ndims; ++i) {
|
||||
SizeT src_i = src_ndims - i - 1;
|
||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT>
|
||||
static void __nac3_ndarray_strides_from_shape_impl(
|
||||
SizeT ndims,
|
||||
SizeT *shape,
|
||||
SizeT *dst_strides
|
||||
) {
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
int dim_i = ndims - i - 1;
|
||||
dst_strides[dim_i] = stride_product;
|
||||
stride_product *= shape[dim_i];
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) {\
|
||||
return __nac3_int_exp_impl(base, exp);\
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t)
|
||||
DEF_nac3_int_exp_(int64_t)
|
||||
DEF_nac3_int_exp_(uint32_t)
|
||||
DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(
|
||||
const SliceIndex start,
|
||||
const SliceIndex end,
|
||||
const SliceIndex step
|
||||
) {
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(
|
||||
SliceIndex dest_start,
|
||||
SliceIndex dest_end,
|
||||
SliceIndex dest_step,
|
||||
uint8_t *dest_arr,
|
||||
SliceIndex dest_arr_len,
|
||||
SliceIndex src_start,
|
||||
SliceIndex src_end,
|
||||
SliceIndex src_step,
|
||||
uint8_t *src_arr,
|
||||
SliceIndex src_arr_len,
|
||||
const SliceIndex size
|
||||
) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0) return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_start * size,
|
||||
src_arr + src_start * size,
|
||||
src_len * size
|
||||
);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(
|
||||
dest_arr + (dest_start + src_len) * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca =
|
||||
(dest_arr == src_arr)
|
||||
&& !(
|
||||
max(dest_start, dest_end) < min(src_start, src_end)
|
||||
|| max(src_start, src_end) < min(dest_start, dest_end)
|
||||
);
|
||||
if (need_alloca) {
|
||||
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (;
|
||||
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
||||
src_ind += src_step, dest_ind += dest_step
|
||||
) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_ind * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x) {
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x) {
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_calc_size(
|
||||
const uint32_t *list_data,
|
||||
uint32_t list_len,
|
||||
uint32_t begin_idx,
|
||||
uint32_t end_idx
|
||||
) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_calc_size64(
|
||||
const uint64_t *list_data,
|
||||
uint64_t list_len,
|
||||
uint64_t begin_idx,
|
||||
uint64_t end_idx
|
||||
) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices(
|
||||
uint32_t index,
|
||||
const uint32_t* dims,
|
||||
uint32_t num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices64(
|
||||
uint64_t index,
|
||||
const uint64_t* dims,
|
||||
uint64_t num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_flatten_index(
|
||||
const uint32_t* dims,
|
||||
uint32_t num_dims,
|
||||
const NDIndex* indices,
|
||||
uint32_t num_indices
|
||||
) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_flatten_index64(
|
||||
const uint64_t* dims,
|
||||
uint64_t num_dims,
|
||||
const NDIndex* indices,
|
||||
uint64_t num_indices
|
||||
) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast(
|
||||
const uint32_t *lhs_dims,
|
||||
uint32_t lhs_ndims,
|
||||
const uint32_t *rhs_dims,
|
||||
uint32_t rhs_ndims,
|
||||
uint32_t *out_dims
|
||||
) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast64(
|
||||
const uint64_t *lhs_dims,
|
||||
uint64_t lhs_ndims,
|
||||
const uint64_t *rhs_dims,
|
||||
uint64_t rhs_ndims,
|
||||
uint64_t *out_dims
|
||||
) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx(
|
||||
const uint32_t *src_dims,
|
||||
uint32_t src_ndims,
|
||||
const NDIndex *in_idx,
|
||||
NDIndex *out_idx
|
||||
) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx64(
|
||||
const uint64_t *src_dims,
|
||||
uint64_t src_ndims,
|
||||
const NDIndex *in_idx,
|
||||
NDIndex *out_idx
|
||||
) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_strides_from_shape(uint32_t ndims, uint32_t* shape, uint32_t* dst_strides) {
|
||||
__nac3_ndarray_strides_from_shape_impl(ndims, shape, dst_strides);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_strides_from_shape64(uint64_t ndims, uint64_t* shape, uint64_t* dst_strides) {
|
||||
__nac3_ndarray_strides_from_shape_impl(ndims, shape, dst_strides);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,216 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_utils.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
|
||||
/*
|
||||
This header contains IRRT implementations
|
||||
that do not deserved to be categorized (e.g., into numpy, etc.)
|
||||
|
||||
Check out other *.hpp files before including them here!!
|
||||
*/
|
||||
|
||||
// The type of an index or a value describing the length of a range/slice is
|
||||
// always `int32_t`.
|
||||
|
||||
namespace {
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T>
|
||||
T __nac3_int_exp_impl(T base, T exp) {
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do {
|
||||
if (exp & 1) {
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) {\
|
||||
return __nac3_int_exp_impl(base, exp);\
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t)
|
||||
DEF_nac3_int_exp_(int64_t)
|
||||
DEF_nac3_int_exp_(uint32_t)
|
||||
DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(
|
||||
const SliceIndex start,
|
||||
const SliceIndex end,
|
||||
const SliceIndex step
|
||||
) {
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(
|
||||
SliceIndex dest_start,
|
||||
SliceIndex dest_end,
|
||||
SliceIndex dest_step,
|
||||
uint8_t *dest_arr,
|
||||
SliceIndex dest_arr_len,
|
||||
SliceIndex src_start,
|
||||
SliceIndex src_end,
|
||||
SliceIndex src_step,
|
||||
uint8_t *src_arr,
|
||||
SliceIndex src_arr_len,
|
||||
const SliceIndex size
|
||||
) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0) return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_start * size,
|
||||
src_arr + src_start * size,
|
||||
src_len * size
|
||||
);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(
|
||||
dest_arr + (dest_start + src_len) * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca =
|
||||
(dest_arr == src_arr)
|
||||
&& !(
|
||||
max(dest_start, dest_end) < min(src_start, src_end)
|
||||
|| max(src_start, src_end) < min(dest_start, dest_end)
|
||||
);
|
||||
if (need_alloca) {
|
||||
uint8_t *tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (;
|
||||
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
||||
src_ind += src_step, dest_ind += dest_step
|
||||
) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_ind * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x) {
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x) {
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,31 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_printer.hpp"
|
||||
|
||||
namespace {
|
||||
#define MAX_ERROR_NAME_LEN 32
|
||||
|
||||
// TODO: right now just to report some messages for now
|
||||
struct ErrorContext {
|
||||
Printer error;
|
||||
// TODO: add error_class_name??
|
||||
|
||||
void initialize(char* string_base_ptr, uint32_t max_length) {
|
||||
error.initialize(string_base_ptr, max_length);
|
||||
}
|
||||
|
||||
bool has_error() {
|
||||
return error.length > 0;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
void __nac3_error_context_init(ErrorContext* ctx, char* string_base_ptr, uint32_t max_length) {
|
||||
ctx->initialize(string_base_ptr, max_length);
|
||||
}
|
||||
|
||||
uint8_t __nac3_error_context_has_error(ErrorContext* ctx) {
|
||||
return (uint8_t) ctx->has_error();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,16 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_basic.hpp"
|
||||
#include "irrt_error_context.hpp"
|
||||
#include "irrt_numpy_ndarray.hpp"
|
||||
#include "irrt_printer.hpp"
|
||||
#include "irrt_slice.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
#include "irrt_utils.hpp"
|
||||
|
||||
/*
|
||||
All IRRT implementations.
|
||||
|
||||
We don't have any pre-compiled objects, so we are writing all implementations in headers and
|
||||
concatenate them with `#include` into one massive source file that contains all the IRRT stuff.
|
||||
*/
|
|
@ -0,0 +1,520 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_utils.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
#include "irrt_slice.hpp"
|
||||
|
||||
/*
|
||||
NDArray-related implementations.
|
||||
`*/
|
||||
|
||||
namespace {
|
||||
namespace ndarray_util {
|
||||
template <typename SizeT>
|
||||
static void set_indices_by_nth(SizeT ndims, const SizeT* shape, SizeT* indices, SizeT nth) {
|
||||
for (int32_t i = 0; i < ndims; i++) {
|
||||
int32_t dim_i = ndims - i - 1;
|
||||
int32_t dim = shape[dim_i];
|
||||
|
||||
indices[dim_i] = nth % dim;
|
||||
nth /= dim;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the strides of an ndarray given an ndarray `shape`
|
||||
// and assuming that the ndarray is *fully C-contagious*.
|
||||
//
|
||||
// You might want to read up on https://ajcr.net/stride-guide-part-1/.
|
||||
template <typename SizeT>
|
||||
static void set_strides_by_shape(SizeT itemsize, SizeT ndims, SizeT* dst_strides, const SizeT* shape) {
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < ndims; i++) {
|
||||
int dim_i = ndims - i - 1;
|
||||
dst_strides[dim_i] = stride_product * itemsize;
|
||||
stride_product *= shape[dim_i];
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the size/# of elements of an ndarray given its shape
|
||||
template <typename SizeT>
|
||||
static SizeT calc_size_from_shape(SizeT ndims, const SizeT* shape) {
|
||||
SizeT size = 1;
|
||||
for (SizeT dim_i = 0; dim_i < ndims; dim_i++) size *= shape[dim_i];
|
||||
return size;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
static bool can_broadcast_shape_to(
|
||||
const SizeT target_ndims,
|
||||
const SizeT *target_shape,
|
||||
const SizeT src_ndims,
|
||||
const SizeT *src_shape
|
||||
) {
|
||||
/*
|
||||
// See https://numpy.org/doc/stable/user/basics.broadcasting.html
|
||||
|
||||
This function handles this example:
|
||||
```
|
||||
Image (3d array): 256 x 256 x 3
|
||||
Scale (1d array): 3
|
||||
Result (3d array): 256 x 256 x 3
|
||||
```
|
||||
|
||||
Other interesting examples to consider:
|
||||
- `can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) == true`
|
||||
- `can_broadcast_shape_to([3], [3, 1]) == false`
|
||||
- `can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) == true`
|
||||
|
||||
In cases when the shapes contain zero(es):
|
||||
- `can_broadcast_shape_to([0], [1]) == true`
|
||||
- `can_broadcast_shape_to([0], [2]) == false`
|
||||
- `can_broadcast_shape_to([0, 4, 0, 0], [1]) == true`
|
||||
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) == true`
|
||||
- `can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) == true`
|
||||
- `can_broadcast_shape_to([4, 3], [0, 3]) == false`
|
||||
- `can_broadcast_shape_to([4, 3], [0, 0]) == false`
|
||||
*/
|
||||
|
||||
// This is essentially doing the following in Python:
|
||||
// `for target_dim, src_dim in itertools.zip_longest(target_shape[::-1], src_shape[::-1], fillvalue=1)`
|
||||
for (SizeT i = 0; i < max(target_ndims, src_ndims); i++) {
|
||||
SizeT target_dim_i = target_ndims - i - 1;
|
||||
SizeT src_dim_i = src_ndims - i - 1;
|
||||
|
||||
bool target_dim_exists = target_dim_i >= 0;
|
||||
bool src_dim_exists = src_dim_i >= 0;
|
||||
|
||||
SizeT target_dim = target_dim_exists ? target_shape[target_dim_i] : 1;
|
||||
SizeT src_dim = src_dim_exists ? src_shape[src_dim_i] : 1;
|
||||
|
||||
bool ok = src_dim == 1 || target_dim == src_dim;
|
||||
if (!ok) return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
typedef uint8_t NDSliceType;
|
||||
extern "C" {
|
||||
const NDSliceType INPUT_SLICE_TYPE_INDEX = 0;
|
||||
const NDSliceType INPUT_SLICE_TYPE_SLICE = 1;
|
||||
}
|
||||
|
||||
struct NDSlice {
|
||||
// A poor-man's enum variant type
|
||||
NDSliceType type;
|
||||
|
||||
/*
|
||||
if type == INPUT_SLICE_TYPE_INDEX => `slice` points to a single `SizeT`
|
||||
if type == INPUT_SLICE_TYPE_SLICE => `slice` points to a single `UserRange<SizeT>`
|
||||
|
||||
`SizeT` is controlled by the caller: `NDSlice` only cares about where that
|
||||
slice is (the pointer), `NDSlice` does not care/know about the actual `sizeof()`
|
||||
of the slice value.
|
||||
*/
|
||||
uint8_t* slice;
|
||||
};
|
||||
|
||||
namespace ndarray_util {
|
||||
template<typename SizeT>
|
||||
SizeT deduce_ndims_after_slicing(SizeT ndims, SizeT num_slices, const NDSlice *slices) {
|
||||
irrt_assert(num_slices <= ndims);
|
||||
|
||||
SizeT final_ndims = ndims;
|
||||
for (SizeT i = 0; i < num_slices; i++) {
|
||||
if (slices[i].type == INPUT_SLICE_TYPE_INDEX) {
|
||||
final_ndims--; // An index demotes the rank by 1
|
||||
}
|
||||
}
|
||||
return final_ndims;
|
||||
}
|
||||
}
|
||||
|
||||
// template <typename SizeT>
|
||||
// struct NDArrayIndicesIter {
|
||||
// SizeT ndims;
|
||||
// const SizeT *shape;
|
||||
// SizeT *indices;
|
||||
|
||||
// void set_indices_zero() {
|
||||
// __builtin_memset(indices, 0, sizeof(SizeT) * ndims);
|
||||
// }
|
||||
|
||||
// void next() {
|
||||
// for (SizeT i = 0; i < ndims; i++) {
|
||||
// SizeT dim_i = ndims - i - 1;
|
||||
|
||||
// indices[dim_i]++;
|
||||
// if (indices[dim_i] < shape[dim_i]) {
|
||||
// break;
|
||||
// } else {
|
||||
// indices[dim_i] = 0;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// };
|
||||
|
||||
// The NDArray object. `SizeT` is the *signed* size type of this ndarray.
|
||||
//
|
||||
// NOTE: The order of fields is IMPORTANT. DON'T TOUCH IT
|
||||
//
|
||||
// Some resources you might find helpful:
|
||||
// - The official numpy implementations:
|
||||
// - https://github.com/numpy/numpy/blob/735a477f0bc2b5b84d0e72d92f224bde78d4e069/doc/source/reference/c-api/types-and-structures.rst
|
||||
// - On strides (about reshaping, slicing, C-contagiousness, etc)
|
||||
// - https://ajcr.net/stride-guide-part-1/.
|
||||
// - https://ajcr.net/stride-guide-part-2/.
|
||||
// - https://ajcr.net/stride-guide-part-3/.
|
||||
template <typename SizeT>
|
||||
struct NDArray {
|
||||
// The underlying data this `ndarray` is pointing to.
|
||||
//
|
||||
// NOTE: Formally this should be of type `void *`, but clang
|
||||
// translates `void *` to `i8 *` when run with `-S -emit-llvm`,
|
||||
// so we will put `uint8_t *` here for clarity.
|
||||
//
|
||||
// This pointer should point to the first element of the ndarray directly
|
||||
uint8_t *data;
|
||||
|
||||
// The number of bytes of a single element in `data`.
|
||||
//
|
||||
// The `SizeT` is treated as `unsigned`.
|
||||
SizeT itemsize;
|
||||
|
||||
// The number of dimensions of this shape.
|
||||
//
|
||||
// The `SizeT` is treated as `unsigned`.
|
||||
SizeT ndims;
|
||||
|
||||
// Array shape, with length equal to `ndims`.
|
||||
//
|
||||
// The `SizeT` is treated as `unsigned`.
|
||||
//
|
||||
// NOTE: `shape` can contain 0.
|
||||
// (those appear when the user makes an out of bounds slice into an ndarray, e.g., `np.zeros((3, 3))[400:].shape == (0, 3)`)
|
||||
SizeT *shape;
|
||||
|
||||
// Array strides (stride value is in number of bytes, NOT number of elements), with length equal to `ndims`.
|
||||
//
|
||||
// The `SizeT` is treated as `signed`.
|
||||
//
|
||||
// NOTE: `strides` can have negative numbers.
|
||||
// (those appear when there is a slice with a negative step, e.g., `my_array[::-1]`)
|
||||
SizeT *strides;
|
||||
|
||||
// Calculate the size/# of elements of an `ndarray`.
|
||||
// This function corresponds to `np.size(<ndarray>)` or `ndarray.size`
|
||||
SizeT size() {
|
||||
return ndarray_util::calc_size_from_shape(ndims, shape);
|
||||
}
|
||||
|
||||
// Calculate the number of bytes of its content of an `ndarray` *in its view*.
|
||||
// This function corresponds to `ndarray.nbytes`
|
||||
SizeT nbytes() {
|
||||
return this->size() * itemsize;
|
||||
}
|
||||
|
||||
void set_pelement_value(uint8_t* pelement, const uint8_t* pvalue) {
|
||||
__builtin_memcpy(pelement, pvalue, itemsize);
|
||||
}
|
||||
|
||||
uint8_t* get_pelement_by_indices(const SizeT *indices) {
|
||||
uint8_t* element = data;
|
||||
for (SizeT dim_i = 0; dim_i < ndims; dim_i++)
|
||||
element += indices[dim_i] * strides[dim_i];
|
||||
return element;
|
||||
}
|
||||
|
||||
uint8_t* get_nth_pelement(SizeT nth) {
|
||||
irrt_assert(0 <= nth);
|
||||
irrt_assert(nth < this->size());
|
||||
|
||||
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * this->ndims);
|
||||
ndarray_util::set_indices_by_nth(this->ndims, this->shape, indices, nth);
|
||||
return get_pelement_by_indices(indices);
|
||||
}
|
||||
|
||||
// Get pointer to the first element of this ndarray, assuming
|
||||
// `this->size() > 0`, i.e., not "degenerate" due to zeroes in `this->shape`)
|
||||
//
|
||||
// This is particularly useful for when the ndarray is just containing a single scalar.
|
||||
uint8_t* get_first_pelement() {
|
||||
irrt_assert(this->size() > 0);
|
||||
return this->data; // ...It is simply `this->data`
|
||||
}
|
||||
|
||||
// Is the given `indices` valid/in-bounds?
|
||||
bool in_bounds(const SizeT *indices) {
|
||||
for (SizeT dim_i = 0; dim_i < ndims; dim_i++) {
|
||||
bool dim_ok = indices[dim_i] < shape[dim_i];
|
||||
if (!dim_ok) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Fill the ndarray with a value
|
||||
void fill_generic(const uint8_t* pvalue) {
|
||||
const SizeT size = this->size();
|
||||
for (SizeT i = 0; i < size; i++) {
|
||||
uint8_t* pelement = get_nth_pelement(i);
|
||||
set_pelement_value(pelement, pvalue);
|
||||
}
|
||||
}
|
||||
|
||||
// Set the strides of the ndarray with `ndarray_util::set_strides_by_shape`
|
||||
void set_strides_by_shape() {
|
||||
ndarray_util::set_strides_by_shape(itemsize, ndims, strides, shape);
|
||||
}
|
||||
|
||||
// https://numpy.org/doc/stable/reference/generated/numpy.eye.html
|
||||
void set_to_eye(SizeT k, const uint8_t* zero_pvalue, const uint8_t* one_pvalue) {
|
||||
__builtin_assume(ndims == 2);
|
||||
|
||||
// TODO: Better implementation
|
||||
|
||||
fill_generic(zero_pvalue);
|
||||
for (SizeT i = 0; i < min(shape[0], shape[1]); i++) {
|
||||
SizeT row = i;
|
||||
SizeT col = i + k;
|
||||
SizeT indices[2] = { row, col };
|
||||
|
||||
if (!in_bounds(indices)) continue;
|
||||
|
||||
uint8_t* pelement = get_pelement_by_indices(indices);
|
||||
set_pelement_value(pelement, one_pvalue);
|
||||
}
|
||||
}
|
||||
|
||||
// To support numpy "basic indexing" https://numpy.org/doc/stable/user/basics.indexing.html#basic-indexing
|
||||
// "Advanced indexing" https://numpy.org/doc/stable/user/basics.indexing.html#advanced-indexing is not supported
|
||||
//
|
||||
// This function supports:
|
||||
// - "scalar indexing",
|
||||
// - "slicing and strides",
|
||||
// - and "dimensional indexing tools" (TODO, but this is really easy to implement).
|
||||
//
|
||||
// Things assumed by this function:
|
||||
// - `dst_ndarray` is allocated by the caller
|
||||
// - `dst_ndarray.ndims` has the correct value (according to `ndarray_util::deduce_ndims_after_slicing`).
|
||||
// - ... and `dst_ndarray.shape` and `dst_ndarray.strides` have been allocated by the caller as well
|
||||
//
|
||||
// Other notes:
|
||||
// - `dst_ndarray->data` does not have to be set, it will be derived.
|
||||
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `this->itemsize`
|
||||
// - `dst_ndarray->shape` and `dst_ndarray.strides` can contain empty values
|
||||
void subscript(SizeT num_ndslices, NDSlice* ndslices, NDArray<SizeT>* dst_ndarray) {
|
||||
// REFERENCE CODE (check out `_index_helper` in `__getitem__`):
|
||||
// https://github.com/wadetb/tinynumpy/blob/0d23d22e07062ffab2afa287374c7b366eebdda1/tinynumpy/tinynumpy.py#L652
|
||||
|
||||
irrt_assert(dst_ndarray->ndims == ndarray_util::deduce_ndims_after_slicing(this->ndims, num_ndslices, ndslices));
|
||||
|
||||
dst_ndarray->data = this->data;
|
||||
dst_ndarray->itemsize = this->itemsize;
|
||||
|
||||
SizeT this_axis = 0;
|
||||
SizeT dst_axis = 0;
|
||||
|
||||
for (SizeT i = 0; i < num_ndslices; i++) {
|
||||
NDSlice *ndslice = &ndslices[i];
|
||||
if (ndslice->type == INPUT_SLICE_TYPE_INDEX) {
|
||||
// Handle when the ndslice is just a single (possibly negative) integer
|
||||
// e.g., `my_array[::2, -5, ::-1]`
|
||||
// ^^------ like this
|
||||
SizeT index_user = *((SizeT*) ndslice->slice);
|
||||
SizeT index = resolve_index_in_length(this->shape[this_axis], index_user);
|
||||
dst_ndarray->data += index * this->strides[this_axis]; // Add offset
|
||||
|
||||
// Next
|
||||
this_axis++;
|
||||
} else if (ndslice->type == INPUT_SLICE_TYPE_SLICE) {
|
||||
// Handle when the ndslice is a slice (represented by UserSlice in IRRT)
|
||||
// e.g., `my_array[::2, -5, ::-1]`
|
||||
// ^^^------^^^^----- like these
|
||||
UserSlice* user_slice = (UserSlice*) ndslice->slice;
|
||||
Slice slice = user_slice->indices(this->shape[this_axis]); // To resolve negative indices and other funny stuff written by the user
|
||||
|
||||
// NOTE: There is no need to write special code to handle negative steps/strides.
|
||||
// This simple implementation meticulously handles both positive and negative steps/strides.
|
||||
// Check out the tinynumpy and IRRT's test cases if you are not convinced.
|
||||
dst_ndarray->data += (SizeT) slice.start * this->strides[this_axis]; // Add offset (NOTE: no need to `* itemsize`, strides count in # of bytes)
|
||||
dst_ndarray->strides[dst_axis] = ((SizeT) slice.step) * this->strides[this_axis]; // Determine stride
|
||||
dst_ndarray->shape[dst_axis] = (SizeT) slice.len(); // Determine shape dimension
|
||||
|
||||
// Next
|
||||
dst_axis++;
|
||||
this_axis++;
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Reference python code:
|
||||
```python
|
||||
dst_ndarray.shape.extend(this.shape[this_axis:])
|
||||
dst_ndarray.strides.extend(this.strides[this_axis:])
|
||||
```
|
||||
*/
|
||||
|
||||
for (; dst_axis < dst_ndarray->ndims; dst_axis++, this_axis++) {
|
||||
dst_ndarray->shape[dst_axis] = this->shape[this_axis];
|
||||
dst_ndarray->strides[dst_axis] = this->strides[this_axis];
|
||||
}
|
||||
}
|
||||
|
||||
// Similar to `np.broadcast_to(<ndarray>, <target_shape>)`
|
||||
// Assumptions:
|
||||
// - `this` has to be fully initialized.
|
||||
// - `dst_ndarray->ndims` has to be set.
|
||||
// - `dst_ndarray->shape` has to be set, this determines the shape `this` broadcasts to.
|
||||
//
|
||||
// Other notes:
|
||||
// - `dst_ndarray->data` does not have to be set, it will be set to `this->data`.
|
||||
// - `dst_ndarray->itemsize` does not have to be set, it will be set to `this->data`.
|
||||
// - `dst_ndarray->strides` does not have to be set, it will be overwritten.
|
||||
//
|
||||
// Cautions:
|
||||
// ```
|
||||
// xs = np.zeros((4,))
|
||||
// ys = np.zero((4, 1))
|
||||
// ys[:] = xs # ok
|
||||
//
|
||||
// xs = np.zeros((1, 4))
|
||||
// ys = np.zero((4,))
|
||||
// ys[:] = xs # allowed
|
||||
// # However `np.broadcast_to(xs, (4,))` would fails, as per numpy's broadcasting rule.
|
||||
// # and apparently numpy will "deprecate" this? SEE https://github.com/numpy/numpy/issues/21744
|
||||
// # This implementation will NOT support this assignment.
|
||||
// ```
|
||||
void broadcast_to(NDArray<SizeT>* dst_ndarray) {
|
||||
dst_ndarray->data = this->data;
|
||||
dst_ndarray->itemsize = this->itemsize;
|
||||
|
||||
irrt_assert(
|
||||
ndarray_util::can_broadcast_shape_to(
|
||||
dst_ndarray->ndims,
|
||||
dst_ndarray->shape,
|
||||
this->ndims,
|
||||
this->shape
|
||||
)
|
||||
);
|
||||
|
||||
SizeT stride_product = 1;
|
||||
for (SizeT i = 0; i < max(this->ndims, dst_ndarray->ndims); i++) {
|
||||
SizeT this_dim_i = this->ndims - i - 1;
|
||||
SizeT dst_dim_i = dst_ndarray->ndims - i - 1;
|
||||
|
||||
bool this_dim_exists = this_dim_i >= 0;
|
||||
bool dst_dim_exists = dst_dim_i >= 0;
|
||||
|
||||
// TODO: Explain how this works
|
||||
bool c1 = this_dim_exists && this->shape[this_dim_i] == 1;
|
||||
bool c2 = dst_dim_exists && dst_ndarray->shape[dst_dim_i] != 1;
|
||||
if (!this_dim_exists || (c1 && c2)) {
|
||||
dst_ndarray->strides[dst_dim_i] = 0; // Freeze it in-place
|
||||
} else {
|
||||
dst_ndarray->strides[dst_dim_i] = stride_product * this->itemsize;
|
||||
stride_product *= this->shape[this_dim_i]; // NOTE: this_dim_exist must be true here.
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Simulates `this_ndarray[:] = src_ndarray`, with automatic broadcasting.
|
||||
// Caution on https://github.com/numpy/numpy/issues/21744
|
||||
// Also see `NDArray::broadcast_to`
|
||||
void assign_with(NDArray<SizeT>* src_ndarray) {
|
||||
irrt_assert(
|
||||
ndarray_util::can_broadcast_shape_to(
|
||||
this->ndims,
|
||||
this->shape,
|
||||
src_ndarray->ndims,
|
||||
src_ndarray->shape
|
||||
)
|
||||
);
|
||||
|
||||
// Broadcast the `src_ndarray` to make the reading process *much* easier
|
||||
SizeT* broadcasted_src_ndarray_strides = __builtin_alloca(sizeof(SizeT) * this->ndims); // Remember to allocate strides beforehand
|
||||
NDArray<SizeT> broadcasted_src_ndarray = {
|
||||
.ndims = this->ndims,
|
||||
.shape = this->shape,
|
||||
.strides = broadcasted_src_ndarray_strides
|
||||
};
|
||||
src_ndarray->broadcast_to(&broadcasted_src_ndarray);
|
||||
|
||||
const SizeT size = this->size();
|
||||
for (SizeT i = 0; i < size; i++) {
|
||||
uint8_t* src_pelement = broadcasted_src_ndarray_strides->get_nth_pelement(i);
|
||||
uint8_t* this_pelement = this->get_nth_pelement(i);
|
||||
this->set_pelement_value(this_pelement, src_pelement);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: DOCUMENT ME
|
||||
bool is_unsized() {
|
||||
return this->ndims == 0;
|
||||
}
|
||||
|
||||
// Simulate `len(<ndarray>)`
|
||||
// See (it doesn't help): https://numpy.org/doc/stable/reference/generated/numpy.ndarray.__len__.html#numpy.ndarray.__len__
|
||||
SliceIndex len() {
|
||||
// If you do `len(np.asarray(42))` (note that its `.shape` is just `()` - an empty tuple),
|
||||
// numpy throws a `TypeError: len() of unsized object`
|
||||
irrt_assert(!this->is_unsized());
|
||||
|
||||
// Apparently `len(<ndarray>)` is defined to be the first dimension
|
||||
// REFERENCE: https://stackoverflow.com/questions/43081809/len-of-a-numpy-array-in-python
|
||||
return (SliceIndex) this->shape[0];
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
uint32_t __nac3_ndarray_size(NDArray<int32_t>* ndarray) {
|
||||
return ndarray->size();
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_size64(NDArray<int64_t>* ndarray) {
|
||||
return ndarray->size();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape(NDArray<int32_t>* ndarray) {
|
||||
ndarray->set_strides_by_shape();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_set_strides_by_shape64(NDArray<int64_t>* ndarray) {
|
||||
ndarray->set_strides_by_shape();
|
||||
}
|
||||
|
||||
void __nac3_ndarray_fill_generic(NDArray<int32_t>* ndarray, uint8_t* pvalue) {
|
||||
ndarray->fill_generic(pvalue);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_fill_generic64(NDArray<int64_t>* ndarray, uint8_t* pvalue) {
|
||||
ndarray->fill_generic(pvalue);
|
||||
}
|
||||
|
||||
int32_t __nac3_ndarray_deduce_ndims_after_slicing(int32_t ndims, int32_t num_slices, const NDSlice* slices) {
|
||||
return ndarray_util::deduce_ndims_after_slicing(ndims, num_slices, slices);
|
||||
}
|
||||
|
||||
int64_t __nac3_ndarray_deduce_ndims_after_slicing64(int64_t ndims, int64_t num_slices, const NDSlice* slices) {
|
||||
return ndarray_util::deduce_ndims_after_slicing(ndims, num_slices, slices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_subscript(NDArray<int32_t>* ndarray, int32_t num_slices, NDSlice* slices, NDArray<int32_t> *dst_ndarray) {
|
||||
ndarray->subscript(num_slices, slices, dst_ndarray);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_subscript64(NDArray<int64_t>* ndarray, int32_t num_slices, NDSlice* slices, NDArray<int64_t> *dst_ndarray) {
|
||||
ndarray->subscript(num_slices, slices, dst_ndarray);
|
||||
}
|
||||
|
||||
SliceIndex __nac3_ndarray_len(NDArray<int32_t>* ndarray) {
|
||||
return ndarray->len();
|
||||
}
|
||||
|
||||
SliceIndex __nac3_ndarray_len64(NDArray<int64_t>* ndarray) {
|
||||
return ndarray->len();
|
||||
}
|
||||
}
|
|
@ -0,0 +1,82 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_typedefs.hpp"
|
||||
|
||||
// TODO: obviously implementing printf from scratch is bad,
|
||||
// is there a header only, no-cstdlib library for this?
|
||||
|
||||
namespace {
|
||||
struct Printer {
|
||||
char* string_base_ptr;
|
||||
uint32_t max_length;
|
||||
uint32_t length; // NOTE: this could be incremented past max_length, which indicates
|
||||
|
||||
void initialize(char *string_base_ptr, uint32_t max_length) {
|
||||
this->string_base_ptr = string_base_ptr;
|
||||
this->max_length = max_length;
|
||||
this->length = 0;
|
||||
}
|
||||
|
||||
void put_space() {
|
||||
put_char(' ');
|
||||
}
|
||||
|
||||
void put_char(char ch) {
|
||||
push_char(ch);
|
||||
}
|
||||
|
||||
void put_string(const char* string) {
|
||||
// TODO: optimize?
|
||||
while (*string != '\0') {
|
||||
push_char(*string);
|
||||
string++; // Move to next char
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void put_int(T value) {
|
||||
// NOTE: Try not to use recursion to print the digits
|
||||
|
||||
// value == 0 is a special case
|
||||
if (value == 0) {
|
||||
push_char('0');
|
||||
} else {
|
||||
// Add a '-' if the value is negative
|
||||
if (value < 0) {
|
||||
push_char('-');
|
||||
value = -value; // Negate then continue to print the digits
|
||||
}
|
||||
|
||||
// TODO: Recursion is a bad idea on embedded systems?
|
||||
uint32_t num_digits = int_log_floor(value, 10) + 1;
|
||||
put_int_helper(num_digits, value);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: implement put_float() and more would be useful
|
||||
private:
|
||||
void push_char(char ch) {
|
||||
if (length < max_length) {
|
||||
string_base_ptr[length] = ch;
|
||||
}
|
||||
|
||||
// NOTE: this could increment past max_length,
|
||||
// to indicate the true length of the message even if it gets cut off
|
||||
length++;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void put_int_helper(uint32_t num_digits, T value) {
|
||||
// Print the digits recursively
|
||||
__builtin_assume(0 <= value);
|
||||
|
||||
if (num_digits > 0) {
|
||||
put_int_helper(num_digits - 1, value / 10);
|
||||
|
||||
uint32_t digit = value % 10;
|
||||
char digit_char = '0' + (char) digit;
|
||||
put_char(digit_char);
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
|
@ -0,0 +1,83 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_utils.hpp"
|
||||
#include "irrt_typedefs.hpp"
|
||||
|
||||
namespace {
|
||||
struct Slice {
|
||||
SliceIndex start;
|
||||
SliceIndex stop;
|
||||
SliceIndex step;
|
||||
|
||||
// The length/The number of elements of the slice if it were a range,
|
||||
// i.e., the value of `len(range(this->start, this->stop, this->end))`
|
||||
SliceIndex len() {
|
||||
SliceIndex diff = stop - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
SliceIndex resolve_index_in_length(SliceIndex length, SliceIndex index) {
|
||||
irrt_assert(length >= 0);
|
||||
if (index < 0) {
|
||||
// Remember that index is negative, so do a plus here
|
||||
return max<SliceIndex>(length + index, 0);
|
||||
} else {
|
||||
return min<SliceIndex>(length, index);
|
||||
}
|
||||
}
|
||||
|
||||
// A user-written Python-like slice.
|
||||
//
|
||||
// i.e., this slice is a triple of either an int or nothing. (e.g., `my_array[:10:2]`, `start` is None)
|
||||
//
|
||||
// You can "resolve" a `UserSlice` by using `UserSlice::indices(<length>)`
|
||||
//
|
||||
// NOTE: using a bitfield for the `*_defined` is better, at the
|
||||
// cost of a more annoying implementation in nac3core inkwell
|
||||
struct UserSlice {
|
||||
// Did the user specify `start`? If 0, `start` is undefined (and contains an empty value)
|
||||
uint8_t start_defined;
|
||||
SliceIndex start;
|
||||
|
||||
// Similar to `start_defined`
|
||||
uint8_t stop_defined;
|
||||
SliceIndex stop;
|
||||
|
||||
// Similar to `start_defined`
|
||||
uint8_t step_defined;
|
||||
SliceIndex step;
|
||||
|
||||
// Like Python's `slice(start, stop, step).indices(length)`
|
||||
Slice indices(SliceIndex length) {
|
||||
// NOTE: This function implements Python's `slice.indices` *FAITHFULLY*.
|
||||
// SEE: https://github.com/python/cpython/blob/f62161837e68c1c77961435f1b954412dd5c2b65/Objects/sliceobject.c#L546
|
||||
irrt_assert(length >= 0);
|
||||
irrt_assert(!step_defined || step != 0); // step_defined -> step != 0; step cannot be zero if specified by user
|
||||
|
||||
Slice result;
|
||||
result.step = step_defined ? step : 1;
|
||||
bool step_is_negative = result.step < 0;
|
||||
|
||||
if (start_defined) {
|
||||
result.start = resolve_index_in_length(length, start);
|
||||
} else {
|
||||
result.start = step_is_negative ? length - 1 : 0;
|
||||
}
|
||||
|
||||
if (stop_defined) {
|
||||
result.stop = resolve_index_in_length(length, stop);
|
||||
} else {
|
||||
result.stop = step_is_negative ? -1 : length;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
};
|
||||
}
|
|
@ -0,0 +1,707 @@
|
|||
// This file will be compiled like a real C++ program,
|
||||
// and we do have the luxury to use the standard libraries.
|
||||
// That is if the nix flakes do not have issues... especially on msys2...
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
|
||||
// Set `IRRT_DONT_TYPEDEF_INTS` because `cstdint` defines them
|
||||
#define IRRT_DONT_TYPEDEF_INTS
|
||||
#include "irrt_everything.hpp"
|
||||
|
||||
void test_fail() {
|
||||
printf("[!] Test failed\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
void __begin_test(const char* function_name, const char* file, int line) {
|
||||
printf("######### Running %s @ %s:%d\n", function_name, file, line);
|
||||
}
|
||||
|
||||
#define BEGIN_TEST() __begin_test(__FUNCTION__, __FILE__, __LINE__)
|
||||
|
||||
template <typename T>
|
||||
void debug_print_array(const char* format, int len, T* as) {
|
||||
printf("[");
|
||||
for (int i = 0; i < len; i++) {
|
||||
if (i != 0) printf(", ");
|
||||
printf(format, as[i]);
|
||||
}
|
||||
printf("]");
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void assert_arrays_match(const char* label, const char* format, int len, T* expected, T* got) {
|
||||
if (!arrays_match(len, expected, got)) {
|
||||
printf(">>>>>>> %s\n", label);
|
||||
printf(" Expecting = ");
|
||||
debug_print_array(format, len, expected);
|
||||
printf("\n");
|
||||
printf(" Got = ");
|
||||
debug_print_array(format, len, got);
|
||||
printf("\n");
|
||||
test_fail();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void assert_values_match(const char* label, const char* format, T expected, T got) {
|
||||
if (expected != got) {
|
||||
printf(">>>>>>> %s\n", label);
|
||||
printf(" Expecting = ");
|
||||
printf(format, expected);
|
||||
printf("\n");
|
||||
printf(" Got = ");
|
||||
printf(format, got);
|
||||
printf("\n");
|
||||
test_fail();
|
||||
}
|
||||
}
|
||||
|
||||
void print_repeated(const char *str, int count) {
|
||||
for (int i = 0; i < count; i++) {
|
||||
printf("%s", str);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT, typename ElementT>
|
||||
void __print_ndarray_aux(const char *format, bool first, bool last, SizeT* cursor, SizeT depth, NDArray<SizeT>* ndarray) {
|
||||
// A really lazy recursive implementation
|
||||
|
||||
// Add left padding unless its the first entry (since there would be "[[[" before it)
|
||||
if (!first) {
|
||||
print_repeated(" ", depth);
|
||||
}
|
||||
|
||||
const SizeT dim = ndarray->shape[depth];
|
||||
if (depth + 1 == ndarray->ndims) {
|
||||
// Recursed down to last dimension, print the values in a nice list
|
||||
printf("[");
|
||||
|
||||
SizeT* indices = (SizeT*) __builtin_alloca(sizeof(SizeT) * ndarray->ndims);
|
||||
for (SizeT i = 0; i < dim; i++) {
|
||||
ndarray_util::set_indices_by_nth(ndarray->ndims, ndarray->shape, indices, *cursor);
|
||||
ElementT* pelement = (ElementT*) ndarray->get_pelement_by_indices(indices);
|
||||
ElementT element = *pelement;
|
||||
|
||||
if (i != 0) printf(", "); // List delimiter
|
||||
printf(format, element);
|
||||
printf("(@");
|
||||
debug_print_array("%d", ndarray->ndims, indices);
|
||||
printf(")");
|
||||
|
||||
(*cursor)++;
|
||||
}
|
||||
printf("]");
|
||||
} else {
|
||||
printf("[");
|
||||
for (SizeT i = 0; i < ndarray->shape[depth]; i++) {
|
||||
__print_ndarray_aux<SizeT, ElementT>(
|
||||
format,
|
||||
i == 0, // first?
|
||||
i + 1 == dim, // last?
|
||||
cursor,
|
||||
depth + 1,
|
||||
ndarray
|
||||
);
|
||||
}
|
||||
printf("]");
|
||||
}
|
||||
|
||||
// Add newline unless its the last entry (since there will be "]]]" after it)
|
||||
if (!last) {
|
||||
print_repeated("\n", depth);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename SizeT, typename ElementT>
|
||||
void print_ndarray(const char *format, NDArray<SizeT>* ndarray) {
|
||||
if (ndarray->ndims == 0) {
|
||||
printf("<empty ndarray>");
|
||||
} else {
|
||||
SizeT cursor = 0;
|
||||
__print_ndarray_aux<SizeT, ElementT>(format, true, true, &cursor, 0, ndarray);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void test_calc_size_from_shape_normal() {
|
||||
// Test shapes with normal values
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[4] = { 2, 3, 5, 7 };
|
||||
assert_values_match("size", "%d", 210, ndarray_util::calc_size_from_shape<int32_t>(4, shape));
|
||||
}
|
||||
|
||||
void test_calc_size_from_shape_has_zero() {
|
||||
// Test shapes with 0 in them
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[4] = { 2, 0, 5, 7 };
|
||||
assert_values_match("size", "%d", 0, ndarray_util::calc_size_from_shape<int32_t>(4, shape));
|
||||
}
|
||||
|
||||
void test_set_strides_by_shape() {
|
||||
// Test `set_strides_by_shape()`
|
||||
BEGIN_TEST();
|
||||
|
||||
int32_t shape[4] = { 99, 3, 5, 7 };
|
||||
int32_t strides[4] = { 0 };
|
||||
ndarray_util::set_strides_by_shape((int32_t) sizeof(int32_t), 4, strides, shape);
|
||||
|
||||
int32_t expected_strides[4] = {
|
||||
105 * sizeof(int32_t),
|
||||
35 * sizeof(int32_t),
|
||||
7 * sizeof(int32_t),
|
||||
1 * sizeof(int32_t)
|
||||
};
|
||||
assert_arrays_match("strides", "%u", 4u, expected_strides, strides);
|
||||
}
|
||||
|
||||
// void test_ndarray_indices_iter_normal() {
|
||||
// // Test NDArrayIndicesIter normal behavior
|
||||
// BEGIN_TEST();
|
||||
//
|
||||
// int32_t shape[3] = { 1, 2, 3 };
|
||||
// int32_t indices[3] = { 0, 0, 0 };
|
||||
// auto iter = NDArrayIndicesIter<int32_t> {
|
||||
// .ndims = 3,
|
||||
// .shape = shape,
|
||||
// .indices = indices
|
||||
// };
|
||||
//
|
||||
// assert_arrays_match("indices #0", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #1", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #2", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 2 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #3", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 0 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #4", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 1 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #5", "%u", 3u, iter.indices, (int32_t[3]) { 0, 1, 2 });
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #6", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 0 }); // Loops back
|
||||
// iter.next();
|
||||
// assert_arrays_match("indices #7", "%u", 3u, iter.indices, (int32_t[3]) { 0, 0, 1 });
|
||||
// }
|
||||
|
||||
void test_ndarray_fill_generic() {
|
||||
// Test ndarray fill_generic
|
||||
BEGIN_TEST();
|
||||
|
||||
// Choose a type that's neither int32_t nor uint64_t (candidates of SizeT) to spice it up
|
||||
// Also make all the octets non-zero, to see if `memcpy` in `fill_generic` is working perfectly.
|
||||
uint16_t fill_value = 0xFACE;
|
||||
|
||||
uint16_t in_data[6] = { 100, 101, 102, 103, 104, 105 }; // Fill `data` with values that != `999`
|
||||
int32_t in_itemsize = sizeof(uint16_t);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 2, 3 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides,
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
ndarray.fill_generic((uint8_t*) &fill_value); // `fill_generic` here
|
||||
|
||||
uint16_t expected_data[6] = { fill_value, fill_value, fill_value, fill_value, fill_value, fill_value };
|
||||
assert_arrays_match("data", "0x%hX", 6, expected_data, in_data);
|
||||
}
|
||||
|
||||
void test_ndarray_set_to_eye() {
|
||||
// Test `set_to_eye` behavior (helper function to implement `np.eye()`)
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[9] = { 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0 };
|
||||
int32_t in_itemsize = sizeof(double);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 3, 3 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides,
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
double zero = 0.0;
|
||||
double one = 1.0;
|
||||
ndarray.set_to_eye(1, (uint8_t*) &zero, (uint8_t*) &one);
|
||||
|
||||
assert_values_match("in_data[0]", "%f", 0.0, in_data[0]);
|
||||
assert_values_match("in_data[1]", "%f", 1.0, in_data[1]);
|
||||
assert_values_match("in_data[2]", "%f", 0.0, in_data[2]);
|
||||
assert_values_match("in_data[3]", "%f", 0.0, in_data[3]);
|
||||
assert_values_match("in_data[4]", "%f", 0.0, in_data[4]);
|
||||
assert_values_match("in_data[5]", "%f", 1.0, in_data[5]);
|
||||
assert_values_match("in_data[6]", "%f", 0.0, in_data[6]);
|
||||
assert_values_match("in_data[7]", "%f", 0.0, in_data[7]);
|
||||
assert_values_match("in_data[8]", "%f", 0.0, in_data[8]);
|
||||
}
|
||||
|
||||
void test_slice_1() {
|
||||
// Test `subscript(5, None, None).indices(100) == subscript(5, 100, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = 5,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 0,
|
||||
};
|
||||
|
||||
auto slice = user_slice.indices(100);
|
||||
assert_values_match("start", "%d", 5, slice.start);
|
||||
assert_values_match("stop", "%d", 100, slice.stop);
|
||||
assert_values_match("step", "%d", 1, slice.step);
|
||||
}
|
||||
|
||||
void test_slice_2() {
|
||||
// Test `subscript(400, 999, None).indices(100) == subscript(100, 100, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = 400,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 0,
|
||||
};
|
||||
|
||||
auto slice = user_slice.indices(100);
|
||||
assert_values_match("start", "%d", 100, slice.start);
|
||||
assert_values_match("stop", "%d", 100, slice.stop);
|
||||
assert_values_match("step", "%d", 1, slice.step);
|
||||
}
|
||||
|
||||
void test_slice_3() {
|
||||
// Test `subscript(-10, -5, None).indices(100) == subscript(90, 95, 1)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 1,
|
||||
.start = -10,
|
||||
.stop_defined = 1,
|
||||
.stop = -5,
|
||||
.step_defined = 0,
|
||||
};
|
||||
|
||||
auto slice = user_slice.indices(100);
|
||||
assert_values_match("start", "%d", 90, slice.start);
|
||||
assert_values_match("stop", "%d", 95, slice.stop);
|
||||
assert_values_match("step", "%d", 1, slice.step);
|
||||
}
|
||||
|
||||
void test_slice_4() {
|
||||
// Test `subscript(None, None, -5).indices(100) == (99, -1, -5)`
|
||||
BEGIN_TEST();
|
||||
|
||||
UserSlice user_slice = {
|
||||
.start_defined = 0,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
.step = -5
|
||||
};
|
||||
|
||||
auto slice = user_slice.indices(100);
|
||||
assert_values_match("start", "%d", 99, slice.start);
|
||||
assert_values_match("stop", "%d", -1, slice.stop);
|
||||
assert_values_match("step", "%d", -5, slice.step);
|
||||
}
|
||||
|
||||
void test_ndslice_1() {
|
||||
/*
|
||||
Reference Python code:
|
||||
```python
|
||||
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4));
|
||||
# array([[ 0., 1., 2., 3.],
|
||||
# [ 4., 5., 6., 7.],
|
||||
# [ 8., 9., 10., 11.]])
|
||||
|
||||
dst_ndarray = ndarray[-2:, 1::2]
|
||||
# array([[ 5., 7.],
|
||||
# [ 9., 11.]])
|
||||
|
||||
assert dst_ndarray.shape == (2, 2)
|
||||
assert dst_ndarray.strides == (32, 16)
|
||||
assert dst_ndarray[0, 0] == 5.0
|
||||
assert dst_ndarray[0, 1] == 7.0
|
||||
assert dst_ndarray[1, 0] == 9.0
|
||||
assert dst_ndarray[1, 1] == 11.0
|
||||
```
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[12] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
|
||||
int32_t in_itemsize = sizeof(double);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 3, 4 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
// Destination ndarray
|
||||
// As documented, ndims and shape & strides must be allocated and determined by the caller.
|
||||
const int32_t dst_ndims = 2;
|
||||
int32_t dst_shape[dst_ndims] = {999, 999}; // Empty values
|
||||
int32_t dst_strides[dst_ndims] = {999, 999}; // Empty values
|
||||
NDArray<int32_t> dst_ndarray = {
|
||||
.data = nullptr,
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides
|
||||
};
|
||||
|
||||
// Create the slice in `ndarray[-2::, 1::2]`
|
||||
UserSlice user_slice_1 = {
|
||||
.start_defined = 1,
|
||||
.start = -2,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 0
|
||||
};
|
||||
|
||||
UserSlice user_slice_2 = {
|
||||
.start_defined = 1,
|
||||
.start = 1,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
.step = 2
|
||||
};
|
||||
|
||||
const int32_t num_ndslices = 2;
|
||||
NDSlice ndslices[num_ndslices] = {
|
||||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_1 },
|
||||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
|
||||
};
|
||||
|
||||
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
|
||||
|
||||
int32_t expected_shape[dst_ndims] = { 2, 2 };
|
||||
int32_t expected_strides[dst_ndims] = { 32, 16 };
|
||||
assert_arrays_match("shape", "%d", dst_ndims, expected_shape, dst_ndarray.shape);
|
||||
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
assert_values_match("dst_ndarray[0, 0]", "%f", 5.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0, 0 })));
|
||||
assert_values_match("dst_ndarray[0, 1]", "%f", 7.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0, 1 })));
|
||||
assert_values_match("dst_ndarray[1, 0]", "%f", 9.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1, 0 })));
|
||||
assert_values_match("dst_ndarray[1, 1]", "%f", 11.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1, 1 })));
|
||||
}
|
||||
|
||||
void test_ndslice_2() {
|
||||
/*
|
||||
```python
|
||||
ndarray = np.arange(12, dtype=np.float64).reshape((3, 4))
|
||||
# array([[ 0., 1., 2., 3.],
|
||||
# [ 4., 5., 6., 7.],
|
||||
# [ 8., 9., 10., 11.]])
|
||||
|
||||
dst_ndarray = ndarray[2, ::-2]
|
||||
# array([11., 9.])
|
||||
|
||||
assert dst_ndarray.shape == (2,)
|
||||
assert dst_ndarray.strides == (-16,)
|
||||
assert dst_ndarray[0] == 11.0
|
||||
assert dst_ndarray[1] == 9.0
|
||||
|
||||
dst_ndarray[1, 0] == 99 # If you write to `dst_ndarray`
|
||||
assert ndarray[1, 3] == 99 # `ndarray` also updates!!
|
||||
```
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[12] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 };
|
||||
int32_t in_itemsize = sizeof(double);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 3, 4 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
// Destination ndarray
|
||||
// As documented, ndims and shape & strides must be allocated and determined by the caller.
|
||||
const int32_t dst_ndims = 1;
|
||||
int32_t dst_shape[dst_ndims] = {999}; // Empty values
|
||||
int32_t dst_strides[dst_ndims] = {999}; // Empty values
|
||||
NDArray<int32_t> dst_ndarray = {
|
||||
.data = nullptr,
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides
|
||||
};
|
||||
|
||||
// Create the slice in `ndarray[2, ::-2]`
|
||||
int32_t user_slice_1 = 2;
|
||||
UserSlice user_slice_2 = {
|
||||
.start_defined = 0,
|
||||
.stop_defined = 0,
|
||||
.step_defined = 1,
|
||||
.step = -2
|
||||
};
|
||||
|
||||
const int32_t num_ndslices = 2;
|
||||
NDSlice ndslices[num_ndslices] = {
|
||||
{ .type = INPUT_SLICE_TYPE_INDEX, .slice = (uint8_t*) &user_slice_1 },
|
||||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_2 }
|
||||
};
|
||||
|
||||
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
|
||||
|
||||
int32_t expected_shape[dst_ndims] = { 2 };
|
||||
int32_t expected_strides[dst_ndims] = { -16 };
|
||||
assert_arrays_match("shape", "%d", dst_ndims, expected_shape, dst_ndarray.shape);
|
||||
assert_arrays_match("strides", "%d", dst_ndims, expected_strides, dst_ndarray.strides);
|
||||
|
||||
// [5.0, 3.0]
|
||||
assert_values_match("dst_ndarray[0]", "%f", 11.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 0 })));
|
||||
assert_values_match("dst_ndarray[1]", "%f", 9.0, *((double *) dst_ndarray.get_pelement_by_indices((int32_t[dst_ndims]) { 1 })));
|
||||
}
|
||||
|
||||
void test_ndslice_3() {
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[12] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 };
|
||||
const int32_t in_itemsize = sizeof(double);
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = { 3, 4 };
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = in_itemsize,
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
const int32_t dst_ndims = 2;
|
||||
int32_t dst_shape[dst_ndims] = {999, 999}; // Empty values
|
||||
int32_t dst_strides[dst_ndims] = {999, 999}; // Empty values
|
||||
NDArray<int32_t> dst_ndarray = {
|
||||
.data = nullptr,
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides
|
||||
};
|
||||
|
||||
// Create the slice in `ndarray[2:3]`
|
||||
UserSlice user_slice_1 = {
|
||||
.start_defined = 1,
|
||||
.start = 2,
|
||||
.stop_defined = 1,
|
||||
.stop = 3,
|
||||
.step_defined = 0,
|
||||
};
|
||||
|
||||
const int32_t num_ndslices = 1;
|
||||
NDSlice ndslices[num_ndslices] = {
|
||||
{ .type = INPUT_SLICE_TYPE_SLICE, .slice = (uint8_t*) &user_slice_1 },
|
||||
};
|
||||
|
||||
ndarray.subscript(num_ndslices, ndslices, &dst_ndarray);
|
||||
}
|
||||
|
||||
void test_can_broadcast_shape() {
|
||||
BEGIN_TEST();
|
||||
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([3], [1, 1, 1, 1, 3]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 3 }, 5, (int32_t[]) { 1, 1, 1, 1, 3 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([3], [3, 1]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 3 }, 2, (int32_t[]) { 3, 1 }));
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([3], [3]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 3 }, 1, (int32_t[]) { 3 }));
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([1], [3]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 1 }, 1, (int32_t[]) { 3 }));
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([1], [1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 1 }, 1, (int32_t[]) { 1 }));
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([256, 256, 3], [256, 1, 3]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 3, (int32_t[]) { 256, 1, 3 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([256, 256, 3], [3]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 1, (int32_t[]) { 3 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([256, 256, 3], [2]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 1, (int32_t[]) { 2 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([256, 256, 3], [1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(3, (int32_t[]) { 256, 256, 3 }, 1, (int32_t[]) { 1 })
|
||||
);
|
||||
|
||||
// In cases when the shapes contain zero(es)
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0], [1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 0 }, 1, (int32_t[]) { 1 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0], [2]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(1, (int32_t[]) { 0 }, 1, (int32_t[]) { 2 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0, 4, 0, 0], [1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(4, (int32_t[]) { 0, 4, 0, 0 }, 1, (int32_t[]) { 1 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0, 4, 0, 0], [1, 1, 1, 1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(4, (int32_t[]) { 0, 4, 0, 0 }, 4, (int32_t[]) { 1, 1, 1, 1 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([0, 4, 0, 0], [1, 4, 1, 1]) == true",
|
||||
"%d",
|
||||
true,
|
||||
ndarray_util::can_broadcast_shape_to(4, (int32_t[]) { 0, 4, 0, 0 }, 4, (int32_t[]) { 1, 4, 1, 1 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([4, 3], [0, 3]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(2, (int32_t[]) { 4, 3 }, 2, (int32_t[]) { 0, 3 })
|
||||
);
|
||||
assert_values_match(
|
||||
"can_broadcast_shape_to([4, 3], [0, 0]) == false",
|
||||
"%d",
|
||||
false,
|
||||
ndarray_util::can_broadcast_shape_to(2, (int32_t[]) { 4, 3 }, 2, (int32_t[]) { 0, 0 })
|
||||
);
|
||||
}
|
||||
|
||||
void test_ndarray_broadcast_1() {
|
||||
/*
|
||||
```python
|
||||
array = np.array([[19.9, 29.9, 39.9, 49.9]], dtype=np.float64)
|
||||
>>> [[19.9 29.9 39.9 49.9]]
|
||||
|
||||
array = np.broadcast_to(array, (2, 3, 4))
|
||||
>>> [[[19.9 29.9 39.9 49.9]
|
||||
>>> [19.9 29.9 39.9 49.9]
|
||||
>>> [19.9 29.9 39.9 49.9]]
|
||||
>>> [[19.9 29.9 39.9 49.9]
|
||||
>>> [19.9 29.9 39.9 49.9]
|
||||
>>> [19.9 29.9 39.9 49.9]]]
|
||||
|
||||
assert array.strides == (0, 0, 8)
|
||||
# and then pick some values in `array` and check them...
|
||||
```
|
||||
*/
|
||||
BEGIN_TEST();
|
||||
|
||||
double in_data[4] = { 19.9, 29.9, 39.9, 49.9 };
|
||||
const int32_t in_ndims = 2;
|
||||
int32_t in_shape[in_ndims] = {1, 4};
|
||||
int32_t in_strides[in_ndims] = {};
|
||||
NDArray<int32_t> ndarray = {
|
||||
.data = (uint8_t*) in_data,
|
||||
.itemsize = sizeof(double),
|
||||
.ndims = in_ndims,
|
||||
.shape = in_shape,
|
||||
.strides = in_strides
|
||||
};
|
||||
ndarray.set_strides_by_shape();
|
||||
|
||||
const int32_t dst_ndims = 3;
|
||||
int32_t dst_shape[dst_ndims] = {2, 3, 4};
|
||||
int32_t dst_strides[dst_ndims] = {};
|
||||
NDArray<int32_t> dst_ndarray = {
|
||||
.ndims = dst_ndims,
|
||||
.shape = dst_shape,
|
||||
.strides = dst_strides
|
||||
};
|
||||
|
||||
ndarray.broadcast_to(&dst_ndarray);
|
||||
|
||||
assert_arrays_match("dst_ndarray->strides", "%d", dst_ndims, (int32_t[]) { 0, 0, 8 }, dst_ndarray.strides);
|
||||
|
||||
assert_values_match("dst_ndarray[0, 0, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 0})));
|
||||
assert_values_match("dst_ndarray[0, 0, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 1})));
|
||||
assert_values_match("dst_ndarray[0, 0, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 2})));
|
||||
assert_values_match("dst_ndarray[0, 0, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 0, 3})));
|
||||
assert_values_match("dst_ndarray[0, 1, 0]", "%f", 19.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 0})));
|
||||
assert_values_match("dst_ndarray[0, 1, 1]", "%f", 29.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 1})));
|
||||
assert_values_match("dst_ndarray[0, 1, 2]", "%f", 39.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 2})));
|
||||
assert_values_match("dst_ndarray[0, 1, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {0, 1, 3})));
|
||||
assert_values_match("dst_ndarray[1, 2, 3]", "%f", 49.9, *((double*) dst_ndarray.get_pelement_by_indices((int32_t[]) {1, 2, 3})));
|
||||
}
|
||||
|
||||
void test_printer() {
|
||||
const uint32_t buffer_len = 256;
|
||||
char buffer[buffer_len];
|
||||
Printer printer = {
|
||||
.string_base_ptr = buffer,
|
||||
.max_length = buffer_len,
|
||||
.length = 0
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
int main() {
|
||||
test_calc_size_from_shape_normal();
|
||||
test_calc_size_from_shape_has_zero();
|
||||
test_set_strides_by_shape();
|
||||
// test_ndarray_indices_iter_normal();
|
||||
test_ndarray_fill_generic();
|
||||
test_ndarray_set_to_eye();
|
||||
test_slice_1();
|
||||
test_slice_2();
|
||||
test_slice_3();
|
||||
test_slice_4();
|
||||
test_ndslice_1();
|
||||
test_ndslice_2();
|
||||
test_ndslice_3();
|
||||
test_can_broadcast_shape();
|
||||
test_ndarray_broadcast_1();
|
||||
test_printer();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
#pragma once
|
||||
|
||||
// This is made toggleable since `irrt_test.cpp` itself would include
|
||||
// headers that define the `int_t` family.
|
||||
#ifndef IRRT_DONT_TYPEDEF_INTS
|
||||
typedef _BitInt(8) int8_t;
|
||||
typedef unsigned _BitInt(8) uint8_t;
|
||||
typedef _BitInt(32) int32_t;
|
||||
typedef unsigned _BitInt(32) uint32_t;
|
||||
typedef _BitInt(64) int64_t;
|
||||
typedef unsigned _BitInt(64) uint64_t;
|
||||
#endif
|
||||
|
||||
typedef int32_t SliceIndex;
|
|
@ -0,0 +1,74 @@
|
|||
#pragma once
|
||||
|
||||
#include "irrt_typedefs.hpp"
|
||||
|
||||
namespace {
|
||||
template <typename T>
|
||||
T max(T a, T b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T min(T a, T b) {
|
||||
return a > b ? b : a;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool arrays_match(int len, T *as, T *bs) {
|
||||
for (int i = 0; i < len; i++) {
|
||||
if (as[i] != bs[i]) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
uint32_t int_log_floor(T value, T base) {
|
||||
uint32_t result = 0;
|
||||
while (value < base) {
|
||||
result++;
|
||||
value /= base;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
bool string_is_empty(const char *str) {
|
||||
return str[0] == '\0';
|
||||
}
|
||||
|
||||
// TODO: DOCUMENT ME!!!!!
|
||||
// returns false if `src_str` could not be fully copied over to `dst_str`
|
||||
bool string_copy(uint32_t dst_max_size, char* dst_str, const char* src_str) {
|
||||
// This function guarantess that `dst_str` will be null-terminated,
|
||||
|
||||
for (uint32_t i = 0; i < dst_max_size; i++) {
|
||||
bool is_last = i + 1 == dst_max_size;
|
||||
if (is_last && src_str[i] != '\0') {
|
||||
dst_str[i] = '\0';
|
||||
return false;
|
||||
}
|
||||
|
||||
if (src_str[i] == '\0') {
|
||||
dst_str[i] = '\0';
|
||||
return true;
|
||||
}
|
||||
|
||||
dst_str[i] = src_str[i];
|
||||
}
|
||||
|
||||
__builtin_unreachable();
|
||||
}
|
||||
|
||||
void irrt_panic() {
|
||||
// Crash the program for now.
|
||||
// TODO: Don't crash the program
|
||||
// ... or at least produce a good message when doing testing IRRT
|
||||
|
||||
uint8_t* death = nullptr;
|
||||
*death = 0; // TODO: address 0 on hardware might be writable?
|
||||
}
|
||||
|
||||
// TODO: Make this a macro and allow it to be toggled on/off (e.g., debug vs release)
|
||||
void irrt_assert(bool condition) {
|
||||
if (!condition) irrt_panic();
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -1,8 +1,9 @@
|
|||
use crate::codegen::{
|
||||
irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
|
||||
// irrt::{call_ndarray_calc_size, call_ndarray_flatten_index},
|
||||
llvm_intrinsics::call_int_umin,
|
||||
stmt::gen_for_callback_incrementing,
|
||||
CodeGenContext, CodeGenerator,
|
||||
CodeGenContext,
|
||||
CodeGenerator,
|
||||
};
|
||||
use inkwell::context::Context;
|
||||
use inkwell::types::{ArrayType, BasicType, StructType};
|
||||
|
@ -12,6 +13,7 @@ use inkwell::{
|
|||
values::{BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace, IntPredicate,
|
||||
};
|
||||
use itertools::Itertools;
|
||||
|
||||
/// A LLVM type that is used to represent a non-primitive type in NAC3.
|
||||
pub trait ProxyType<'ctx>: Into<Self::Base> {
|
||||
|
@ -1208,25 +1210,27 @@ impl<'ctx> NDArrayType<'ctx> {
|
|||
ctx: &'ctx Context,
|
||||
dtype: BasicTypeEnum<'ctx>,
|
||||
) -> Self {
|
||||
let llvm_usize = generator.get_size_type(ctx);
|
||||
todo!()
|
||||
|
||||
// struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
|
||||
//
|
||||
// * num_dims: Number of dimensions in the array
|
||||
// * dims: Pointer to an array containing the size of each dimension
|
||||
// * data: Pointer to an array containing the array data
|
||||
let llvm_ndarray = ctx
|
||||
.struct_type(
|
||||
&[
|
||||
llvm_usize.into(),
|
||||
llvm_usize.ptr_type(AddressSpace::default()).into(),
|
||||
dtype.ptr_type(AddressSpace::default()).into(),
|
||||
],
|
||||
false,
|
||||
)
|
||||
.ptr_type(AddressSpace::default());
|
||||
// let llvm_usize = generator.get_size_type(ctx);
|
||||
|
||||
NDArrayType::from_type(llvm_ndarray, llvm_usize)
|
||||
// // struct NDArray { num_dims: size_t, dims: size_t*, data: T* }
|
||||
// //
|
||||
// // * num_dims: Number of dimensions in the array
|
||||
// // * dims: Pointer to an array containing the size of each dimension
|
||||
// // * data: Pointer to an array containing the array data
|
||||
// let llvm_ndarray = ctx
|
||||
// .struct_type(
|
||||
// &[
|
||||
// llvm_usize.into(),
|
||||
// llvm_usize.ptr_type(AddressSpace::default()).into(),
|
||||
// dtype.ptr_type(AddressSpace::default()).into(),
|
||||
// ],
|
||||
// false,
|
||||
// )
|
||||
// .ptr_type(AddressSpace::default());
|
||||
|
||||
// NDArrayType::from_type(llvm_ndarray, llvm_usize)
|
||||
}
|
||||
|
||||
/// Creates an [`NDArrayType`] from a [`PointerType`].
|
||||
|
@ -1601,7 +1605,8 @@ impl<'ctx> ArrayLikeValue<'ctx> for NDArrayDataProxy<'ctx, '_> {
|
|||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
generator: &G,
|
||||
) -> IntValue<'ctx> {
|
||||
call_ndarray_calc_size(generator, ctx, &self.as_slice_value(ctx, generator), (None, None))
|
||||
todo!()
|
||||
// call_ndarray_calc_size(generator, ctx, &self.as_slice_value(ctx, generator), (None, None))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1659,33 +1664,34 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> ArrayLikeIndexer<'ctx, Index>
|
|||
indices: &Index,
|
||||
name: Option<&str>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
todo!()
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
let indices_elem_ty = indices
|
||||
.ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
.get_type()
|
||||
.get_element_type();
|
||||
let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
|
||||
panic!("Expected list[int32] but got {indices_elem_ty}")
|
||||
};
|
||||
assert_eq!(
|
||||
indices_elem_ty.get_bit_width(),
|
||||
32,
|
||||
"Expected list[int32] but got list[int{}]",
|
||||
indices_elem_ty.get_bit_width()
|
||||
);
|
||||
// let indices_elem_ty = indices
|
||||
// .ptr_offset(ctx, generator, &llvm_usize.const_zero(), None)
|
||||
// .get_type()
|
||||
// .get_element_type();
|
||||
// let Ok(indices_elem_ty) = IntType::try_from(indices_elem_ty) else {
|
||||
// panic!("Expected list[int32] but got {indices_elem_ty}")
|
||||
// };
|
||||
// assert_eq!(
|
||||
// indices_elem_ty.get_bit_width(),
|
||||
// 32,
|
||||
// "Expected list[int32] but got list[int{}]",
|
||||
// indices_elem_ty.get_bit_width()
|
||||
// );
|
||||
|
||||
let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices);
|
||||
// let index = call_ndarray_flatten_index(generator, ctx, *self.0, indices);
|
||||
|
||||
unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(
|
||||
self.base_ptr(ctx, generator),
|
||||
&[index],
|
||||
name.unwrap_or_default(),
|
||||
)
|
||||
.unwrap()
|
||||
}
|
||||
// unsafe {
|
||||
// ctx.builder
|
||||
// .build_in_bounds_gep(
|
||||
// self.base_ptr(ctx, generator),
|
||||
// &[index],
|
||||
// name.unwrap_or_default(),
|
||||
// )
|
||||
// .unwrap()
|
||||
// }
|
||||
}
|
||||
|
||||
fn ptr_offset<G: CodeGenerator + ?Sized>(
|
||||
|
@ -1761,3 +1767,164 @@ impl<'ctx, Index: UntypedArrayLikeAccessor<'ctx>> UntypedArrayLikeMutator<'ctx,
|
|||
for NDArrayDataProxy<'ctx, '_>
|
||||
{
|
||||
}
|
||||
|
||||
// #[derive(Debug, Clone, Copy)]
|
||||
// pub struct StructField<'ctx> {
|
||||
// /// The GEP index of this struct field.
|
||||
// pub gep_index: u32,
|
||||
// /// Name of this struct field.
|
||||
// ///
|
||||
// /// Used for generating names.
|
||||
// pub name: &'static str,
|
||||
// /// The type of this struct field.
|
||||
// pub ty: BasicTypeEnum<'ctx>,
|
||||
// }
|
||||
//
|
||||
// pub struct StructFields<'ctx> {
|
||||
// /// Name of the struct.
|
||||
// ///
|
||||
// /// Used for generating names.
|
||||
// pub name: &'static str,
|
||||
//
|
||||
// /// All the [`StructField`]s of this struct.
|
||||
// ///
|
||||
// /// **NOTE:** The index position of a [`StructField`]
|
||||
// /// matches the element's [`StructField::index`].
|
||||
// pub fields: Vec<StructField<'ctx>>,
|
||||
// }
|
||||
//
|
||||
// pub struct StructFieldsBuilder<'ctx> {
|
||||
// gep_index_counter: u32,
|
||||
// /// Name of the struct to be built.
|
||||
// name: &'static str,
|
||||
// fields: Vec<StructField<'ctx>>,
|
||||
// }
|
||||
//
|
||||
// impl<'ctx> StructField<'ctx> {
|
||||
// /// TODO: DOCUMENT ME
|
||||
// pub fn gep(
|
||||
// &self,
|
||||
// ctx: &CodeGenContext<'ctx, '_>,
|
||||
// struct_ptr: PointerValue<'ctx>,
|
||||
// ) -> PointerValue<'ctx> {
|
||||
// let index_type = ctx.ctx.i32_type(); // TODO: I think I'm not supposed to use i32 for GEP like that
|
||||
// unsafe {
|
||||
// ctx.builder
|
||||
// .build_in_bounds_gep(
|
||||
// struct_ptr,
|
||||
// &[index_type.const_zero(), index_type.const_int(self.gep_index as u64, false)],
|
||||
// self.name,
|
||||
// )
|
||||
// .unwrap()
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// /// TODO: DOCUMENT ME
|
||||
// pub fn load(
|
||||
// &self,
|
||||
// ctx: &CodeGenContext<'ctx, '_>,
|
||||
// struct_ptr: PointerValue<'ctx>,
|
||||
// ) -> BasicValueEnum<'ctx> {
|
||||
// ctx.builder.build_load(self.gep(ctx, struct_ptr), self.name).unwrap()
|
||||
// }
|
||||
//
|
||||
// /// TODO: DOCUMENT ME
|
||||
// pub fn store<V>(&self, ctx: &CodeGenContext<'ctx, '_>, struct_ptr: PointerValue<'ctx>, value: V)
|
||||
// where
|
||||
// V: BasicValue<'ctx>,
|
||||
// {
|
||||
// ctx.builder.build_store(self.gep(ctx, struct_ptr), value).unwrap();
|
||||
// }
|
||||
// }
|
||||
|
||||
// type IsInstanceError = String;
|
||||
// type IsInstanceResult = Result<(), IsInstanceError>;
|
||||
|
||||
// pub fn check_basic_types_match<'ctx, A, B>(expected: A, got: B) -> IsInstanceResult
|
||||
// where
|
||||
// A: BasicType<'ctx>,
|
||||
// B: BasicType<'ctx>,
|
||||
// {
|
||||
// let expected = expected.as_basic_type_enum();
|
||||
// let got = got.as_basic_type_enum();
|
||||
|
||||
// // Put those logic into here,
|
||||
// // otherwise there is always a fallback reporting on any kind of mismatch
|
||||
// match (expected, got) {
|
||||
// (BasicTypeEnum::IntType(expected), BasicTypeEnum::IntType(got)) => {
|
||||
// if expected.get_bit_width() != got.get_bit_width() {
|
||||
// return Err(format!(
|
||||
// "Expected IntType ({expected}-bit(s)), got IntType ({got}-bit(s))"
|
||||
// ));
|
||||
// }
|
||||
// }
|
||||
// (expected, got) => {
|
||||
// if expected != got {
|
||||
// return Err(format!("Expected {expected}, got {got}"));
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// Ok(())
|
||||
// }
|
||||
|
||||
// impl<'ctx> StructFields<'ctx> {
|
||||
// pub fn num_fields(&self) -> u32 {
|
||||
// self.fields.len() as u32
|
||||
// }
|
||||
//
|
||||
// pub fn get_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
|
||||
// let llvm_fields = self.fields.iter().map(|field| field.ty).collect_vec();
|
||||
// ctx.struct_type(llvm_fields.as_slice(), false)
|
||||
// }
|
||||
//
|
||||
// pub fn is_type(&self, scrutinee: StructType<'ctx>) -> IsInstanceResult {
|
||||
// // Check scrutinee's number of struct fields
|
||||
// if scrutinee.count_fields() != self.num_fields() {
|
||||
// return Err(format!(
|
||||
// "Expected {expected_count} field(s) in `{struct_name}` type, got {got_count}",
|
||||
// struct_name = self.name,
|
||||
// expected_count = self.num_fields(),
|
||||
// got_count = scrutinee.count_fields(),
|
||||
// ));
|
||||
// }
|
||||
//
|
||||
// // Check the scrutinee's field types
|
||||
// for field in self.fields.iter() {
|
||||
// let expected_field_ty = field.ty;
|
||||
// let got_field_ty = scrutinee.get_field_type_at_index(field.gep_index).unwrap();
|
||||
//
|
||||
// if let Err(field_err) = check_basic_types_match(expected_field_ty, got_field_ty) {
|
||||
// return Err(format!(
|
||||
// "Field GEP index {gep_index} does not match the expected type of ({struct_name}::{field_name}): {field_err}",
|
||||
// gep_index = field.gep_index,
|
||||
// struct_name = self.name,
|
||||
// field_name = field.name,
|
||||
// ));
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// // Done
|
||||
// Ok(())
|
||||
// }
|
||||
// }
|
||||
//
|
||||
// impl<'ctx> StructFieldsBuilder<'ctx> {
|
||||
// pub fn start(name: &'static str) -> Self {
|
||||
// StructFieldsBuilder { gep_index_counter: 0, name, fields: Vec::new() }
|
||||
// }
|
||||
//
|
||||
// pub fn add_field(&mut self, name: &'static str, ty: BasicTypeEnum<'ctx>) -> StructField<'ctx> {
|
||||
// let index = self.gep_index_counter;
|
||||
// self.gep_index_counter += 1;
|
||||
//
|
||||
// let field = StructField { gep_index: index, name, ty };
|
||||
// self.fields.push(field); // Register into self.fields
|
||||
//
|
||||
// field // Return to the caller to conveniently let them do whatever they want
|
||||
// }
|
||||
//
|
||||
// pub fn end(self) -> StructFields<'ctx> {
|
||||
// StructFields { name: self.name, fields: self.fields }
|
||||
// }
|
||||
// }
|
||||
//
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,87 @@
|
|||
// TODO: Use derppening's abstraction
|
||||
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, IntType},
|
||||
values::BasicValueEnum,
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use crate::codegen::structure::{
|
||||
CustomStructType, CustomType, Field, FieldCreator, IntType2, Object, PointerType2,
|
||||
PointingArrayType,
|
||||
};
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct NpArrayType<'ctx> {
|
||||
pub size_type: IntType<'ctx>,
|
||||
pub elem_type: BasicTypeEnum<'ctx>,
|
||||
}
|
||||
|
||||
pub struct NpArrayFields<'ctx> {
|
||||
pub data: Field<'ctx, PointerType2<'ctx>>,
|
||||
pub itemsize: Field<'ctx, IntType2<'ctx>>,
|
||||
pub ndims: Field<'ctx, IntType2<'ctx>>,
|
||||
pub shape: Field<'ctx, PointingArrayType<'ctx, IntType2<'ctx>>>,
|
||||
pub strides: Field<'ctx, PointingArrayType<'ctx, IntType2<'ctx>>>,
|
||||
}
|
||||
|
||||
pub type NpArrayValue<'ctx> = Object<'ctx, NpArrayType<'ctx>>;
|
||||
|
||||
// impl<'ctx> CustomType<'ctx> for NpArrayType<'ctx> {
|
||||
// type Value = NpArrayValue<'ctx>;
|
||||
//
|
||||
// fn llvm_basic_type_enum(
|
||||
// &self,
|
||||
// ctx: &'ctx inkwell::context::Context,
|
||||
// ) -> inkwell::types::BasicTypeEnum<'ctx> {
|
||||
// self.llvm_struct_type(ctx).as_basic_type_enum()
|
||||
// }
|
||||
//
|
||||
// fn llvm_field_load(
|
||||
// &self,
|
||||
// ctx: &crate::codegen::CodeGenContext<'ctx, '_>,
|
||||
// field: crate::codegen::structure::FieldInfo,
|
||||
// struct_ptr: inkwell::values::PointerValue<'ctx>,
|
||||
// ) -> Self::Value {
|
||||
// let ok = field.llvm_load(ctx, struct_ptr);
|
||||
// todo!()
|
||||
// }
|
||||
//
|
||||
// fn llvm_field_store(
|
||||
// &self,
|
||||
// ctx: &crate::codegen::CodeGenContext<'ctx, '_>,
|
||||
// field: crate::codegen::structure::FieldInfo,
|
||||
// struct_ptr: inkwell::values::PointerValue<'ctx>,
|
||||
// value: &Self::Value,
|
||||
// ) {
|
||||
// todo!()
|
||||
// }
|
||||
// }
|
||||
|
||||
impl<'ctx> CustomStructType<'ctx> for NpArrayType<'ctx> {
|
||||
type Fields = NpArrayFields<'ctx>;
|
||||
|
||||
fn llvm_struct_name() -> &'static str {
|
||||
"NDArray"
|
||||
}
|
||||
|
||||
fn add_fields_to(&self, creator: &mut FieldCreator<'ctx>) -> Self::Fields {
|
||||
let pi8 = creator.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
NpArrayFields {
|
||||
data: creator.add_field("data", PointerType2(pi8)),
|
||||
itemsize: creator.add_field("itemsize", IntType2(self.size_type)),
|
||||
ndims: creator.add_field("ndims", IntType2(self.size_type)),
|
||||
shape: creator.add_field("shape", PointingArrayType::new(IntType2(self.size_type))),
|
||||
strides: creator.add_field("strides", PointingArrayType::new(IntType2(self.size_type))),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx> NpArrayType<'ctx> {
|
||||
pub fn new_opaque_elem(ctx: &'ctx Context, size_type: IntType<'ctx>) -> Self {
|
||||
NpArrayType { elem_type: ctx.i8_type().into(), size_type }
|
||||
}
|
||||
}
|
|
@ -1,414 +0,0 @@
|
|||
using int8_t = _BitInt(8);
|
||||
using uint8_t = unsigned _BitInt(8);
|
||||
using int32_t = _BitInt(32);
|
||||
using uint32_t = unsigned _BitInt(32);
|
||||
using int64_t = _BitInt(64);
|
||||
using uint64_t = unsigned _BitInt(64);
|
||||
|
||||
// NDArray indices are always `uint32_t`.
|
||||
using NDIndex = uint32_t;
|
||||
// The type of an index or a value describing the length of a range/slice is always `int32_t`.
|
||||
using SliceIndex = int32_t;
|
||||
|
||||
namespace {
|
||||
template <typename T>
|
||||
const T& max(const T& a, const T& b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T& min(const T& a, const T& b) {
|
||||
return a > b ? b : a;
|
||||
}
|
||||
|
||||
// adapted from GNU Scientific Library: https://git.savannah.gnu.org/cgit/gsl.git/tree/sys/pow_int.c
|
||||
// need to make sure `exp >= 0` before calling this function
|
||||
template <typename T>
|
||||
T __nac3_int_exp_impl(T base, T exp) {
|
||||
T res = 1;
|
||||
/* repeated squaring method */
|
||||
do {
|
||||
if (exp & 1) {
|
||||
res *= base; /* for n odd */
|
||||
}
|
||||
exp >>= 1;
|
||||
base *= base;
|
||||
} while (exp);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_calc_size_impl(
|
||||
const SizeT* list_data,
|
||||
SizeT list_len,
|
||||
SizeT begin_idx,
|
||||
SizeT end_idx
|
||||
) {
|
||||
__builtin_assume(end_idx <= list_len);
|
||||
|
||||
SizeT num_elems = 1;
|
||||
for (SizeT i = begin_idx; i < end_idx; ++i) {
|
||||
SizeT val = list_data[i];
|
||||
__builtin_assume(val > 0);
|
||||
num_elems *= val;
|
||||
}
|
||||
return num_elems;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_nd_indices_impl(
|
||||
SizeT index,
|
||||
const SizeT* dims,
|
||||
SizeT num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
SizeT stride = 1;
|
||||
for (SizeT dim = 0; dim < num_dims; dim++) {
|
||||
SizeT i = num_dims - dim - 1;
|
||||
__builtin_assume(dims[i] > 0);
|
||||
idxs[i] = (index / stride) % dims[i];
|
||||
stride *= dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
SizeT __nac3_ndarray_flatten_index_impl(
|
||||
const SizeT* dims,
|
||||
SizeT num_dims,
|
||||
const NDIndex* indices,
|
||||
SizeT num_indices
|
||||
) {
|
||||
SizeT idx = 0;
|
||||
SizeT stride = 1;
|
||||
for (SizeT i = 0; i < num_dims; ++i) {
|
||||
SizeT ri = num_dims - i - 1;
|
||||
if (ri < num_indices) {
|
||||
idx += stride * indices[ri];
|
||||
}
|
||||
|
||||
__builtin_assume(dims[i] > 0);
|
||||
stride *= dims[ri];
|
||||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_impl(
|
||||
const SizeT* lhs_dims,
|
||||
SizeT lhs_ndims,
|
||||
const SizeT* rhs_dims,
|
||||
SizeT rhs_ndims,
|
||||
SizeT* out_dims
|
||||
) {
|
||||
SizeT max_ndims = lhs_ndims > rhs_ndims ? lhs_ndims : rhs_ndims;
|
||||
|
||||
for (SizeT i = 0; i < max_ndims; ++i) {
|
||||
const SizeT* lhs_dim_sz = i < lhs_ndims ? &lhs_dims[lhs_ndims - i - 1] : nullptr;
|
||||
const SizeT* rhs_dim_sz = i < rhs_ndims ? &rhs_dims[rhs_ndims - i - 1] : nullptr;
|
||||
SizeT* out_dim = &out_dims[max_ndims - i - 1];
|
||||
|
||||
if (lhs_dim_sz == nullptr) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (rhs_dim_sz == nullptr) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == 1) {
|
||||
*out_dim = *rhs_dim_sz;
|
||||
} else if (*rhs_dim_sz == 1) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else if (*lhs_dim_sz == *rhs_dim_sz) {
|
||||
*out_dim = *lhs_dim_sz;
|
||||
} else {
|
||||
__builtin_unreachable();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SizeT>
|
||||
void __nac3_ndarray_calc_broadcast_idx_impl(
|
||||
const SizeT* src_dims,
|
||||
SizeT src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx
|
||||
) {
|
||||
for (SizeT i = 0; i < src_ndims; ++i) {
|
||||
SizeT src_i = src_ndims - i - 1;
|
||||
out_idx[src_i] = src_dims[src_i] == 1 ? 0 : in_idx[src_i];
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" {
|
||||
#define DEF_nac3_int_exp_(T) \
|
||||
T __nac3_int_exp_##T(T base, T exp) {\
|
||||
return __nac3_int_exp_impl(base, exp);\
|
||||
}
|
||||
|
||||
DEF_nac3_int_exp_(int32_t)
|
||||
DEF_nac3_int_exp_(int64_t)
|
||||
DEF_nac3_int_exp_(uint32_t)
|
||||
DEF_nac3_int_exp_(uint64_t)
|
||||
|
||||
SliceIndex __nac3_slice_index_bound(SliceIndex i, const SliceIndex len) {
|
||||
if (i < 0) {
|
||||
i = len + i;
|
||||
}
|
||||
if (i < 0) {
|
||||
return 0;
|
||||
} else if (i > len) {
|
||||
return len;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
SliceIndex __nac3_range_slice_len(
|
||||
const SliceIndex start,
|
||||
const SliceIndex end,
|
||||
const SliceIndex step
|
||||
) {
|
||||
SliceIndex diff = end - start;
|
||||
if (diff > 0 && step > 0) {
|
||||
return ((diff - 1) / step) + 1;
|
||||
} else if (diff < 0 && step < 0) {
|
||||
return ((diff + 1) / step) + 1;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Handle list assignment and dropping part of the list when
|
||||
// both dest_step and src_step are +1.
|
||||
// - All the index must *not* be out-of-bound or negative,
|
||||
// - The end index is *inclusive*,
|
||||
// - The length of src and dest slice size should already
|
||||
// be checked: if dest.step == 1 then len(src) <= len(dest) else len(src) == len(dest)
|
||||
SliceIndex __nac3_list_slice_assign_var_size(
|
||||
SliceIndex dest_start,
|
||||
SliceIndex dest_end,
|
||||
SliceIndex dest_step,
|
||||
uint8_t* dest_arr,
|
||||
SliceIndex dest_arr_len,
|
||||
SliceIndex src_start,
|
||||
SliceIndex src_end,
|
||||
SliceIndex src_step,
|
||||
uint8_t* src_arr,
|
||||
SliceIndex src_arr_len,
|
||||
const SliceIndex size
|
||||
) {
|
||||
/* if dest_arr_len == 0, do nothing since we do not support extending list */
|
||||
if (dest_arr_len == 0) return dest_arr_len;
|
||||
/* if both step is 1, memmove directly, handle the dropping of the list, and shrink size */
|
||||
if (src_step == dest_step && dest_step == 1) {
|
||||
const SliceIndex src_len = (src_end >= src_start) ? (src_end - src_start + 1) : 0;
|
||||
const SliceIndex dest_len = (dest_end >= dest_start) ? (dest_end - dest_start + 1) : 0;
|
||||
if (src_len > 0) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_start * size,
|
||||
src_arr + src_start * size,
|
||||
src_len * size
|
||||
);
|
||||
}
|
||||
if (dest_len > 0) {
|
||||
/* dropping */
|
||||
__builtin_memmove(
|
||||
dest_arr + (dest_start + src_len) * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
}
|
||||
/* shrink size */
|
||||
return dest_arr_len - (dest_len - src_len);
|
||||
}
|
||||
/* if two range overlaps, need alloca */
|
||||
uint8_t need_alloca =
|
||||
(dest_arr == src_arr)
|
||||
&& !(
|
||||
max(dest_start, dest_end) < min(src_start, src_end)
|
||||
|| max(src_start, src_end) < min(dest_start, dest_end)
|
||||
);
|
||||
if (need_alloca) {
|
||||
uint8_t* tmp = reinterpret_cast<uint8_t *>(__builtin_alloca(src_arr_len * size));
|
||||
__builtin_memcpy(tmp, src_arr, src_arr_len * size);
|
||||
src_arr = tmp;
|
||||
}
|
||||
SliceIndex src_ind = src_start;
|
||||
SliceIndex dest_ind = dest_start;
|
||||
for (;
|
||||
(src_step > 0) ? (src_ind <= src_end) : (src_ind >= src_end);
|
||||
src_ind += src_step, dest_ind += dest_step
|
||||
) {
|
||||
/* for constant optimization */
|
||||
if (size == 1) {
|
||||
__builtin_memcpy(dest_arr + dest_ind, src_arr + src_ind, 1);
|
||||
} else if (size == 4) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 4, src_arr + src_ind * 4, 4);
|
||||
} else if (size == 8) {
|
||||
__builtin_memcpy(dest_arr + dest_ind * 8, src_arr + src_ind * 8, 8);
|
||||
} else {
|
||||
/* memcpy for var size, cannot overlap after previous alloca */
|
||||
__builtin_memcpy(dest_arr + dest_ind * size, src_arr + src_ind * size, size);
|
||||
}
|
||||
}
|
||||
/* only dest_step == 1 can we shrink the dest list. */
|
||||
/* size should be ensured prior to calling this function */
|
||||
if (dest_step == 1 && dest_end >= dest_start) {
|
||||
__builtin_memmove(
|
||||
dest_arr + dest_ind * size,
|
||||
dest_arr + (dest_end + 1) * size,
|
||||
(dest_arr_len - dest_end - 1) * size
|
||||
);
|
||||
return dest_arr_len - (dest_end - dest_ind) - 1;
|
||||
}
|
||||
return dest_arr_len;
|
||||
}
|
||||
|
||||
int32_t __nac3_isinf(double x) {
|
||||
return __builtin_isinf(x);
|
||||
}
|
||||
|
||||
int32_t __nac3_isnan(double x) {
|
||||
return __builtin_isnan(x);
|
||||
}
|
||||
|
||||
double tgamma(double arg);
|
||||
|
||||
double __nac3_gamma(double z) {
|
||||
// Handling for denormals
|
||||
// | x | Python gamma(x) | C tgamma(x) |
|
||||
// --- | ----------------- | --------------- | ----------- |
|
||||
// (1) | nan | nan | nan |
|
||||
// (2) | -inf | -inf | inf |
|
||||
// (3) | inf | inf | inf |
|
||||
// (4) | 0.0 | inf | inf |
|
||||
// (5) | {-1.0, -2.0, ...} | inf | nan |
|
||||
|
||||
// (1)-(3)
|
||||
if (__builtin_isinf(z) || __builtin_isnan(z)) {
|
||||
return z;
|
||||
}
|
||||
|
||||
double v = tgamma(z);
|
||||
|
||||
// (4)-(5)
|
||||
return __builtin_isinf(v) || __builtin_isnan(v) ? __builtin_inf() : v;
|
||||
}
|
||||
|
||||
double lgamma(double arg);
|
||||
|
||||
double __nac3_gammaln(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: gammaln(-inf) -> -inf
|
||||
// - libm : lgamma(-inf) -> inf
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return x;
|
||||
}
|
||||
|
||||
return lgamma(x);
|
||||
}
|
||||
|
||||
double j0(double x);
|
||||
|
||||
double __nac3_j0(double x) {
|
||||
// libm's handling of value overflows differs from scipy:
|
||||
// - scipy: j0(inf) -> nan
|
||||
// - libm : j0(inf) -> 0.0
|
||||
|
||||
if (__builtin_isinf(x)) {
|
||||
return __builtin_nan("");
|
||||
}
|
||||
|
||||
return j0(x);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_calc_size(
|
||||
const uint32_t* list_data,
|
||||
uint32_t list_len,
|
||||
uint32_t begin_idx,
|
||||
uint32_t end_idx
|
||||
) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_calc_size64(
|
||||
const uint64_t* list_data,
|
||||
uint64_t list_len,
|
||||
uint64_t begin_idx,
|
||||
uint64_t end_idx
|
||||
) {
|
||||
return __nac3_ndarray_calc_size_impl(list_data, list_len, begin_idx, end_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices(
|
||||
uint32_t index,
|
||||
const uint32_t* dims,
|
||||
uint32_t num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_nd_indices64(
|
||||
uint64_t index,
|
||||
const uint64_t* dims,
|
||||
uint64_t num_dims,
|
||||
NDIndex* idxs
|
||||
) {
|
||||
__nac3_ndarray_calc_nd_indices_impl(index, dims, num_dims, idxs);
|
||||
}
|
||||
|
||||
uint32_t __nac3_ndarray_flatten_index(
|
||||
const uint32_t* dims,
|
||||
uint32_t num_dims,
|
||||
const NDIndex* indices,
|
||||
uint32_t num_indices
|
||||
) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
uint64_t __nac3_ndarray_flatten_index64(
|
||||
const uint64_t* dims,
|
||||
uint64_t num_dims,
|
||||
const NDIndex* indices,
|
||||
uint64_t num_indices
|
||||
) {
|
||||
return __nac3_ndarray_flatten_index_impl(dims, num_dims, indices, num_indices);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast(
|
||||
const uint32_t* lhs_dims,
|
||||
uint32_t lhs_ndims,
|
||||
const uint32_t* rhs_dims,
|
||||
uint32_t rhs_ndims,
|
||||
uint32_t* out_dims
|
||||
) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast64(
|
||||
const uint64_t* lhs_dims,
|
||||
uint64_t lhs_ndims,
|
||||
const uint64_t* rhs_dims,
|
||||
uint64_t rhs_ndims,
|
||||
uint64_t* out_dims
|
||||
) {
|
||||
return __nac3_ndarray_calc_broadcast_impl(lhs_dims, lhs_ndims, rhs_dims, rhs_ndims, out_dims);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx(
|
||||
const uint32_t* src_dims,
|
||||
uint32_t src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx
|
||||
) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
|
||||
void __nac3_ndarray_calc_broadcast_idx64(
|
||||
const uint64_t* src_dims,
|
||||
uint64_t src_ndims,
|
||||
const NDIndex* in_idx,
|
||||
NDIndex* out_idx
|
||||
) {
|
||||
__nac3_ndarray_calc_broadcast_idx_impl(src_dims, src_ndims, in_idx, out_idx);
|
||||
}
|
||||
} // extern "C"
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,26 @@
|
|||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::{path::Path, process::Command};
|
||||
|
||||
#[test]
|
||||
fn run_irrt_test() {
|
||||
assert!(
|
||||
cfg!(feature = "test"),
|
||||
"Please do `cargo test -F test` to compile `irrt_test.out` and run test"
|
||||
);
|
||||
|
||||
let irrt_test_out_path = Path::new(concat!(env!("OUT_DIR"), "/irrt_test.out"));
|
||||
let output = Command::new(irrt_test_out_path.to_str().unwrap()).output().unwrap();
|
||||
|
||||
if !output.status.success() {
|
||||
eprintln!("irrt_test failed with status {}:", output.status);
|
||||
eprintln!("====== stdout ======");
|
||||
eprintln!("{}", String::from_utf8(output.stdout).unwrap());
|
||||
eprintln!("====== stderr ======");
|
||||
eprintln!("{}", String::from_utf8(output.stderr).unwrap());
|
||||
eprintln!("====================");
|
||||
|
||||
panic!("irrt_test failed");
|
||||
}
|
||||
}
|
||||
}
|
|
@ -35,6 +35,54 @@ fn get_float_intrinsic_repr(ctx: &Context, ft: FloatType) -> &'static str {
|
|||
unreachable!()
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.lifetime.start`](https://releases.llvm.org/14.0.0/docs/LangRef.html#llvm-lifetime-start-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_lifetime_start<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
) {
|
||||
const FN_NAME: &str = "llvm.lifetime.start";
|
||||
// NOTE: inkwell temporary workaround, see [`call_stackrestore`] for details
|
||||
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i64 = ctx.ctx.i64_type();
|
||||
let llvm_p0i8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let fn_type = llvm_void.fn_type(&[llvm_i64.into(), llvm_p0i8.into()], false);
|
||||
|
||||
ctx.module.add_function(FN_NAME, fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[size.into(), ptr.into()], "")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.lifetime.end`](https://releases.llvm.org/14.0.0/docs/LangRef.html#llvm-lifetime-end-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_lifetime_end<'ctx>(
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
size: IntValue<'ctx>,
|
||||
ptr: PointerValue<'ctx>,
|
||||
) {
|
||||
const FN_NAME: &str = "llvm.lifetime.end";
|
||||
// NOTE: inkwell temporary workaround, see [`call_stackrestore`] for details
|
||||
let intrinsic_fn = ctx.module.get_function(FN_NAME).unwrap_or_else(|| {
|
||||
let llvm_void = ctx.ctx.void_type();
|
||||
let llvm_i64 = ctx.ctx.i64_type();
|
||||
let llvm_p0i8 = ctx.ctx.i8_type().ptr_type(AddressSpace::default());
|
||||
let fn_type = llvm_void.fn_type(&[llvm_i64.into(), llvm_p0i8.into()], false);
|
||||
|
||||
ctx.module.add_function(FN_NAME, fn_type, None)
|
||||
});
|
||||
|
||||
ctx.builder
|
||||
.build_call(intrinsic_fn, &[size.into(), ptr.into()], "")
|
||||
.map(CallSiteValue::try_as_basic_value)
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
/// Invokes the [`llvm.stacksave`](https://llvm.org/docs/LangRef.html#llvm-stacksave-intrinsic)
|
||||
/// intrinsic.
|
||||
pub fn call_stacksave<'ctx>(
|
||||
|
|
|
@ -7,6 +7,7 @@ use crate::{
|
|||
typedef::{CallId, FuncArg, Type, TypeEnum, Unifier},
|
||||
},
|
||||
};
|
||||
use classes::NpArrayType;
|
||||
use crossbeam::channel::{unbounded, Receiver, Sender};
|
||||
use inkwell::{
|
||||
attributes::{Attribute, AttributeLoc},
|
||||
|
@ -43,6 +44,7 @@ pub mod irrt;
|
|||
pub mod llvm_intrinsics;
|
||||
pub mod numpy;
|
||||
pub mod stmt;
|
||||
pub mod structure;
|
||||
|
||||
#[cfg(test)]
|
||||
mod test;
|
||||
|
@ -476,7 +478,14 @@ fn get_llvm_type<'ctx, G: CodeGenerator + ?Sized>(
|
|||
ctx, module, generator, unifier, top_level, type_cache, dtype,
|
||||
);
|
||||
|
||||
NDArrayType::new(generator, ctx, element_type).as_base_type().into()
|
||||
let ndarray_ty = NpArrayType {
|
||||
size_type: generator.get_size_type(ctx),
|
||||
elem_type: element_type,
|
||||
};
|
||||
ndarray_ty
|
||||
.get_struct_type(ctx)
|
||||
.ptr_type(AddressSpace::default())
|
||||
.as_basic_type_enum()
|
||||
}
|
||||
|
||||
_ => unreachable!(
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,318 @@
|
|||
use std::marker::PhantomData;
|
||||
|
||||
use inkwell::{
|
||||
context::Context,
|
||||
types::{BasicType, BasicTypeEnum, IntType, PointerType, StructType},
|
||||
values::{BasicValue, BasicValueEnum, IntValue, PointerValue},
|
||||
AddressSpace,
|
||||
};
|
||||
|
||||
use super::CodeGenContext;
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct FieldInfo {
|
||||
gep_index: u32,
|
||||
name: &'static str,
|
||||
}
|
||||
|
||||
impl FieldInfo {
|
||||
pub fn llvm_gep<'ctx>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> PointerValue<'ctx> {
|
||||
let index_type = ctx.ctx.i32_type(); // TODO: I think I'm not supposed to *just* use i32 for GEP like that
|
||||
unsafe {
|
||||
ctx.builder
|
||||
.build_in_bounds_gep(
|
||||
struct_ptr,
|
||||
&[index_type.const_zero(), index_type.const_int(self.gep_index as u64, false)],
|
||||
self.name,
|
||||
)
|
||||
.unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn llvm_load<'ctx>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> BasicValueEnum<'ctx> {
|
||||
// We will use `self.name` as the LLVM label for debugging purposes
|
||||
ctx.builder.build_load(self.llvm_gep(ctx, struct_ptr), self.name).unwrap()
|
||||
}
|
||||
|
||||
pub fn llvm_store<'ctx>(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
value: BasicValueEnum<'ctx>,
|
||||
) {
|
||||
ctx.builder.build_store(self.llvm_gep(ctx, struct_ptr), value).unwrap();
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Object<'ctx, T> {
|
||||
pub ty: T,
|
||||
pub ptr: PointerValue<'ctx>,
|
||||
}
|
||||
|
||||
pub struct Field<'ctx, T: CustomType<'ctx>> {
|
||||
pub info: FieldInfo,
|
||||
pub ty: T,
|
||||
_phantom: PhantomData<&'ctx ()>,
|
||||
}
|
||||
|
||||
pub struct FieldCreator<'ctx> {
|
||||
pub ctx: &'ctx Context,
|
||||
struct_name: &'ctx str,
|
||||
gep_index_counter: u32,
|
||||
fields: Vec<(FieldInfo, BasicTypeEnum<'ctx>)>,
|
||||
}
|
||||
|
||||
impl<'ctx> FieldCreator<'ctx> {
|
||||
pub fn new(ctx: &'ctx Context, struct_name: &'ctx str) -> Self {
|
||||
FieldCreator { ctx, struct_name, gep_index_counter: 0, fields: Vec::new() }
|
||||
}
|
||||
|
||||
fn next_gep_index(&mut self) -> u32 {
|
||||
let index = self.gep_index_counter;
|
||||
self.gep_index_counter += 1;
|
||||
index
|
||||
}
|
||||
|
||||
fn get_struct_field_types(&self) -> Vec<BasicTypeEnum<'ctx>> {
|
||||
self.fields.iter().map(|x| x.1.clone()).collect()
|
||||
}
|
||||
|
||||
pub fn add_field<T: CustomType<'ctx>>(&mut self, name: &'static str, ty: T) -> Field<'ctx, T> {
|
||||
let gep_index = self.next_gep_index();
|
||||
|
||||
let field_type = ty.llvm_basic_type_enum(self.ctx);
|
||||
let field_info = FieldInfo { gep_index, name };
|
||||
let field = Field { info: field_info, ty, _phantom: PhantomData };
|
||||
|
||||
self.fields.push((field_info.clone(), field_type));
|
||||
|
||||
field
|
||||
}
|
||||
|
||||
fn num_fields(&self) -> u32 {
|
||||
self.fields.len() as u32 // casted to u32 because that is what inkwell returns
|
||||
}
|
||||
}
|
||||
|
||||
pub trait CustomType<'ctx>: Clone {
|
||||
type Value;
|
||||
|
||||
fn llvm_basic_type_enum(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx>;
|
||||
|
||||
fn llvm_field_load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> Self::Value;
|
||||
|
||||
fn llvm_field_store(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
value: &Self::Value,
|
||||
);
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct IntType2<'ctx>(pub IntType<'ctx>);
|
||||
|
||||
impl<'ctx> CustomType<'ctx> for IntType2<'ctx> {
|
||||
type Value = IntValue<'ctx>;
|
||||
|
||||
fn llvm_basic_type_enum(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
|
||||
self.0.as_basic_type_enum()
|
||||
}
|
||||
|
||||
fn llvm_field_load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> Self::Value {
|
||||
let int_value = field.llvm_load(ctx, struct_ptr).into_int_value();
|
||||
assert_eq!(int_value.get_type().get_bit_width(), self.0.get_bit_width());
|
||||
int_value
|
||||
}
|
||||
|
||||
fn llvm_field_store(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
int_value: &Self::Value,
|
||||
) {
|
||||
assert_eq!(int_value.get_type().get_bit_width(), self.0.get_bit_width());
|
||||
field.llvm_store(ctx, struct_ptr, int_value.as_basic_value_enum());
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct PointerType2<'ctx>(pub PointerType<'ctx>);
|
||||
|
||||
impl<'ctx> CustomType<'ctx> for PointerType2<'ctx> {
|
||||
type Value = PointerValue<'ctx>;
|
||||
|
||||
fn llvm_basic_type_enum(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
|
||||
self.0.as_basic_type_enum()
|
||||
}
|
||||
|
||||
fn llvm_field_load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> Self::Value {
|
||||
field.llvm_load(ctx, struct_ptr).into_pointer_value()
|
||||
}
|
||||
|
||||
fn llvm_field_store(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
pointer_value: &Self::Value,
|
||||
) {
|
||||
field.llvm_store(ctx, struct_ptr, pointer_value.as_basic_value_enum());
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy)]
|
||||
pub struct PointingArrayType<'ctx, ElementType: CustomType<'ctx>> {
|
||||
pub element_type: ElementType,
|
||||
_phantom: PhantomData<&'ctx ()>,
|
||||
}
|
||||
|
||||
impl<'ctx, ElementType: CustomType<'ctx>> PointingArrayType<'ctx, ElementType> {
|
||||
pub fn new(element_type: ElementType) -> Self {
|
||||
PointingArrayType { element_type, _phantom: PhantomData }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'ctx, Element: CustomType<'ctx>> CustomType<'ctx> for PointingArrayType<'ctx, Element> {
|
||||
type Value = Object<'ctx, Self>;
|
||||
|
||||
fn llvm_basic_type_enum(&self, ctx: &'ctx Context) -> BasicTypeEnum<'ctx> {
|
||||
// Element*
|
||||
self.element_type
|
||||
.llvm_basic_type_enum(ctx)
|
||||
.ptr_type(AddressSpace::default())
|
||||
.as_basic_type_enum()
|
||||
}
|
||||
|
||||
fn llvm_field_load(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
) -> Self::Value {
|
||||
// Remember that it is just a pointer
|
||||
Object { ty: self.clone(), ptr: field.llvm_load(ctx, struct_ptr).into_pointer_value() }
|
||||
}
|
||||
|
||||
fn llvm_field_store(
|
||||
&self,
|
||||
ctx: &CodeGenContext<'ctx, '_>,
|
||||
field: FieldInfo,
|
||||
struct_ptr: PointerValue<'ctx>,
|
||||
value: &Self::Value,
|
||||
) {
|
||||
// Remember that it is just a pointer
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
pub fn check_basic_types_match<'ctx, A, B>(expected: A, got: B) -> Result<(), String>
|
||||
where
|
||||
A: BasicType<'ctx>,
|
||||
B: BasicType<'ctx>,
|
||||
{
|
||||
let expected = expected.as_basic_type_enum();
|
||||
let got = got.as_basic_type_enum();
|
||||
|
||||
// Put those logic into here,
|
||||
// otherwise there is always a fallback reporting on any kind of mismatch
|
||||
match (expected, got) {
|
||||
(BasicTypeEnum::IntType(expected), BasicTypeEnum::IntType(got)) => {
|
||||
if expected.get_bit_width() != got.get_bit_width() {
|
||||
return Err(format!(
|
||||
"Expected IntType ({expected}-bit(s)), got IntType ({got}-bit(s))"
|
||||
));
|
||||
}
|
||||
}
|
||||
(expected, got) => {
|
||||
if expected != got {
|
||||
return Err(format!("Expected {expected}, got {got}"));
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub trait CustomStructType<'ctx> {
|
||||
type Fields;
|
||||
|
||||
fn llvm_struct_name() -> &'static str;
|
||||
|
||||
fn add_fields_to(&self, creator: &mut FieldCreator<'ctx>) -> Self::Fields;
|
||||
|
||||
fn fields(&self, ctx: &'ctx Context) -> Self::Fields {
|
||||
let mut creator = FieldCreator::new(ctx, Self::llvm_struct_name());
|
||||
let fields = self.add_fields_to(&mut creator);
|
||||
fields
|
||||
}
|
||||
|
||||
fn llvm_struct_type(&self, ctx: &'ctx Context) -> StructType<'ctx> {
|
||||
let mut creator = FieldCreator::new(ctx, Self::llvm_struct_name());
|
||||
self.add_fields_to(&mut creator);
|
||||
|
||||
ctx.struct_type(&creator.get_struct_field_types(), false)
|
||||
}
|
||||
|
||||
fn check_struct_type(
|
||||
&self,
|
||||
ctx: &'ctx Context,
|
||||
scrutinee: StructType<'ctx>,
|
||||
) -> Result<(), String> {
|
||||
let mut creator = FieldCreator::new(ctx, Self::llvm_struct_name());
|
||||
self.add_fields_to(&mut creator);
|
||||
|
||||
// Check scrutinee's number of struct fields
|
||||
let expected_field_count = creator.num_fields();
|
||||
let got_field_count = scrutinee.count_fields();
|
||||
if got_field_count != expected_field_count {
|
||||
return Err(format!(
|
||||
"Expected {expected_count} field(s) in `{struct_name}` type, got {got_count}",
|
||||
struct_name = Self::llvm_struct_name(),
|
||||
expected_count = expected_field_count,
|
||||
got_count = got_field_count,
|
||||
));
|
||||
}
|
||||
|
||||
// Check the scrutinee's field types
|
||||
for (field_info, expected_field_ty) in creator.fields {
|
||||
let got_field_ty = scrutinee.get_field_type_at_index(field_info.gep_index).unwrap();
|
||||
|
||||
if let Err(field_err) = check_basic_types_match(expected_field_ty, got_field_ty) {
|
||||
return Err(format!(
|
||||
"Field GEP index {gep_index} does not match the expected type of ({struct_name}::{field_name}): {field_err}",
|
||||
gep_index = field_info.gep_index,
|
||||
struct_name = Self::llvm_struct_name(),
|
||||
field_name = field_info.name,
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
// Done
|
||||
Ok(())
|
||||
}
|
||||
}
|
|
@ -438,14 +438,15 @@ fn test_classes_range_type_new() {
|
|||
assert!(RangeType::is_type(llvm_range.as_base_type()).is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_classes_ndarray_type_new() {
|
||||
let ctx = inkwell::context::Context::create();
|
||||
let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
|
||||
let llvm_i32 = ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(&ctx);
|
||||
|
||||
let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
|
||||
assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
}
|
||||
// #[test]
|
||||
// fn test_classes_ndarray_type_new() {
|
||||
// let ctx = inkwell::context::Context::create();
|
||||
// let generator = DefaultCodeGenerator::new(String::new(), 64);
|
||||
//
|
||||
// let llvm_i32 = ctx.i32_type();
|
||||
// let llvm_usize = generator.get_size_type(&ctx);
|
||||
//
|
||||
// let llvm_ndarray = NDArrayType::new(&generator, &ctx, llvm_i32.into());
|
||||
// assert!(NDArrayType::is_type(llvm_ndarray.as_base_type(), llvm_usize).is_ok());
|
||||
// }
|
||||
//
|
||||
|
|
|
@ -7,6 +7,7 @@
|
|||
)]
|
||||
#![warn(clippy::pedantic)]
|
||||
#![allow(
|
||||
unused,
|
||||
dead_code,
|
||||
clippy::cast_possible_truncation,
|
||||
clippy::cast_sign_loss,
|
||||
|
@ -23,3 +24,4 @@ pub mod codegen;
|
|||
pub mod symbol_resolver;
|
||||
pub mod toplevel;
|
||||
pub mod typecheck;
|
||||
pub mod util;
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
use std::iter::once;
|
||||
|
||||
use crate::util::SizeVariant;
|
||||
use classes::NpArrayType;
|
||||
use helper::{debug_assert_prim_is_allowed, make_exception_fields, PrimDefDetails};
|
||||
use indexmap::IndexMap;
|
||||
use inkwell::{
|
||||
|
@ -278,21 +280,12 @@ pub fn get_builtins(unifier: &mut Unifier, primitives: &PrimitiveStore) -> Built
|
|||
.collect()
|
||||
}
|
||||
|
||||
/// A helper enum used by [`BuiltinBuilder`]
|
||||
#[derive(Clone, Copy)]
|
||||
enum SizeVariant {
|
||||
Bits32,
|
||||
Bits64,
|
||||
}
|
||||
|
||||
impl SizeVariant {
|
||||
fn of_int(self, primitives: &PrimitiveStore) -> Type {
|
||||
match self {
|
||||
fn size_variant_to_int_type(variant: SizeVariant, primitives: &PrimitiveStore) -> Type {
|
||||
match variant {
|
||||
SizeVariant::Bits32 => primitives.int32,
|
||||
SizeVariant::Bits64 => primitives.int64,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct BuiltinBuilder<'a> {
|
||||
unifier: &'a mut Unifier,
|
||||
|
@ -961,8 +954,9 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
resolver: None,
|
||||
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
||||
|ctx, obj, fun, args, generator| {
|
||||
gen_ndarray_copy(ctx, &obj, fun, &args, generator)
|
||||
.map(|val| Some(val.as_basic_value_enum()))
|
||||
todo!()
|
||||
// gen_ndarray_copy(ctx, &obj, fun, &args, generator)
|
||||
// .map(|val| Some(val.as_basic_value_enum()))
|
||||
},
|
||||
)))),
|
||||
loc: None,
|
||||
|
@ -978,8 +972,9 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
resolver: None,
|
||||
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
||||
|ctx, obj, fun, args, generator| {
|
||||
gen_ndarray_fill(ctx, &obj, fun, &args, generator)?;
|
||||
Ok(None)
|
||||
todo!()
|
||||
// gen_ndarray_fill(ctx, &obj, fun, &args, generator)?;
|
||||
// Ok(None)
|
||||
},
|
||||
)))),
|
||||
loc: None,
|
||||
|
@ -1059,7 +1054,7 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
);
|
||||
|
||||
// The size variant of the function determines the size of the returned int.
|
||||
let int_sized = size_variant.of_int(self.primitives);
|
||||
let int_sized = size_variant_to_int_type(size_variant, self.primitives);
|
||||
|
||||
let ndarray_int_sized =
|
||||
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
|
||||
|
@ -1084,7 +1079,7 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
let arg_ty = fun.0.args[0].ty;
|
||||
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
||||
|
||||
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
|
||||
let ret_elem_ty = size_variant_to_int_type(size_variant, &ctx.primitives);
|
||||
Ok(Some(builtin_fns::call_round(generator, ctx, (arg_ty, arg), ret_elem_ty)?))
|
||||
}),
|
||||
)
|
||||
|
@ -1125,7 +1120,7 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
make_ndarray_ty(self.unifier, self.primitives, Some(float), Some(common_ndim.ty));
|
||||
|
||||
// The size variant of the function determines the type of int returned
|
||||
let int_sized = size_variant.of_int(self.primitives);
|
||||
let int_sized = size_variant_to_int_type(size_variant, self.primitives);
|
||||
let ndarray_int_sized =
|
||||
make_ndarray_ty(self.unifier, self.primitives, Some(int_sized), Some(common_ndim.ty));
|
||||
|
||||
|
@ -1148,7 +1143,7 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
let arg_ty = fun.0.args[0].ty;
|
||||
let arg = args[0].1.clone().to_basic_value_enum(ctx, generator, arg_ty)?;
|
||||
|
||||
let ret_elem_ty = size_variant.of_int(&ctx.primitives);
|
||||
let ret_elem_ty = size_variant_to_int_type(size_variant, &ctx.primitives);
|
||||
let func = match kind {
|
||||
Kind::Ceil => builtin_fns::call_ceil,
|
||||
Kind::Floor => builtin_fns::call_floor,
|
||||
|
@ -1202,7 +1197,7 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
let func = match prim {
|
||||
PrimDef::FunNpNDArray | PrimDef::FunNpEmpty => gen_ndarray_empty,
|
||||
PrimDef::FunNpZeros => gen_ndarray_zeros,
|
||||
PrimDef::FunNpOnes => gen_ndarray_ones,
|
||||
PrimDef::FunNpOnes => gen_ndarray_ones, // gen_ndarray_ones,
|
||||
_ => unreachable!(),
|
||||
};
|
||||
func(ctx, &obj, fun, &args, generator).map(|val| Some(val.as_basic_value_enum()))
|
||||
|
@ -1251,8 +1246,9 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
resolver: None,
|
||||
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
||||
|ctx, obj, fun, args, generator| {
|
||||
gen_ndarray_array(ctx, &obj, fun, &args, generator)
|
||||
.map(|val| Some(val.as_basic_value_enum()))
|
||||
todo!()
|
||||
// gen_ndarray_array(ctx, &obj, fun, &args, generator)
|
||||
// .map(|val| Some(val.as_basic_value_enum()))
|
||||
},
|
||||
)))),
|
||||
loc: None,
|
||||
|
@ -1270,8 +1266,9 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
// type variable
|
||||
&[(self.list_int32, "shape"), (tv.ty, "fill_value")],
|
||||
Box::new(move |ctx, obj, fun, args, generator| {
|
||||
gen_ndarray_full(ctx, &obj, fun, &args, generator)
|
||||
.map(|val| Some(val.as_basic_value_enum()))
|
||||
todo!()
|
||||
// gen_ndarray_full(ctx, &obj, fun, &args, generator)
|
||||
// .map(|val| Some(val.as_basic_value_enum()))
|
||||
}),
|
||||
)
|
||||
}
|
||||
|
@ -1303,8 +1300,9 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
resolver: None,
|
||||
codegen_callback: Some(Arc::new(GenCall::new(Box::new(
|
||||
|ctx, obj, fun, args, generator| {
|
||||
gen_ndarray_eye(ctx, &obj, fun, &args, generator)
|
||||
.map(|val| Some(val.as_basic_value_enum()))
|
||||
todo!()
|
||||
// gen_ndarray_eye(ctx, &obj, fun, &args, generator)
|
||||
// .map(|val| Some(val.as_basic_value_enum()))
|
||||
},
|
||||
)))),
|
||||
loc: None,
|
||||
|
@ -1317,8 +1315,9 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
self.ndarray_float_2d,
|
||||
&[(int32, "n")],
|
||||
Box::new(|ctx, obj, fun, args, generator| {
|
||||
gen_ndarray_identity(ctx, &obj, fun, &args, generator)
|
||||
.map(|val| Some(val.as_basic_value_enum()))
|
||||
todo!()
|
||||
// gen_ndarray_identity(ctx, &obj, fun, &args, generator)
|
||||
// .map(|val| Some(val.as_basic_value_enum()))
|
||||
}),
|
||||
),
|
||||
_ => unreachable!(),
|
||||
|
@ -1462,51 +1461,65 @@ impl<'a> BuiltinBuilder<'a> {
|
|||
}
|
||||
}
|
||||
TypeEnum::TObj { obj_id, .. } if *obj_id == PrimDef::NDArray.id() => {
|
||||
let llvm_i32 = ctx.ctx.i32_type();
|
||||
let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
// TODO: Check is unsized and throw error if so
|
||||
|
||||
let arg = NDArrayValue::from_ptr_val(
|
||||
arg.into_pointer_value(),
|
||||
llvm_usize,
|
||||
None,
|
||||
);
|
||||
// Parse `arg`
|
||||
let ndarray_ptr = arg.into_pointer_value(); // It has to be an ndarray
|
||||
|
||||
let ndims = arg.dim_sizes().size(ctx, generator);
|
||||
ctx.make_assert(
|
||||
generator,
|
||||
ctx.builder
|
||||
.build_int_compare(
|
||||
IntPredicate::NE,
|
||||
ndims,
|
||||
llvm_usize.const_zero(),
|
||||
"",
|
||||
)
|
||||
.unwrap(),
|
||||
"0:TypeError",
|
||||
&format!("{name}() of unsized object", name = prim.name()),
|
||||
[None, None, None],
|
||||
ctx.current_loc,
|
||||
);
|
||||
let size_type = generator.get_size_type(ctx.ctx);
|
||||
let ndarray_ty = NpArrayType::new_opaque_elem(ctx.ctx, size_type); // We don't need to care about the element type - we only want the shape
|
||||
let ndarray = ndarray_ty.value_from_ptr(ctx.ctx, ndarray_ptr);
|
||||
|
||||
let len = unsafe {
|
||||
arg.dim_sizes().get_typed_unchecked(
|
||||
ctx,
|
||||
generator,
|
||||
&llvm_usize.const_zero(),
|
||||
None,
|
||||
)
|
||||
};
|
||||
let result = call_nac3_len(ctx, ndarray).as_basic_value_enum();
|
||||
Some(result)
|
||||
|
||||
if len.get_type().get_bit_width() == 32 {
|
||||
Some(len.into())
|
||||
} else {
|
||||
Some(
|
||||
ctx.builder
|
||||
.build_int_truncate(len, llvm_i32, "len")
|
||||
.map(Into::into)
|
||||
.unwrap(),
|
||||
)
|
||||
}
|
||||
// Some(.as_basic_value_enum())
|
||||
|
||||
// let llvm_i32 = ctx.ctx.i32_type();
|
||||
// let llvm_usize = generator.get_size_type(ctx.ctx);
|
||||
|
||||
// let arg = NDArrayValue::from_ptr_val(
|
||||
// arg.into_pointer_value(),
|
||||
// llvm_usize,
|
||||
// None,
|
||||
// );
|
||||
|
||||
// let ndims = arg.dim_sizes().size(ctx, generator);
|
||||
// ctx.make_assert(
|
||||
// generator,
|
||||
// ctx.builder
|
||||
// .build_int_compare(
|
||||
// IntPredicate::NE,
|
||||
// ndims,
|
||||
// llvm_usize.const_zero(),
|
||||
// "",
|
||||
// )
|
||||
// .unwrap(),
|
||||
// "0:TypeError",
|
||||
// &format!("{name}() of unsized object", name = prim.name()),
|
||||
// [None, None, None],
|
||||
// ctx.current_loc,
|
||||
// );
|
||||
|
||||
// let len = unsafe {
|
||||
// arg.dim_sizes().get_typed_unchecked(
|
||||
// ctx,
|
||||
// generator,
|
||||
// &llvm_usize.const_zero(),
|
||||
// None,
|
||||
// )
|
||||
// };
|
||||
|
||||
// if len.get_type().get_bit_width() == 32 {
|
||||
// Some(len.into())
|
||||
// } else {
|
||||
// Some(
|
||||
// ctx.builder
|
||||
// .build_int_truncate(len, llvm_i32, "len")
|
||||
// .map(Into::into)
|
||||
// .unwrap(),
|
||||
// )
|
||||
// }
|
||||
}
|
||||
_ => unreachable!(),
|
||||
}
|
||||
|
|
|
@ -0,0 +1,5 @@
|
|||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub(crate) enum SizeVariant {
|
||||
Bits32,
|
||||
Bits64,
|
||||
}
|
|
@ -0,0 +1,18 @@
|
|||
@extern
|
||||
def output_float64(x: float):
|
||||
...
|
||||
|
||||
def output_ndarray_float_1(n: ndarray[float, Literal[1]]):
|
||||
for i in range(len(n)):
|
||||
output_float64(n[i])
|
||||
|
||||
def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
|
||||
for r in range(len(n)):
|
||||
for c in range(len(n[r])):
|
||||
output_float64(n[r][c])
|
||||
|
||||
def run() -> int32:
|
||||
hello = np_ones((3, 4))
|
||||
# output_float64(hello[2, 3])
|
||||
output_ndarray_float_1(hello[::-2, 2])
|
||||
return 0
|
|
@ -449,6 +449,11 @@ fn main() {
|
|||
.create_target_machine(llvm_options.opt_level)
|
||||
.expect("couldn't create target machine");
|
||||
|
||||
// Debug print if DEBUG_STANDALONE_DUMP_IR is defined
|
||||
if std::env::var("DEBUG_STANDALONE_DUMP_IR").is_ok() {
|
||||
main.print_to_file("standalone.ll").unwrap();
|
||||
}
|
||||
|
||||
let pass_options = PassBuilderOptions::create();
|
||||
pass_options.set_merge_functions(true);
|
||||
let passes = format!("default<O{}>", opt_level as u32);
|
||||
|
|
|
@ -81,6 +81,7 @@ in rec {
|
|||
''
|
||||
mkdir -p $out/bin
|
||||
ln -s ${llvm-nac3}/bin/clang.exe $out/bin/clang-irrt.exe
|
||||
ln -s ${llvm-nac3}/bin/clang.exe $out/bin/clang-irrt-test.exe
|
||||
ln -s ${llvm-nac3}/bin/llvm-as.exe $out/bin/llvm-as-irrt.exe
|
||||
'';
|
||||
nac3artiq = pkgs.rustPlatform.buildRustPackage {
|
||||
|
|
Loading…
Reference in New Issue