pounder_test/src/bin/dual-iir.rs

296 lines
12 KiB
Rust

#![deny(warnings)]
#![no_std]
#![no_main]
#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
use stm32h7xx_hal as hal;
#[macro_use]
extern crate log;
use rtic::cyccnt::{Instant, U32Ext};
use heapless::{consts::*, String};
use stabilizer::{hardware, server};
use dsp::iir;
use hardware::{Adc0Input, Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1};
const SCALE: f32 = i16::MAX as _;
const TCP_RX_BUFFER_SIZE: usize = 8192;
const TCP_TX_BUFFER_SIZE: usize = 8192;
// The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1;
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
net_interface: hardware::Ethernet,
// Format: iir_state[ch][cascade-no][coeff]
#[init([[iir::Vec5([0.; 5]); IIR_CASCADE_LENGTH]; 2])]
iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2],
#[init([[iir::IIR::new(1., -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2])]
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
}
#[init]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
// Enable ADC/DAC events
stabilizer.adcs.0.start();
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
// Start sampling ADCs.
stabilizer.adc_dac_timer.start();
init::LateResources {
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
net_interface: stabilizer.net.interface,
}
}
/// Main DSP processing routine for Stabilizer.
///
/// # Note
/// Processing time for the DSP application code is bounded by the following constraints:
///
/// DSP application code starts after the ADC has generated a batch of samples and must be
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
///
/// The DSP application code must also fill out the next DAC output buffer in time such that the
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
/// it's possible that old DAC codes will be generated on the output and the output samples will
/// be delayed by 1 batch.
///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met.
#[task(binds=DMA1_STR4, resources=[adcs, dacs, iir_state, iir_ch], priority=2)]
fn process(c: process::Context) {
let adc_samples = [
c.resources.adcs.0.acquire_buffer(),
c.resources.adcs.1.acquire_buffer(),
];
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
c.resources.dacs.1.acquire_buffer(),
];
for channel in 0..adc_samples.len() {
for sample in 0..adc_samples[0].len() {
let x = f32::from(adc_samples[channel][sample] as i16);
let mut y = x;
for i in 0..c.resources.iir_state[channel].len() {
y = c.resources.iir_ch[channel][i]
.update(&mut c.resources.iir_state[channel][i], y);
}
// Note(unsafe): The filter limits ensure that the value is in range.
// The truncation introduces 1/2 LSB distortion.
let y = unsafe { y.to_int_unchecked::<i16>() };
// Convert to DAC code
dac_samples[channel][sample] = y as u16 ^ 0x8000;
}
}
}
#[idle(resources=[net_interface, iir_state, iir_ch, afes])]
fn idle(mut c: idle::Context) -> ! {
let mut socket_set_entries: [_; 8] = Default::default();
let mut sockets =
smoltcp::socket::SocketSet::new(&mut socket_set_entries[..]);
let mut rx_storage = [0; TCP_RX_BUFFER_SIZE];
let mut tx_storage = [0; TCP_TX_BUFFER_SIZE];
let tcp_handle = {
let tcp_rx_buffer =
smoltcp::socket::TcpSocketBuffer::new(&mut rx_storage[..]);
let tcp_tx_buffer =
smoltcp::socket::TcpSocketBuffer::new(&mut tx_storage[..]);
let tcp_socket =
smoltcp::socket::TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer);
sockets.add(tcp_socket)
};
let mut server = server::Server::new();
let mut time = 0u32;
let mut next_ms = Instant::now();
// TODO: Replace with reference to CPU clock from CCDR.
next_ms += 400_000.cycles();
loop {
let tick = Instant::now() > next_ms;
if tick {
next_ms += 400_000.cycles();
time += 1;
}
{
let socket =
&mut *sockets.get::<smoltcp::socket::TcpSocket>(tcp_handle);
if socket.state() == smoltcp::socket::TcpState::CloseWait {
socket.close();
} else if !(socket.is_open() || socket.is_listening()) {
socket
.listen(1235)
.unwrap_or_else(|e| warn!("TCP listen error: {:?}", e));
} else {
server.poll(socket, |req| {
info!("Got request: {:?}", req);
stabilizer::route_request!(req,
readable_attributes: [
"stabilizer/iir/state": (|| {
let state = c.resources.iir_state.lock(|iir_state|
server::Status {
t: time,
x0: iir_state[0][0].0[0],
y0: iir_state[0][0].0[2],
x1: iir_state[1][0].0[0],
y1: iir_state[1][0].0[2],
});
Ok::<server::Status, ()>(state)
}),
// "_b" means cascades 2nd IIR
"stabilizer/iir_b/state": (|| { let state = c.resources.iir_state.lock(|iir_state|
server::Status {
t: time,
x0: iir_state[0][IIR_CASCADE_LENGTH-1].0[0],
y0: iir_state[0][IIR_CASCADE_LENGTH-1].0[2],
x1: iir_state[1][IIR_CASCADE_LENGTH-1].0[0],
y1: iir_state[1][IIR_CASCADE_LENGTH-1].0[2],
});
Ok::<server::Status, ()>(state)
}),
"stabilizer/afe0/gain": (|| c.resources.afes.0.get_gain()),
"stabilizer/afe1/gain": (|| c.resources.afes.1.get_gain())
],
modifiable_attributes: [
"stabilizer/iir0/state": server::IirRequest, (|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][0] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/iir1/state": server::IirRequest, (|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][0] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/iir_b0/state": server::IirRequest, (|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][IIR_CASCADE_LENGTH-1] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/iir_b1/state": server::IirRequest,(|req: server::IirRequest| {
c.resources.iir_ch.lock(|iir_ch| {
if req.channel > 1 {
return Err(());
}
iir_ch[req.channel as usize][IIR_CASCADE_LENGTH-1] = req.iir;
Ok::<server::IirRequest, ()>(req)
})
}),
"stabilizer/afe0/gain": hardware::AfeGain, (|gain| {
c.resources.afes.0.set_gain(gain);
Ok::<(), ()>(())
}),
"stabilizer/afe1/gain": hardware::AfeGain, (|gain| {
c.resources.afes.1.set_gain(gain);
Ok::<(), ()>(())
})
]
)
});
}
}
let sleep = match c.resources.net_interface.poll(
&mut sockets,
smoltcp::time::Instant::from_millis(time as i64),
) {
Ok(changed) => !changed,
Err(smoltcp::Error::Unrecognized) => true,
Err(e) => {
info!("iface poll error: {:?}", e);
true
}
};
if sleep {
cortex_m::asm::wfi();
}
}
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority
fn DCMI();
fn JPEG();
fn SDMMC();
}
};