pounder_test/src/bin/lockin-external.rs

268 lines
8.1 KiB
Rust

#![deny(warnings)]
#![no_std]
#![no_main]
#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
use stm32h7xx_hal as hal;
use rtic::cyccnt::{Instant, U32Ext};
use stabilizer::{hardware, ADC_SAMPLE_TICKS_LOG2, SAMPLE_BUFFER_SIZE_LOG2};
use miniconf::{
embedded_nal::{IpAddr, Ipv4Addr},
MqttInterface, StringSet,
};
use serde::Deserialize;
use dsp::{iir, iir_int, lockin::Lockin, rpll::RPLL, Accu};
use hardware::{
Adc0Input, Adc1Input, Dac0Output, Dac1Output, InputStamper, AFE0, AFE1,
};
const SCALE: f32 = i16::MAX as _;
// The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1;
#[derive(Deserialize, StringSet)]
pub struct Settings {
}
impl Settings {
pub fn new() -> Self {
Self {
}
}
}
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
mqtt_interface: MqttInterface<Settings, hardware::NetworkStack>,
// Format: iir_state[ch][cascade-no][coeff]
#[init([[iir::Vec5([0.; 5]); IIR_CASCADE_LENGTH]; 2])]
iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2],
#[init([[iir::IIR::new(1./(1 << 16) as f32, -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2])]
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
timestamper: InputStamper,
pll: RPLL,
lockin: Lockin,
}
#[init]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
let broker = IpAddr::V4(Ipv4Addr::new(10, 34, 16, 1));
let mqtt_interface = MqttInterface::new(
stabilizer.net.stack,
"stabilizer/lockin",
broker,
Settings::new(),
)
.unwrap();
let pll = RPLL::new(ADC_SAMPLE_TICKS_LOG2 + SAMPLE_BUFFER_SIZE_LOG2);
let lockin = Lockin::new(
iir_int::Vec5::lowpass(1e-3, 0.707, 2.), // TODO: expose
);
// Enable ADC/DAC events
stabilizer.adcs.0.start();
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
// Start recording digital input timestamps.
stabilizer.timestamp_timer.start();
// Start sampling ADCs.
stabilizer.adc_dac_timer.start();
init::LateResources {
mqtt_interface,
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
timestamper: stabilizer.timestamper,
pll,
lockin,
}
}
/// Main DSP processing routine.
///
/// See `dual-iir` for general notes on processing time and timing.
///
/// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal.
/// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale.
/// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available.
#[task(binds=DMA1_STR4, resources=[adcs, dacs, iir_state, iir_ch, lockin, timestamper, pll], priority=2)]
fn process(c: process::Context) {
let adc_samples = [
c.resources.adcs.0.acquire_buffer(),
c.resources.adcs.1.acquire_buffer(),
];
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
c.resources.dacs.1.acquire_buffer(),
];
let iir_ch = c.resources.iir_ch;
let iir_state = c.resources.iir_state;
let lockin = c.resources.lockin;
let timestamp = c
.resources
.timestamper
.latest_timestamp()
.unwrap_or_else(|t| t) // Ignore timer capture overflows.
.map(|t| t as i32);
let (pll_phase, pll_frequency) = c.resources.pll.update(
timestamp,
22, // frequency settling time (log2 counter cycles), TODO: expose
22, // phase settling time, TODO: expose
);
// Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate)
let harmonic: i32 = -1; // TODO: expose
// Demodulation LO phase offset
let phase_offset: i32 = 0; // TODO: expose
let sample_frequency = ((pll_frequency
// .wrapping_add(1 << SAMPLE_BUFFER_SIZE_LOG2 - 1) // half-up rounding bias
>> SAMPLE_BUFFER_SIZE_LOG2) as i32)
.wrapping_mul(harmonic);
let sample_phase =
phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic));
let output = adc_samples[0]
.iter()
.zip(Accu::new(sample_phase, sample_frequency))
// Convert to signed, MSB align the ADC sample.
.map(|(&sample, phase)| {
lockin.update((sample as i16 as i32) << 16, phase)
})
.last()
.unwrap();
// convert i/q to power/phase,
let power_phase = true; // TODO: expose
let mut output = if power_phase {
// Convert from IQ to power and phase.
[output.abs_sqr() as _, output.arg() as _]
} else {
[output.0 as _, output.1 as _]
};
// Filter power and phase through IIR filters.
// Note: Normalization to be done in filters. Phase will wrap happily.
for j in 0..iir_state[0].len() {
for k in 0..output.len() {
output[k] =
iir_ch[k][j].update(&mut iir_state[k][j], output[k]);
}
}
// Note(unsafe): range clipping to i16 is ensured by IIR filters above.
// Convert to DAC data.
for i in 0..dac_samples[0].len() {
unsafe {
dac_samples[0][i] =
output[0].to_int_unchecked::<i16>() as u16 ^ 0x8000;
dac_samples[1][i] =
output[1].to_int_unchecked::<i16>() as u16 ^ 0x8000;
}
}
}
#[idle(resources=[mqtt_interface], spawn=[settings_update])]
fn idle(mut c: idle::Context) -> ! {
let mut time = 0u32;
let mut next_ms = Instant::now();
// TODO: Replace with reference to CPU clock from CCDR.
next_ms += 400_000.cycles();
loop {
let tick = Instant::now() > next_ms;
if tick {
next_ms += 400_000.cycles();
time += 1;
}
let sleep = c
.resources
.mqtt_interface
.lock(|interface| !interface.network_stack().poll(time));
match c
.resources
.mqtt_interface
.lock(|interface| interface.update().unwrap())
{
miniconf::Action::Continue => {
if sleep {
cortex_m::asm::wfi();
}
}
miniconf::Action::CommitSettings => {
c.spawn.settings_update().unwrap()
}
}
}
}
#[task(priority = 1, resources=[mqtt_interface, afes, iir_ch])]
fn settings_update(c: settings_update::Context) {
let _settings = &c.resources.mqtt_interface.settings;
//c.resources.iir_ch.lock(|iir| *iir = settings.iir);
// TODO: Update AFEs
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority
fn DCMI();
fn JPEG();
fn SDMMC();
}
};