pounder_test/src/bin/dual-iir.rs

211 lines
7.0 KiB
Rust

#![deny(warnings)]
#![no_std]
#![no_main]
use stabilizer::{hardware, net};
use miniconf::Miniconf;
use serde::Deserialize;
use dsp::iir;
use hardware::{
Adc0Input, Adc1Input, AfeGain, Dac0Output, Dac1Output, DigitalInput1,
InputPin, AFE0, AFE1,
};
use net::{Action, MqttInterface};
const SCALE: f32 = i16::MAX as _;
// The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1;
#[derive(Clone, Copy, Debug, Deserialize, Miniconf)]
pub struct Settings {
afe: [AfeGain; 2],
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
allow_hold: bool,
force_hold: bool,
}
impl Default for Settings {
fn default() -> Self {
Self {
// Analog frontend programmable gain amplifier gains (G1, G2, G5, G10)
afe: [AfeGain::G1, AfeGain::G1],
// IIR filter tap gains are an array `[b0, b1, b2, a1, a2]` such that the
// new output is computed as `y0 = a1*y1 + a2*y2 + b0*x0 + b1*x1 + b2*x2`.
// The array is `iir_state[channel-index][cascade-index][coeff-index]`.
// The IIR coefficients can be mapped to other transfer function
// representations, for example as described in https://arxiv.org/abs/1508.06319
iir_ch: [[iir::IIR::new(1., -SCALE, SCALE); IIR_CASCADE_LENGTH]; 2],
// Permit the DI1 digital input to suppress filter output updates.
allow_hold: false,
// Force suppress filter output updates.
force_hold: false,
}
}
}
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
digital_input1: DigitalInput1,
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
mqtt: MqttInterface<Settings>,
#[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])]
iir_state: [[iir::Vec5; IIR_CASCADE_LENGTH]; 2],
settings: Settings,
}
#[init(spawn=[settings_update])]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
let mqtt = MqttInterface::new(
stabilizer.net.stack,
"",
&net::get_device_prefix(
env!("CARGO_BIN_NAME"),
stabilizer.net.mac_address,
),
stabilizer.net.phy,
stabilizer.cycle_counter,
);
// Spawn a settings update for default settings.
c.spawn.settings_update().unwrap();
// Enable ADC/DAC events
stabilizer.adcs.0.start();
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
// Start sampling ADCs.
stabilizer.adc_dac_timer.start();
init::LateResources {
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
mqtt,
digital_input1: stabilizer.digital_inputs.1,
settings: Settings::default(),
}
}
/// Main DSP processing routine for Stabilizer.
///
/// # Note
/// Processing time for the DSP application code is bounded by the following constraints:
///
/// DSP application code starts after the ADC has generated a batch of samples and must be
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
///
/// The DSP application code must also fill out the next DAC output buffer in time such that the
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
/// it's possible that old DAC codes will be generated on the output and the output samples will
/// be delayed by 1 batch.
///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met.
#[task(binds=DMA1_STR4, resources=[adcs, digital_input1, dacs, iir_state, settings], priority=2)]
fn process(c: process::Context) {
let adc_samples = [
c.resources.adcs.0.acquire_buffer(),
c.resources.adcs.1.acquire_buffer(),
];
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
c.resources.dacs.1.acquire_buffer(),
];
let hold = c.resources.settings.force_hold
|| (c.resources.digital_input1.is_high().unwrap()
&& c.resources.settings.allow_hold);
for channel in 0..adc_samples.len() {
for sample in 0..adc_samples[0].len() {
let mut y = f32::from(adc_samples[channel][sample] as i16);
for i in 0..c.resources.iir_state[channel].len() {
y = c.resources.settings.iir_ch[channel][i].update(
&mut c.resources.iir_state[channel][i],
y,
hold,
);
}
// Note(unsafe): The filter limits ensure that the value is in range.
// The truncation introduces 1/2 LSB distortion.
let y = unsafe { y.to_int_unchecked::<i16>() };
// Convert to DAC code
dac_samples[channel][sample] = y as u16 ^ 0x8000;
}
}
}
#[idle(resources=[mqtt], spawn=[settings_update])]
fn idle(mut c: idle::Context) -> ! {
loop {
match c.resources.mqtt.lock(|mqtt| mqtt.update()) {
Some(Action::Sleep) => cortex_m::asm::wfi(),
Some(Action::UpdateSettings) => {
c.spawn.settings_update().unwrap()
}
_ => {}
}
}
}
#[task(priority = 1, resources=[mqtt, afes, settings])]
fn settings_update(mut c: settings_update::Context) {
let settings = c.resources.mqtt.settings();
// Update the IIR channels.
c.resources.settings.lock(|current| *current = *settings);
// Update AFEs
c.resources.afes.0.set_gain(settings.afe[0]);
c.resources.afes.1.set_gain(settings.afe[1]);
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { stm32h7xx_hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC1 input overrun");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority
fn DCMI();
fn JPEG();
fn SDMMC();
}
};