pounder_test/stabilizer/src/pounder/mod.rs

266 lines
9.4 KiB
Rust

use mcp23017;
use ad9959;
pub mod error;
pub mod attenuators;
mod rf_power;
pub mod types;
use super::hal;
use error::Error;
use attenuators::AttenuatorInterface;
use types::{DdsChannel, InputChannel};
use rf_power::PowerMeasurementInterface;
use embedded_hal::{
blocking::spi::Transfer,
adc::OneShot
};
#[allow(dead_code)]
const OSC_EN_N_PIN: u8 = 8 + 7;
const EXT_CLK_SEL_PIN: u8 = 8 + 6;
const ATT_RST_N_PIN: u8 = 8 + 5;
const ATT_LE0_PIN: u8 = 8 + 0;
const ATT_LE1_PIN: u8 = 8 + 1;
const ATT_LE2_PIN: u8 = 8 + 2;
const ATT_LE3_PIN: u8 = 8 + 3;
pub struct QspiInterface {
pub qspi: hal::qspi::Qspi,
mode: ad9959::Mode,
}
impl QspiInterface {
pub fn new(mut qspi: hal::qspi::Qspi) -> Result<Self, Error> {
qspi.configure_mode(hal::qspi::QspiMode::FourBit).map_err(|_| Error::Qspi)?;
Ok(Self { qspi: qspi, mode: ad9959::Mode::SingleBitTwoWire })
}
}
impl ad9959::Interface for QspiInterface {
type Error = Error;
fn configure_mode(&mut self, mode: ad9959::Mode) -> Result<(), Error> {
self.mode = mode;
Ok(())
}
fn write(&mut self, addr: u8, data: &[u8]) -> Result<(), Error> {
if (addr & 0x80) != 0 {
return Err(Error::InvalidAddress);
}
// The QSPI interface implementation always operates in 4-bit mode because the AD9959 uses
// IO3 as SYNC_IO in some output modes. In order for writes to be successful, SYNC_IO must
// be driven low. However, the QSPI peripheral forces IO3 high when operating in 1 or 2 bit
// modes. As a result, any writes while in single- or dual-bit modes has to instead write
// the data encoded into 4-bit QSPI data so that IO3 can be driven low.
match self.mode {
ad9959::Mode::SingleBitTwoWire => {
// Encode the data into a 4-bit QSPI pattern.
// In 4-bit mode, we can send 2 bits of address and data per byte transfer. As
// such, we need at least 4x more bytes than the length of data. To avoid dynamic
// allocation, we assume the maximum transaction length for single-bit-two-wire is
// 2 bytes.
let mut encoded_data: [u8; 12] = [0; 12];
if (data.len() * 4) > (encoded_data.len() - 4) {
return Err(Error::Bounds);
}
// Encode the address into the first 4 bytes.
for address_bit in 0..8 {
let offset: u8 = {
if address_bit % 2 == 0 {
4
} else {
0
}
};
if addr & address_bit != 0 {
encoded_data[(address_bit >> 1) as usize] |= 1 << offset;
}
}
// Encode the data into the remaining bytes.
for byte_index in 0..data.len() {
let byte = data[byte_index];
for address_bit in 0..8 {
let offset: u8 = {
if address_bit % 2 == 0 {
4
} else {
0
}
};
if byte & address_bit != 0 {
encoded_data[(byte_index + 1) * 4 + (address_bit >> 1) as usize] |= 1 << offset;
}
}
}
let (encoded_address, encoded_payload) = {
let end_index = (1 + data.len()) * 4;
(encoded_data[0], &encoded_data[1..end_index])
};
self.qspi.write(encoded_address, &encoded_payload).map_err(|_| Error::Qspi)
},
ad9959::Mode::FourBitSerial => {
self.qspi.write(addr, &data).map_err(|_| Error::Qspi)
},
_ => {
Err(Error::Qspi)
}
}
}
fn read(&mut self, addr: u8, mut dest: &mut [u8]) -> Result<(), Error> {
if (addr & 0x80) != 0 {
return Err(Error::InvalidAddress);
}
// It is not possible to read data from the AD9959 in single bit two wire mode because the
// QSPI interface assumes that data is always received on IO1.
if self.mode == ad9959::Mode::SingleBitTwoWire {
return Err(Error::Qspi);
}
self.qspi.read(0x80_u8 | addr, &mut dest).map_err(|_| Error::Qspi)
}
}
pub struct PounderDevices<DELAY> {
pub ad9959: ad9959::Ad9959<QspiInterface,
DELAY,
hal::gpio::gpiog::PG7<hal::gpio::Output<hal::gpio::PushPull>>>,
mcp23017: mcp23017::MCP23017<hal::i2c::I2c<hal::stm32::I2C1>>,
attenuator_spi: hal::spi::Spi<hal::stm32::SPI1>,
adc1: hal::adc::Adc<hal::stm32::ADC1, hal::adc::Enabled>,
adc2: hal::adc::Adc<hal::stm32::ADC2, hal::adc::Enabled>,
adc1_in_p: hal::gpio::gpiof::PF11<hal::gpio::Analog>,
adc2_in_p: hal::gpio::gpiof::PF14<hal::gpio::Analog>,
}
impl<DELAY> PounderDevices<DELAY>
where
DELAY: embedded_hal::blocking::delay::DelayMs<u8>,
{
pub fn new(mcp23017: mcp23017::MCP23017<hal::i2c::I2c<hal::stm32::I2C1>>,
ad9959: ad9959::Ad9959<QspiInterface,
DELAY,
hal::gpio::gpiog::PG7<
hal::gpio::Output<hal::gpio::PushPull>>>,
attenuator_spi: hal::spi::Spi<hal::stm32::SPI1>,
adc1: hal::adc::Adc<hal::stm32::ADC1, hal::adc::Enabled>,
adc2: hal::adc::Adc<hal::stm32::ADC2, hal::adc::Enabled>,
adc1_in_p: hal::gpio::gpiof::PF11<hal::gpio::Analog>,
adc2_in_p: hal::gpio::gpiof::PF14<hal::gpio::Analog>,
) -> Result<Self, Error> {
let mut devices = Self {
mcp23017,
ad9959,
attenuator_spi,
adc1,
adc2,
adc1_in_p,
adc2_in_p,
};
// Configure power-on-default state for pounder. All LEDs are on, on-board oscillator
// selected, attenuators out of reset.
devices.mcp23017.write_gpio(mcp23017::Port::GPIOA, 0xF).map_err(|_| Error::I2c)?;
devices.mcp23017.write_gpio(mcp23017::Port::GPIOB,
1_u8.wrapping_shl(5)).map_err(|_| Error::I2c)?;
devices.mcp23017.all_pin_mode(mcp23017::PinMode::OUTPUT).map_err(|_| Error::I2c)?;
// Select the on-board clock with a 5x prescaler (500MHz).
devices.select_onboard_clock(5u8)?;
Ok(devices)
}
pub fn select_external_clock(&mut self, frequency: u32, prescaler: u8) -> Result<(), Error>{
self.mcp23017.digital_write(EXT_CLK_SEL_PIN, true).map_err(|_| Error::I2c)?;
self.ad9959.configure_system_clock(frequency, prescaler).map_err(|_| Error::DDS)?;
Ok(())
}
pub fn select_onboard_clock(&mut self, prescaler: u8) -> Result<(), Error> {
self.mcp23017.digital_write(EXT_CLK_SEL_PIN, false).map_err(|_| Error::I2c)?;
self.ad9959.configure_system_clock(100_000_000, prescaler).map_err(|_| Error::DDS)?;
Ok(())
}
}
impl<DELAY> AttenuatorInterface for PounderDevices<DELAY>
{
fn reset(&mut self) -> Result<(), Error> {
self.mcp23017.digital_write(ATT_RST_N_PIN, true).map_err(|_| Error::I2c)?;
// TODO: Measure the I2C transaction speed to the RST pin to ensure that the delay is
// sufficient. Document the delay here.
self.mcp23017.digital_write(ATT_RST_N_PIN, false).map_err(|_| Error::I2c)?;
Ok(())
}
fn latch(&mut self, channel: DdsChannel) -> Result<(), Error> {
let pin = match channel {
DdsChannel::Zero => ATT_LE1_PIN,
DdsChannel::One => ATT_LE0_PIN,
DdsChannel::Two => ATT_LE3_PIN,
DdsChannel::Three => ATT_LE2_PIN,
};
self.mcp23017.digital_write(pin, true).map_err(|_| Error::I2c)?;
// TODO: Measure the I2C transaction speed to the RST pin to ensure that the delay is
// sufficient. Document the delay here.
self.mcp23017.digital_write(pin, false).map_err(|_| Error::I2c)?;
Ok(())
}
fn read_all(&mut self, channels: &mut [u8; 4]) -> Result<(), Error> {
self.attenuator_spi.transfer(channels).map_err(|_| Error::Spi)?;
Ok(())
}
fn write_all(&mut self, channels: &[u8; 4]) -> Result<(), Error> {
let mut result = [0_u8; 4];
result.clone_from_slice(channels);
self.attenuator_spi.transfer(&mut result).map_err(|_| Error::Spi)?;
Ok(())
}
}
impl<DELAY> PowerMeasurementInterface for PounderDevices<DELAY> {
fn sample_converter(&mut self, channel: InputChannel) -> Result<f32, Error> {
let adc_scale = match channel {
InputChannel::Zero => {
let adc_reading: u32 = self.adc1.read(&mut self.adc1_in_p).map_err(|_| Error::Adc)?;
adc_reading as f32 / self.adc1.max_sample() as f32
},
InputChannel::One => {
let adc_reading: u32 = self.adc2.read(&mut self.adc2_in_p).map_err(|_| Error::Adc)?;
adc_reading as f32 / self.adc2.max_sample() as f32
},
};
// Convert analog percentage to voltage.
Ok(adc_scale * 3.3)
}
}