pounder_test/src/main.rs

832 lines
27 KiB
Rust

#![no_std]
#![no_main]
#![feature(asm)]
// Enable returning `!`
#![feature(never_type)]
#[cfg(not(feature = "semihosting"))]
extern crate panic_abort;
#[cfg(feature = "semihosting")]
extern crate panic_semihosting;
#[macro_use]
extern crate log;
use core::ptr;
use core::cell::RefCell;
use core::sync::atomic::{AtomicU32, AtomicBool, Ordering};
use core::fmt::Write;
use cortex_m_rt::{entry, exception};
use stm32h7::stm32h7x3::{self as stm32, Peripherals, CorePeripherals, interrupt};
use cortex_m::interrupt::Mutex;
use heapless::{String, Vec, consts::*};
use smoltcp as net;
use serde::{Serialize, Deserialize};
use serde_json_core::{ser::to_string, de::from_slice};
mod eth;
mod iir;
use iir::*;
#[cfg(not(feature = "semihosting"))]
fn init_log() {}
#[cfg(feature = "semihosting")]
fn init_log() {
use log::LevelFilter;
use cortex_m_log::log::{Logger, init};
use cortex_m_log::printer::semihosting::{InterruptOk, hio::HStdout};
static mut LOGGER: Option<Logger<InterruptOk<HStdout>>> = None;
let logger = Logger {
inner: InterruptOk::<_>::stdout().unwrap(),
level: LevelFilter::Info,
};
let logger = unsafe {
LOGGER.get_or_insert(logger)
};
init(logger).unwrap();
}
// Pull in build information (from `built` crate)
mod build_info {
#![allow(dead_code)]
// include!(concat!(env!("OUT_DIR"), "/built.rs"));
}
fn pwr_setup(pwr: &stm32::PWR) {
// go to VOS1 voltage scale for high perf
pwr.cr3.write(|w|
w.sden().set_bit()
.ldoen().set_bit()
.bypass().clear_bit()
);
while pwr.csr1.read().actvosrdy().bit_is_clear() {}
pwr.d3cr.write(|w| unsafe { w.vos().bits(0b11) }); // vos1
while pwr.d3cr.read().vosrdy().bit_is_clear() {}
}
fn rcc_reset(rcc: &stm32::RCC) {
// Reset all peripherals
rcc.ahb1rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
rcc.ahb1rstr.write(|w| unsafe { w.bits(0)});
rcc.apb1lrstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
rcc.apb1lrstr.write(|w| unsafe { w.bits(0)});
rcc.apb1hrstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
rcc.apb1hrstr.write(|w| unsafe { w.bits(0)});
rcc.ahb2rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
rcc.ahb2rstr.write(|w| unsafe { w.bits(0)});
rcc.apb2rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
rcc.apb2rstr.write(|w| unsafe { w.bits(0)});
// do not reset the cpu
rcc.ahb3rstr.write(|w| unsafe { w.bits(0x7FFF_FFFF) });
rcc.ahb3rstr.write(|w| unsafe { w.bits(0)});
rcc.apb3rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
rcc.apb3rstr.write(|w| unsafe { w.bits(0)});
rcc.ahb4rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
rcc.ahb4rstr.write(|w| unsafe { w.bits(0)});
rcc.apb4rstr.write(|w| unsafe { w.bits(0xFFFF_FFFF) });
rcc.apb4rstr.write(|w| unsafe { w.bits(0)});
}
fn rcc_pll_setup(rcc: &stm32::RCC, flash: &stm32::FLASH) {
// Ensure HSI is on and stable
rcc.cr.modify(|_, w| w.hsion().set_bit());
while rcc.cr.read().hsirdy().bit_is_clear() {}
// Set system clock to HSI
rcc.cfgr.modify(|_, w| unsafe { w.sw().bits(0) }); // hsi
while rcc.cfgr.read().sws().bits() != 0 {}
// Clear registers to reset value
rcc.cr.write(|w| w.hsion().set_bit());
rcc.cfgr.reset();
// Ensure HSE is on and stable
rcc.cr.modify(|_, w|
w.hseon().set_bit()
.hsebyp().clear_bit());
while rcc.cr.read().hserdy().bit_is_clear() {}
rcc.pllckselr.modify(|_, w| unsafe {
w.pllsrc().bits(0b10) // hse
.divm1().bits(1) // ref prescaler
.divm2().bits(1) // ref prescaler
});
// Configure PLL1: 8MHz /1 *100 /2 = 400 MHz
rcc.pllcfgr.modify(|_, w| unsafe {
w.pll1vcosel().clear_bit() // 192-836 MHz VCO
.pll1rge().bits(0b11) // 8-16 MHz PFD
.pll1fracen().clear_bit()
.divp1en().set_bit()
.pll2vcosel().set_bit() // 150-420 MHz VCO
.pll2rge().bits(0b11) // 8-16 MHz PFD
.pll2fracen().clear_bit()
.divp2en().set_bit()
.divq2en().set_bit()
});
rcc.pll1divr.write(|w| unsafe {
w.divn1().bits(100 - 1) // feebdack divider
.divp1().bits(2 - 1) // p output divider
});
rcc.cr.modify(|_, w| w.pll1on().set_bit());
while rcc.cr.read().pll1rdy().bit_is_clear() {}
// Configure PLL2: 8MHz /1 *25 / 2 = 100 MHz
rcc.pll2divr.write(|w| unsafe {
w.divn1().bits(25 - 1) // feebdack divider
.divp1().bits(2 - 1) // p output divider
.divq1().bits(2 - 1) // q output divider
});
rcc.cr.modify(|_, w| w.pll2on().set_bit());
while rcc.cr.read().pll2rdy().bit_is_clear() {}
// hclk 200 MHz, pclk 100 MHz
let dapb = 0b100;
rcc.d1cfgr.write(|w| unsafe {
w.d1cpre().bits(0) // sys_ck not divided
.hpre().bits(0b1000) // rcc_hclk3 = sys_d1cpre_ck / 2
.d1ppre().bits(dapb) // rcc_pclk3 = rcc_hclk3 / 2
});
rcc.d2cfgr.write(|w| unsafe {
w.d2ppre1().bits(dapb) // rcc_pclk1 = rcc_hclk3 / 2
.d2ppre2().bits(dapb) // rcc_pclk2 = rcc_hclk3 / 2
});
rcc.d3cfgr.write(|w| unsafe {
w.d3ppre().bits(dapb) // rcc_pclk4 = rcc_hclk3 / 2
});
// 2 wait states, 0b10 programming delay
// 185-210 MHz
flash.acr.write(|w| unsafe {
w.wrhighfreq().bits(2)
.latency().bits(2)
});
while flash.acr.read().latency().bits() != 2 {}
// CSI for I/O compensationc ell
rcc.cr.modify(|_, w| w.csion().set_bit());
while rcc.cr.read().csirdy().bit_is_clear() {}
// Set system clock to pll1_p
rcc.cfgr.modify(|_, w| unsafe { w.sw().bits(0b011) }); // pll1p
while rcc.cfgr.read().sws().bits() != 0b011 {}
rcc.d1ccipr.write(|w| unsafe {
w.ckpersrc().bits(1) // hse_ck
});
rcc.d2ccip1r.modify(|_, w| unsafe {
w.spi123src().bits(1) // pll2_p
.spi45src().bits(1) // pll2_q
});
rcc.d3ccipr.modify(|_, w| unsafe {
w.spi6src().bits(1) // pll2_q
});
}
fn io_compensation_setup(syscfg: &stm32::SYSCFG) {
syscfg.cccsr.modify(|_, w|
w.en().set_bit()
.cs().clear_bit()
.hslv().clear_bit()
);
while syscfg.cccsr.read().ready().bit_is_clear() {}
}
fn gpio_setup(gpioa: &stm32::GPIOA, gpiob: &stm32::GPIOB, gpiod: &stm32::GPIOD,
gpioe: &stm32::GPIOE, gpiof: &stm32::GPIOF, gpiog: &stm32::GPIOG) {
// FP_LED0
gpiod.otyper.modify(|_, w| w.ot5().push_pull());
gpiod.moder.modify(|_, w| w.moder5().output());
gpiod.odr.modify(|_, w| w.odr5().clear_bit());
// FP_LED1
gpiod.otyper.modify(|_, w| w.ot6().push_pull());
gpiod.moder.modify(|_, w| w.moder6().output());
gpiod.odr.modify(|_, w| w.odr6().clear_bit());
// LED_FP2
gpiog.otyper.modify(|_, w| w.ot4().push_pull());
gpiog.moder.modify(|_, w| w.moder4().output());
gpiog.odr.modify(|_, w| w.odr4().clear_bit());
// LED_FP3
gpiod.otyper.modify(|_, w| w.ot12().push_pull());
gpiod.moder.modify(|_, w| w.moder12().output());
gpiod.odr.modify(|_, w| w.odr12().clear_bit());
// AFE0_A0,1: PG2,PG3
gpiog.otyper.modify(|_, w|
w.ot2().push_pull()
.ot3().push_pull()
);
gpiog.moder.modify(|_, w|
w.moder2().output()
.moder3().output()
);
gpiog.odr.modify(|_, w|
w.odr2().clear_bit()
.odr3().clear_bit()
);
// ADC0
// SCK: PG11
gpiog.moder.modify(|_, w| w.moder11().alternate());
gpiog.otyper.modify(|_, w| w.ot11().push_pull());
gpiog.ospeedr.modify(|_, w| w.ospeedr11().very_high_speed());
gpiog.afrh.modify(|_, w| w.afr11().af5());
// MOSI: PD7
// MISO: PA6
gpioa.moder.modify(|_, w| w.moder6().alternate());
gpioa.afrl.modify(|_, w| w.afr6().af5());
// NSS: PG10
gpiog.moder.modify(|_, w| w.moder10().alternate());
gpiog.otyper.modify(|_, w| w.ot10().push_pull());
gpiog.ospeedr.modify(|_, w| w.ospeedr10().very_high_speed());
gpiog.afrh.modify(|_, w| w.afr10().af5());
// DAC0
// SCK: PB10
gpiob.moder.modify(|_, w| w.moder10().alternate());
gpiob.otyper.modify(|_, w| w.ot10().push_pull());
gpiob.ospeedr.modify(|_, w| w.ospeedr10().very_high_speed());
gpiob.afrh.modify(|_, w| w.afr10().af5());
// MOSI: PB15
gpiob.moder.modify(|_, w| w.moder15().alternate());
gpiob.otyper.modify(|_, w| w.ot15().push_pull());
gpiob.ospeedr.modify(|_, w| w.ospeedr15().very_high_speed());
gpiob.afrh.modify(|_, w| w.afr15().af5());
// MISO: PB14
// NSS: PB9
gpiob.moder.modify(|_, w| w.moder9().alternate());
gpiob.otyper.modify(|_, w| w.ot9().push_pull());
gpiob.ospeedr.modify(|_, w| w.ospeedr9().very_high_speed());
gpiob.afrh.modify(|_, w| w.afr9().af5());
// DAC0_LDAC: PE11
gpioe.moder.modify(|_, w| w.moder11().output());
gpioe.otyper.modify(|_, w| w.ot11().push_pull());
gpioe.odr.modify(|_, w| w.odr11().clear_bit());
// DAC_CLR: PE12
gpioe.moder.modify(|_, w| w.moder12().output());
gpioe.otyper.modify(|_, w| w.ot12().push_pull());
gpioe.odr.modify(|_, w| w.odr12().set_bit());
// AFE1_A0,1: PD14,PD15
gpiod.otyper.modify(|_, w|
w.ot14().push_pull()
.ot15().push_pull()
);
gpiod.moder.modify(|_, w|
w.moder14().output()
.moder15().output()
);
gpiod.odr.modify(|_, w|
w.odr14().clear_bit()
.odr15().clear_bit()
);
// ADC1
// SCK: PF6
gpiof.moder.modify(|_, w| w.moder7().alternate());
gpiof.otyper.modify(|_, w| w.ot7().push_pull());
gpiof.ospeedr.modify(|_, w| w.ospeedr7().very_high_speed());
gpiof.afrl.modify(|_, w| w.afr7().af5());
// MOSI: PF9
// MISO: PF7
gpiof.moder.modify(|_, w| w.moder8().alternate());
gpiof.afrh.modify(|_, w| w.afr8().af5());
// NSS: PF8
gpiof.moder.modify(|_, w| w.moder6().alternate());
gpiof.otyper.modify(|_, w| w.ot6().push_pull());
gpiof.ospeedr.modify(|_, w| w.ospeedr6().very_high_speed());
gpiof.afrl.modify(|_, w| w.afr6().af5());
// DAC1
// SCK: PE2
gpioe.moder.modify(|_, w| w.moder2().alternate());
gpioe.otyper.modify(|_, w| w.ot2().push_pull());
gpioe.ospeedr.modify(|_, w| w.ospeedr2().very_high_speed());
gpioe.afrl.modify(|_, w| w.afr2().af5());
// MOSI: PE6
gpioe.moder.modify(|_, w| w.moder6().alternate());
gpioe.otyper.modify(|_, w| w.ot6().push_pull());
gpioe.ospeedr.modify(|_, w| w.ospeedr6().very_high_speed());
gpioe.afrl.modify(|_, w| w.afr6().af5());
// MISO: PE5
// NSS: PE4
gpioe.moder.modify(|_, w| w.moder4().alternate());
gpioe.otyper.modify(|_, w| w.ot4().push_pull());
gpioe.ospeedr.modify(|_, w| w.ospeedr4().very_high_speed());
gpioe.afrl.modify(|_, w| w.afr4().af5());
// DAC1_LDAC: PE15
gpioe.moder.modify(|_, w| w.moder15().output());
gpioe.otyper.modify(|_, w| w.ot15().push_pull());
gpioe.odr.modify(|_, w| w.odr15().clear_bit());
}
// ADC0
fn spi1_setup(spi1: &stm32::SPI1) {
spi1.cfg1.modify(|_, w| {
w.mbr().bits(1) // clk/4
.dsize().bits(16 - 1)
.fthvl().one_frame()
});
spi1.cfg2.modify(|_, w| unsafe {
w.afcntr().set_bit()
.ssom().set_bit() // ss deassert between frames during midi
.ssoe().set_bit() // ss output enable
.ssiop().clear_bit() // ss active low
.ssm().clear_bit() // PAD counts
.cpol().set_bit()
.cpha().set_bit()
.lsbfrst().clear_bit()
.master().set_bit()
.sp().bits(0) // motorola
.comm().bits(0b10) // simplex receiver
.ioswp().clear_bit()
.midi().bits(0) // master inter data idle
.mssi().bits(6) // master SS idle
});
spi1.cr2.modify(|_, w| {
w.tsize().bits(1)
});
spi1.cr1.write(|w| w.spe().set_bit());
}
// ADC1
fn spi5_setup(spi5: &stm32::SPI5) {
spi5.cfg1.modify(|_, w| {
w.mbr().bits(1) // clk/4
.dsize().bits(16 - 1)
.fthvl().one_frame()
});
spi5.cfg2.modify(|_, w| unsafe {
w.afcntr().set_bit()
.ssom().set_bit() // ss deassert between frames during midi
.ssoe().set_bit() // ss output enable
.ssiop().clear_bit() // ss active low
.ssm().clear_bit() // PAD counts
.cpol().set_bit()
.cpha().set_bit()
.lsbfrst().clear_bit()
.master().set_bit()
.sp().bits(0) // motorola
.comm().bits(0b10) // simplex receiver
.ioswp().clear_bit()
.midi().bits(0) // master inter data idle
.mssi().bits(6) // master SS idle
});
spi5.cr2.modify(|_, w| {
w.tsize().bits(1)
});
spi5.cr1.write(|w| w.spe().set_bit());
}
// DAC0
fn spi2_setup(spi2: &stm32::SPI2) {
spi2.cfg1.modify(|_, w| {
w.mbr().bits(0) // clk/2
.dsize().bits(16 - 1)
.fthvl().one_frame()
});
spi2.cfg2.modify(|_, w| unsafe {
w.afcntr().set_bit()
.ssom().set_bit() // ss deassert between frames during midi
.ssoe().set_bit() // ss output enable
.ssiop().clear_bit() // ss active low
.ssm().clear_bit() // PAD counts
.cpol().clear_bit()
.cpha().clear_bit()
.lsbfrst().clear_bit()
.master().set_bit()
.sp().bits(0) // motorola
.comm().bits(0b01) // simplex transmitter
.ioswp().clear_bit()
.midi().bits(0) // master inter data idle
.mssi().bits(0) // master SS idle
});
spi2.cr2.modify(|_, w| w.tsize().bits(0));
spi2.cr1.write(|w| w.spe().enabled());
spi2.cr1.modify(|_, w| w.cstart().started());
}
// DAC1
fn spi4_setup(spi4: &stm32::SPI4) {
spi4.cfg1.modify(|_, w| {
w.mbr().bits(0) // clk/2
.dsize().bits(16 - 1)
.fthvl().one_frame()
});
spi4.cfg2.modify(|_, w| unsafe {
w.afcntr().set_bit()
.ssom().set_bit() // ss deassert between frames during midi
.ssoe().set_bit() // ss output enable
.ssiop().clear_bit() // ss active low
.ssm().clear_bit() // PAD counts
.cpol().clear_bit()
.cpha().clear_bit()
.lsbfrst().clear_bit()
.master().set_bit()
.sp().bits(0) // motorola
.comm().bits(0b01) // simplex transmitter
.ioswp().clear_bit()
.midi().bits(0) // master inter data idle
.mssi().bits(0) // master SS idle
});
spi4.cr2.modify(|_, w| {
w.tsize().bits(0)
});
spi4.cr1.write(|w| w.spe().enabled());
spi4.cr1.modify(|_, w| w.cstart().started());
}
fn tim2_setup(tim2: &stm32::TIM2) {
tim2.psc.write(|w| unsafe { w.psc().bits(200 - 1) }); // from 200 MHz
tim2.arr.write(|w| unsafe { w.bits(2 - 1) }); // µs
tim2.dier.write(|w| w.ude().set_bit());
tim2.egr.write(|w| w.ug().set_bit());
tim2.cr1.modify(|_, w|
w.dir().clear_bit() // up
.cen().set_bit()); // enable
}
fn dma1_setup(dma1: &stm32::DMA1, dmamux1: &stm32::DMAMUX1, ma: usize, pa0: usize, pa1: usize) {
dma1.s0cr.modify(|_, w| w.en().clear_bit());
while dma1.s0cr.read().en().bit_is_set() {}
dma1.s0par.write(|w| unsafe { w.pa().bits(pa0 as u32) });
dma1.s0m0ar.write(|w| unsafe { w.m0a().bits(ma as u32) });
dma1.s0ndtr.write(|w| unsafe { w.ndt().bits(1) });
dmamux1.ccr[0].modify(|_, w| unsafe { w.dmareq_id().bits(22) }); // tim2_up
dma1.s0cr.modify(|_, w| unsafe {
w.pl().bits(0b01) // medium
.circ().set_bit() // reload ndtr
.msize().bits(0b10) // 32
.minc().clear_bit()
.mburst().bits(0b00)
.psize().bits(0b10) // 32
.pinc().clear_bit()
.pburst().bits(0b00)
.dbm().clear_bit()
.dir().bits(0b01) // memory_to_peripheral
.pfctrl().clear_bit() // dma is FC
});
dma1.s0fcr.modify(|_, w| w.dmdis().clear_bit());
dma1.s0cr.modify(|_, w| w.en().set_bit());
dma1.s1cr.modify(|_, w| w.en().clear_bit());
while dma1.s1cr.read().en().bit_is_set() {}
dma1.s1par.write(|w| unsafe { w.pa().bits(pa1 as u32) });
dma1.s1m0ar.write(|w| unsafe { w.m0a().bits(ma as u32) });
dma1.s1ndtr.write(|w| unsafe { w.ndt().bits(1) });
dmamux1.ccr[1].modify(|_, w| unsafe { w.dmareq_id().bits(22) }); // tim2_up
dma1.s1cr.modify(|_, w| unsafe {
w.pl().bits(0b01) // medium
.circ().set_bit() // reload ndtr
.msize().bits(0b10) // 32
.minc().clear_bit()
.mburst().bits(0b00)
.psize().bits(0b10) // 32
.pinc().clear_bit()
.pburst().bits(0b00)
.dbm().clear_bit()
.dir().bits(0b01) // memory_to_peripheral
.pfctrl().clear_bit() // dma is FC
});
dma1.s1fcr.modify(|_, w| w.dmdis().clear_bit());
dma1.s1cr.modify(|_, w| w.en().set_bit());
}
type SpiPs = Option<(stm32::SPI1, stm32::SPI2, stm32::SPI4, stm32::SPI5)>;
static SPIP: Mutex<RefCell<SpiPs>> = Mutex::new(RefCell::new(None));
#[link_section = ".sram1.datspi"]
static mut DAT: u32 = 0x201; // EN | CSTART
static TIME: AtomicU32 = AtomicU32::new(0);
static ETHERNET_PENDING: AtomicBool = AtomicBool::new(true);
#[link_section = ".sram3.eth"]
static mut ETHERNET: eth::Device = eth::Device::new();
const TCP_RX_BUFFER_SIZE: usize = 8192;
const TCP_TX_BUFFER_SIZE: usize = 8192;
macro_rules! create_socket {
($set:ident, $rx_storage:ident, $tx_storage:ident, $target:ident) => (
let mut $rx_storage = [0; TCP_RX_BUFFER_SIZE];
let mut $tx_storage = [0; TCP_TX_BUFFER_SIZE];
let tcp_rx_buffer = net::socket::TcpSocketBuffer::new(&mut $rx_storage[..]);
let tcp_tx_buffer = net::socket::TcpSocketBuffer::new(&mut $tx_storage[..]);
let tcp_socket = net::socket::TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer);
let $target = $set.add(tcp_socket);
)
}
#[entry]
fn main() -> ! {
let mut cp = CorePeripherals::take().unwrap();
let dp = Peripherals::take().unwrap();
let rcc = dp.RCC;
rcc_reset(&rcc);
init_log();
// info!("Version {} {}", build_info::PKG_VERSION, build_info::GIT_VERSION.unwrap());
// info!("Built on {}", build_info::BUILT_TIME_UTC);
// info!("{} {}", build_info::RUSTC_VERSION, build_info::TARGET);
pwr_setup(&dp.PWR);
rcc_pll_setup(&rcc, &dp.FLASH);
rcc.apb4enr.modify(|_, w| w.syscfgen().set_bit());
io_compensation_setup(&dp.SYSCFG);
// 100 MHz
cp.SYST.set_clock_source(cortex_m::peripheral::syst::SystClkSource::Core);
cp.SYST.set_reload(cortex_m::peripheral::SYST::get_ticks_per_10ms()*200/10);
cp.SYST.enable_counter();
cp.SYST.enable_interrupt();
unsafe { cp.SCB.shpr[11].write(128); } // systick exception priority
cp.SCB.enable_icache();
// TODO: ETH DMA coherence issues
// cp.SCB.enable_dcache(&mut cp.CPUID);
cp.DWT.enable_cycle_counter();
rcc.ahb4enr.modify(|_, w|
w.gpioaen().set_bit()
.gpioben().set_bit()
.gpiocen().set_bit()
.gpioden().set_bit()
.gpioeen().set_bit()
.gpiofen().set_bit()
.gpiogen().set_bit()
);
gpio_setup(&dp.GPIOA, &dp.GPIOB, &dp.GPIOD, &dp.GPIOE, &dp.GPIOF, &dp.GPIOG);
rcc.apb1lenr.modify(|_, w| w.spi2en().set_bit());
let spi2 = dp.SPI2;
spi2_setup(&spi2);
rcc.apb2enr.modify(|_, w| w.spi4en().set_bit());
let spi4 = dp.SPI4;
spi4_setup(&spi4);
rcc.apb2enr.modify(|_, w| w.spi1en().set_bit());
let spi1 = dp.SPI1;
spi1_setup(&spi1);
spi1.ier.write(|w| w.eotie().set_bit());
rcc.apb2enr.modify(|_, w| w.spi5en().set_bit());
let spi5 = dp.SPI5;
spi5_setup(&spi5);
// spi5.ier.write(|w| w.eotie().set_bit());
rcc.ahb2enr.modify(|_, w|
w
.sram1en().set_bit()
.sram2en().set_bit()
.sram3en().set_bit()
);
rcc.ahb1enr.modify(|_, w| w.dma1en().set_bit());
// init SRAM1 rodata can't load with sram1 disabled
unsafe { DAT = 0x201 }; // EN | CSTART
cortex_m::asm::dsb();
let dat_addr = unsafe { &DAT as *const _ } as usize;
cp.SCB.clean_dcache_by_address(dat_addr, 4);
dma1_setup(&dp.DMA1, &dp.DMAMUX1, dat_addr,
&spi1.cr1 as *const _ as usize,
&spi5.cr1 as *const _ as usize);
rcc.apb1lenr.modify(|_, w| w.tim2en().set_bit());
// work around the SPI stall erratum
//let dbgmcu = dp.DBGMCU;
//dbgmcu.apb1lfz1.modify(|_, w| w.stop_tim2().set_bit()); // stop tim2 in debug
unsafe { ptr::write_volatile(0x5c00_103c as *mut usize, 0x0000_0001) };
eth::setup(&rcc, &dp.SYSCFG);
eth::setup_pins(&dp.GPIOA, &dp.GPIOB, &dp.GPIOC, &dp.GPIOG);
let device = unsafe { &mut ETHERNET };
let hardware_addr = net::wire::EthernetAddress([0x10, 0xE2, 0xD5, 0x00, 0x03, 0x00]);
unsafe { device.init(hardware_addr) };
let mut neighbor_cache_storage = [None; 8];
let neighbor_cache = net::iface::NeighborCache::new(&mut neighbor_cache_storage[..]);
let local_addr = net::wire::IpAddress::v4(10, 0, 16, 99);
let mut ip_addrs = [net::wire::IpCidr::new(local_addr, 24)];
let mut iface = net::iface::EthernetInterfaceBuilder::new(device)
.ethernet_addr(hardware_addr)
.neighbor_cache(neighbor_cache)
.ip_addrs(&mut ip_addrs[..])
.finalize();
let mut socket_set_entries: [_; 8] = Default::default();
let mut sockets = net::socket::SocketSet::new(&mut socket_set_entries[..]);
create_socket!(sockets, tcp_rx_storage0, tcp_tx_storage0, tcp_handle0);
create_socket!(sockets, tcp_rx_storage0, tcp_tx_storage0, tcp_handle1);
unsafe { eth::enable_interrupt(); }
unsafe { cp.NVIC.set_priority(stm32::Interrupt::ETH, 196); } // mid prio
cp.NVIC.enable(stm32::Interrupt::ETH);
tim2_setup(&dp.TIM2);
unsafe { cp.NVIC.set_priority(stm32::Interrupt::SPI1, 0); } // highest prio
cortex_m::interrupt::free(|cs| {
cp.NVIC.enable(stm32::Interrupt::SPI1);
SPIP.borrow(cs).replace(Some((spi1, spi2, spi4, spi5)));
});
let mut last = 0;
loop {
// if ETHERNET_PENDING.swap(false, Ordering::Relaxed) { }
let time = TIME.load(Ordering::Relaxed);
{
let socket = &mut *sockets.get::<net::socket::TcpSocket>(tcp_handle0);
if !(socket.is_open() || socket.is_listening()) {
socket.listen(1234).unwrap_or_else(|e| warn!("TCP listen error: {:?}", e));
} else if last != time && socket.can_send() {
last = time;
let s = unsafe { Status{
t: time,
x0: IIR_STATE[0][0],
y0: IIR_STATE[0][2],
x1: IIR_STATE[1][0],
y1: IIR_STATE[1][2],
}};
send_response(socket, &s);
}
}
{
let socket = &mut *sockets.get::<net::socket::TcpSocket>(tcp_handle1);
if !(socket.is_open() || socket.is_listening()) {
socket.listen(1235).unwrap_or_else(|e| warn!("TCP listen error: {:?}", e));
} else {
handle_command(socket);
}
}
if !match iface.poll(&mut sockets, net::time::Instant::from_millis(time as i64)) {
Ok(changed) => changed,
Err(net::Error::Unrecognized) => true,
Err(e) => { info!("iface poll error: {:?}", e); true }
} {
cortex_m::asm::wfi();
}
}
}
#[derive(Deserialize,Serialize)]
struct Request {
channel: u8,
iir: IIR,
}
#[derive(Serialize)]
struct Response<'a> {
code: i32,
message: &'a str,
}
fn send_response<T: Serialize>(socket: &mut net::socket::TcpSocket, msg: &T) {
let mut u: String<U128> = to_string(msg).unwrap();
u.push('\n').unwrap();
socket.write_str(&u).unwrap();
}
fn handle_command(socket: &mut net::socket::TcpSocket) {
let mut data: Vec<u8, U256> = Vec::new();
let mut discard: bool = false;
while socket.can_recv() {
if socket.recv(|buf| {
let (len, found) = match buf.iter().position(|&c| c as char == '\n') {
Some(end) => (end + 1, true),
None => (buf.len(), false),
};
if data.len() + len >= data.capacity() {
discard = true;
data.clear();
} else if !discard && len > 0 {
data.extend_from_slice(&buf[..len - 1]).unwrap();
}
(len, found)
}).unwrap() {
let resp = if discard {
discard = false;
Response{ code: 500, message: "command buffer overflow" }
} else {
match from_slice::<Request>(&data) {
Ok(request) => {
if request.channel > 1 {
Response{ code: 500, message: "invalid channel" }
} else {
cortex_m::interrupt::free(|_| {
unsafe { IIR_CH[request.channel as usize] = request.iir; };
});
Response{ code: 200, message: "ok" }
}
},
Err(err) => {
warn!("parse error {}", err);
Response{ code: 550, message: "parse error" }
},
}
};
send_response(socket, &resp);
socket.close();
}
}
}
#[derive(Serialize)]
struct Status {
t: u32,
x0: f32,
y0: f32,
x1: f32,
y1: f32
}
const SCALE: f32 = ((1 << 15) - 1) as f32;
static mut IIR_STATE: [IIRState; 2] = [[0.; 5]; 2];
static mut IIR_CH: [IIR; 2] = [
IIR{ ba: [0., 0., 0., 0., 0.], y_offset: 0.,
y_min: -SCALE, y_max: SCALE }; 2];
// seems to slow it down
// #[link_section = ".data.spi1"]
#[interrupt]
fn SPI1() {
#[cfg(feature = "bkpt")]
cortex_m::asm::bkpt();
cortex_m::interrupt::free(|cs| {
let spip = SPIP.borrow(cs).borrow();
let (spi1, spi2, spi4, spi5) = spip.as_ref().unwrap();
let sr = spi1.sr.read();
if sr.eot().bit_is_set() {
spi1.ifcr.write(|w| w.eotc().set_bit());
}
if sr.rxp().bit_is_set() {
let rxdr = &spi1.rxdr as *const _ as *const u16;
let a = unsafe { ptr::read_volatile(rxdr) };
let x0 = f32::from(a as i16);
let y0 = unsafe { IIR_CH[0].update(&mut IIR_STATE[0], x0) };
let d = y0 as i16 as u16 ^ 0x8000;
let txdr = &spi2.txdr as *const _ as *mut u16;
unsafe { ptr::write_volatile(txdr, d) };
}
let sr = spi5.sr.read();
if sr.eot().bit_is_set() {
spi5.ifcr.write(|w| w.eotc().set_bit());
}
if sr.rxp().bit_is_set() {
let rxdr = &spi5.rxdr as *const _ as *const u16;
let a = unsafe { ptr::read_volatile(rxdr) };
let x0 = f32::from(a as i16);
let y0 = unsafe { IIR_CH[1].update(&mut IIR_STATE[1], x0) };
let d = y0 as i16 as u16 ^ 0x8000;
let txdr = &spi4.txdr as *const _ as *mut u16;
unsafe { ptr::write_volatile(txdr, d) };
}
});
#[cfg(feature = "bkpt")]
cortex_m::asm::bkpt();
}
#[interrupt]
fn ETH() {
ETHERNET_PENDING.store(true, Ordering::Relaxed);
unsafe { eth::interrupt_handler() }
}
#[exception]
fn SysTick() {
TIME.fetch_add(1, Ordering::Relaxed);
}
#[exception]
fn HardFault(ef: &cortex_m_rt::ExceptionFrame) -> ! {
panic!("HardFault at {:#?}", ef);
}
#[exception]
fn DefaultHandler(irqn: i16) {
panic!("Unhandled exception (IRQn = {})", irqn);
}