lockin bins: remove stale todos, align and document [nfc]
This commit is contained in:
parent
6c6c2e64a7
commit
e86f449dc0
|
@ -2,12 +2,12 @@
|
||||||
#![no_std]
|
#![no_std]
|
||||||
#![no_main]
|
#![no_main]
|
||||||
|
|
||||||
use generic_array::typenum::U4;
|
|
||||||
use stabilizer::{hardware, hardware::design_parameters};
|
|
||||||
use dsp::{Accu, Complex, ComplexExt, Lockin, RPLL};
|
use dsp::{Accu, Complex, ComplexExt, Lockin, RPLL};
|
||||||
|
use generic_array::typenum::U4;
|
||||||
use hardware::{
|
use hardware::{
|
||||||
Adc0Input, Adc1Input, Dac0Output, Dac1Output, InputStamper, AFE0, AFE1,
|
Adc0Input, Adc1Input, Dac0Output, Dac1Output, InputStamper, AFE0, AFE1,
|
||||||
};
|
};
|
||||||
|
use stabilizer::{hardware, hardware::design_parameters};
|
||||||
|
|
||||||
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
|
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
|
||||||
const APP: () = {
|
const APP: () = {
|
||||||
|
@ -86,22 +86,20 @@ const APP: () = {
|
||||||
.map(|t| t as i32);
|
.map(|t| t as i32);
|
||||||
let (pll_phase, pll_frequency) = c.resources.pll.update(
|
let (pll_phase, pll_frequency) = c.resources.pll.update(
|
||||||
timestamp,
|
timestamp,
|
||||||
21, // frequency settling time (log2 counter cycles), TODO: expose
|
21, // frequency settling time (log2 counter cycles),
|
||||||
21, // phase settling time, TODO: expose
|
21, // phase settling time
|
||||||
);
|
);
|
||||||
|
|
||||||
// Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate)
|
// Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate)
|
||||||
let harmonic: i32 = -1; // TODO: expose
|
let harmonic: i32 = -1;
|
||||||
|
|
||||||
// Demodulation LO phase offset
|
// Demodulation LO phase offset
|
||||||
let phase_offset: i32 = 0; // TODO: expose
|
let phase_offset: i32 = 0;
|
||||||
|
|
||||||
// Log2 lowpass time constant
|
// Log2 lowpass time constant
|
||||||
let time_constant: u8 = 6; // TODO: expose
|
let time_constant: u8 = 6;
|
||||||
|
|
||||||
let sample_frequency = ((pll_frequency
|
let sample_frequency = ((pll_frequency
|
||||||
// half-up rounding bias
|
|
||||||
// .wrapping_add(1 << design_parameters::SAMPLE_BUFFER_SIZE_LOG2 - 1)
|
|
||||||
>> design_parameters::SAMPLE_BUFFER_SIZE_LOG2)
|
>> design_parameters::SAMPLE_BUFFER_SIZE_LOG2)
|
||||||
as i32)
|
as i32)
|
||||||
.wrapping_mul(harmonic);
|
.wrapping_mul(harmonic);
|
||||||
|
@ -129,7 +127,7 @@ const APP: () = {
|
||||||
Quadrature,
|
Quadrature,
|
||||||
}
|
}
|
||||||
|
|
||||||
let conf = Conf::FrequencyDiscriminator; // TODO: expose
|
let conf = Conf::FrequencyDiscriminator;
|
||||||
let output = match conf {
|
let output = match conf {
|
||||||
// Convert from IQ to power and phase.
|
// Convert from IQ to power and phase.
|
||||||
Conf::PowerPhase => [(output.log2() << 24) as _, output.arg()],
|
Conf::PowerPhase => [(output.log2() << 24) as _, output.arg()],
|
||||||
|
@ -147,7 +145,6 @@ const APP: () = {
|
||||||
#[idle(resources=[afes])]
|
#[idle(resources=[afes])]
|
||||||
fn idle(_: idle::Context) -> ! {
|
fn idle(_: idle::Context) -> ! {
|
||||||
loop {
|
loop {
|
||||||
// TODO: Implement network interface.
|
|
||||||
cortex_m::asm::wfi();
|
cortex_m::asm::wfi();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -164,7 +161,7 @@ const APP: () = {
|
||||||
|
|
||||||
#[task(binds = SPI3, priority = 3)]
|
#[task(binds = SPI3, priority = 3)]
|
||||||
fn spi3(_: spi3::Context) {
|
fn spi3(_: spi3::Context) {
|
||||||
panic!("ADC0 input overrun");
|
panic!("ADC1 input overrun");
|
||||||
}
|
}
|
||||||
|
|
||||||
#[task(binds = SPI4, priority = 3)]
|
#[task(binds = SPI4, priority = 3)]
|
||||||
|
|
|
@ -2,8 +2,8 @@
|
||||||
#![no_std]
|
#![no_std]
|
||||||
#![no_main]
|
#![no_main]
|
||||||
|
|
||||||
use generic_array::typenum::U2;
|
|
||||||
use dsp::{Accu, Complex, ComplexExt, Lockin};
|
use dsp::{Accu, Complex, ComplexExt, Lockin};
|
||||||
|
use generic_array::typenum::U2;
|
||||||
use hardware::{Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1};
|
use hardware::{Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1};
|
||||||
use stabilizer::{hardware, hardware::design_parameters};
|
use stabilizer::{hardware, hardware::design_parameters};
|
||||||
|
|
||||||
|
@ -45,24 +45,13 @@ const APP: () = {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Main DSP processing routine for Stabilizer.
|
/// Main DSP processing routine.
|
||||||
///
|
///
|
||||||
/// # Note
|
/// See `dual-iir` for general notes on processing time and timing.
|
||||||
/// Processing time for the DSP application code is bounded by the following constraints:
|
|
||||||
///
|
///
|
||||||
/// DSP application code starts after the ADC has generated a batch of samples and must be
|
/// This is an implementation of an internal-reference lockin on the ADC1 signal.
|
||||||
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
|
/// The reference at f_sample/8 is output on DAC0 and the phase of the demodulated
|
||||||
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
|
/// signal on DAC1.
|
||||||
///
|
|
||||||
/// The DSP application code must also fill out the next DAC output buffer in time such that the
|
|
||||||
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
|
|
||||||
/// it's possible that old DAC codes will be generated on the output and the output samples will
|
|
||||||
/// be delayed by 1 batch.
|
|
||||||
///
|
|
||||||
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
|
|
||||||
/// the same time bounds, meeting one also means the other is also met.
|
|
||||||
///
|
|
||||||
/// TODO: Document
|
|
||||||
#[task(binds=DMA1_STR4, resources=[adc, dacs, lockin], priority=2)]
|
#[task(binds=DMA1_STR4, resources=[adc, dacs, lockin], priority=2)]
|
||||||
fn process(c: process::Context) {
|
fn process(c: process::Context) {
|
||||||
let lockin = c.resources.lockin;
|
let lockin = c.resources.lockin;
|
||||||
|
@ -72,29 +61,23 @@ const APP: () = {
|
||||||
c.resources.dacs.1.acquire_buffer(),
|
c.resources.dacs.1.acquire_buffer(),
|
||||||
];
|
];
|
||||||
|
|
||||||
// DAC0 always generates a fixed sinusoidal output.
|
|
||||||
dac_samples[0]
|
|
||||||
.iter_mut()
|
|
||||||
.zip(DAC_SEQUENCE.iter())
|
|
||||||
.for_each(|(d, s)| *d = *s as u16 ^ 0x8000);
|
|
||||||
|
|
||||||
// Reference phase and frequency are known.
|
// Reference phase and frequency are known.
|
||||||
let pll_phase = 0;
|
let pll_phase = 0i32;
|
||||||
let pll_frequency =
|
let pll_frequency =
|
||||||
1i32 << (32 - design_parameters::SAMPLE_BUFFER_SIZE_LOG2);
|
1i32 << (32 - design_parameters::SAMPLE_BUFFER_SIZE_LOG2);
|
||||||
|
|
||||||
// Harmonic index of the LO: -1 to _de_modulate the fundamental
|
// Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate)
|
||||||
let harmonic: i32 = -1; // TODO: expose
|
let harmonic: i32 = -1;
|
||||||
|
|
||||||
// Demodulation LO phase offset
|
// Demodulation LO phase offset
|
||||||
let phase_offset: i32 = (0.25 * i32::MAX as f32) as i32; // TODO: expose
|
let phase_offset: i32 = 1 << 30;
|
||||||
|
|
||||||
// Log2 lowpass time constant.
|
// Log2 lowpass time constant.
|
||||||
let time_constant: u8 = 8;
|
let time_constant: u8 = 8;
|
||||||
|
|
||||||
let sample_frequency = (pll_frequency as i32).wrapping_mul(harmonic);
|
let sample_frequency = (pll_frequency as i32).wrapping_mul(harmonic);
|
||||||
let sample_phase = phase_offset
|
let sample_phase =
|
||||||
.wrapping_add((pll_phase as i32).wrapping_mul(harmonic));
|
phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic));
|
||||||
|
|
||||||
let output: Complex<i32> = adc_samples
|
let output: Complex<i32> = adc_samples
|
||||||
.iter()
|
.iter()
|
||||||
|
@ -110,15 +93,17 @@ const APP: () = {
|
||||||
.unwrap()
|
.unwrap()
|
||||||
* 2; // Full scale assuming the 2f component is gone.
|
* 2; // Full scale assuming the 2f component is gone.
|
||||||
|
|
||||||
for value in dac_samples[1].iter_mut() {
|
// Convert to DAC data.
|
||||||
*value = (output.arg() >> 16) as u16 ^ 0x8000;
|
for i in 0..dac_samples[0].len() {
|
||||||
|
// DAC0 always generates a fixed sinusoidal output.
|
||||||
|
dac_samples[0][i] = DAC_SEQUENCE[i] as u16 ^ 0x8000;
|
||||||
|
dac_samples[1][i] = (output.arg() >> 16) as u16 ^ 0x8000;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[idle(resources=[afes])]
|
#[idle(resources=[afes])]
|
||||||
fn idle(_: idle::Context) -> ! {
|
fn idle(_: idle::Context) -> ! {
|
||||||
loop {
|
loop {
|
||||||
// TODO: Implement network interface.
|
|
||||||
cortex_m::asm::wfi();
|
cortex_m::asm::wfi();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue