lockin integration: reduce and refactor further

master
Robert Jördens 2021-01-21 15:01:17 +01:00
parent 948e58c910
commit cb280c3303
1 changed files with 106 additions and 147 deletions

View File

@ -29,7 +29,8 @@ pub fn isclose(a: f64, b: f64, rtol: f64, atol: f64) -> bool {
(a - b).abs() <= a.abs().max(b.abs()) * rtol + atol
}
const ADC_MAX_COUNT: f64 = (1 << 15) as f64;
/// ADC full scale in machine units (16 bit signed).
const ADC_SCALE: f64 = ((1 << 15) - 1) as f64;
struct Lockin {
harmonic: u32,
@ -57,25 +58,26 @@ impl Lockin {
let frequency = frequency.wrapping_mul(self.harmonic);
let mut phase =
self.phase.wrapping_add(phase.wrapping_mul(self.harmonic));
let mut last = Complex::default();
input
.iter()
.map(|&s| {
let m = cossin((phase as i32).wrapping_neg());
phase = phase.wrapping_add(frequency);
for &s in input.iter() {
let m = cossin((phase as i32).wrapping_neg());
phase = phase.wrapping_add(frequency);
let signal = (s as i32) << 16;
last = Complex(
self.iir.update(
&mut self.iir_state[0],
((signal as i64 * m.0 as i64) >> 32) as i32,
),
self.iir.update(
&mut self.iir_state[1],
((signal as i64 * m.1 as i64) >> 32) as i32,
),
);
}
last
let signal = (s as i32) << 16;
Complex(
self.iir.update(
&mut self.iir_state[0],
((signal as i64 * m.0 as i64) >> 32) as _,
),
self.iir.update(
&mut self.iir_state[1],
((signal as i64 * m.1 as i64) >> 32) as _,
),
)
})
.last()
.unwrap_or(Complex::default())
}
}
@ -96,27 +98,53 @@ fn linear(dbfs: f64) -> f64 {
10f64.powf(dbfs / 20.)
}
/// Generate a full batch of samples starting at `time_offset`.
fn adc_sampled_signal(
impl Tone {
fn eval(&self, time: f64) -> f64 {
linear(self.amplitude_dbfs) * (self.phase + self.frequency * time).cos()
}
}
/// Generate a full batch of samples with size `sample_buffer_size` starting at `time_offset`.
fn sample_tones(
tones: &Vec<Tone>,
time_offset: f64,
sampling_frequency: f64,
sample_buffer_size: u32,
) -> Vec<i16> {
let mut signal = Vec::<i16>::new();
(0..sample_buffer_size)
.map(|i| {
let time = 2. * PI * (time_offset + i as f64);
let x: f64 = tones.iter().map(|t| t.eval(time)).sum();
assert!(-1. < x && x < 1.);
(x * ADC_SCALE) as i16
})
.collect()
}
for i in 0..sample_buffer_size {
let time = 2. * PI * (time_offset + i as f64 / sampling_frequency);
let x: f64 = tones
.iter()
.map(|&t| {
linear(t.amplitude_dbfs) * (t.phase + t.frequency * time).cos()
})
.sum();
assert!(-1. < x && x < 1.);
signal.push((x * ADC_MAX_COUNT) as i16);
}
signal
/// Total maximum noise amplitude of the input signal after 2nd order lowpass filter.
/// Constructive interference is assumed.
///
/// # Args
/// * `tones` - Noise sources at the ADC input.
/// * `frequency` - Frequency of the signal of interest.
/// * `corner` - Low-pass filter 3dB corner cutoff frequency.
///
/// # Returns
/// Upper bound of the total amplitude of all noise sources in linear units full scale.
fn sampled_noise_amplitude(
tones: &Vec<Tone>,
frequency: f64,
corner: f64,
) -> f64 {
tones
.iter()
.map(|t| {
let decades =
((t.frequency - frequency) / corner).abs().max(1.).log10();
// 2nd-order filter: 40dB/decade rolloff.
linear(t.amplitude_dbfs - 40. * decades)
})
.sum::<f64>()
.max(1. / ADC_SCALE / 2.) // 1/2 LSB from quantization
}
/// Reference clock timestamp values in one ADC batch period starting at `timestamp_start`. The
@ -175,49 +203,6 @@ fn lowpass_iir_coefficients(fc: f64, q: f64, k: f64) -> IIRState {
IIRState([b0, 2 * b0, b0, a1, a2])
}
/// Total noise amplitude of the input signal after sampling by the ADC. This computes an upper
/// bound of the total noise amplitude, rather than its actual value.
///
/// # Args
/// * `tones` - Noise sources at the ADC input.
/// * `demodulation_frequency` - Frequency of the demodulation signal (in Hz).
/// * `corner_frequency` - Low-pass filter 3dB corner (cutoff) frequency.
///
/// # Returns
/// Upper bound of the total amplitude of all noise sources.
fn sampled_noise_amplitude(
tones: &Vec<Tone>,
demodulation_frequency: f64,
corner_frequency: f64,
) -> f64 {
// There is not a simple way to compute the amplitude of a superpostition of sinusoids with
// different frequencies and phases. Although we can compute the amplitude in special cases
// (e.g., two signals whose periods have a common multiple), these do not help us in the general
// case. However, we can say that the total amplitude will not be greater than the sum of the
// amplitudes of the individual noise sources. We treat this as an upper bound, and use it as an
// approximation of the actual amplitude.
let mut noise: f64 = tones
.iter()
.map(|n| {
// Noise inputs create an oscillation at the output, where the oscillation magnitude is
// determined by the strength of the noise and its attenuation (attenuation is
// determined by its proximity to the demodulation frequency and filter rolloff).
let octaves = ((n.frequency - demodulation_frequency).abs()
/ corner_frequency)
.log2();
// 2nd-order filter. Approximately 12dB/octave rolloff.
let attenuation = -2. * 20. * 2f64.log10() * octaves;
linear(n.amplitude_dbfs + attenuation)
})
.sum();
// Add in 1/2 LSB for the maximum amplitude deviation resulting from quantization.
noise += 1. / ADC_MAX_COUNT / 2.;
noise
}
/// Compute the maximum effect of input noise on the lock-in magnitude computation.
///
/// The maximum effect of noise on the magnitude computation is given by:
@ -369,7 +354,6 @@ fn phase_noise(
/// # Args
/// * `internal_frequency` - Internal clock frequency (Hz). The internal clock increments timestamp
/// counter values used to record the edges of the external reference.
/// * `adc_frequency` - ADC sampling frequency (in Hz).
/// * `reference_frequency` - External reference frequency (in Hz).
/// * `demodulation_phase_offset` - Phase offset applied to the in-phase and quadrature demodulation
/// signals.
@ -388,7 +372,6 @@ fn phase_noise(
/// tolerance between `time_constant_factor` and `time_constant_factor+1` time constants.
fn lowpass_test(
internal_frequency: f64,
adc_frequency: f64,
reference_frequency: f64,
demodulation_phase_offset: f64,
harmonic: u32,
@ -402,19 +385,18 @@ fn lowpass_test(
tolerance: f64,
) {
assert!(
isclose((internal_frequency / adc_frequency).log2(), (internal_frequency / adc_frequency).log2().round(), 0., 1e-5),
isclose((internal_frequency).log2(), (internal_frequency).log2().round(), 0., 1e-5),
"The number of internal clock cycles in one ADC sampling period must be a power-of-two."
);
assert!(
internal_frequency / reference_frequency
>= internal_frequency / adc_frequency
>= internal_frequency
* (1 << sample_buffer_size_log2) as f64,
"Too many timestamps per batch. Each batch can have at most 1 timestamp."
);
let adc_sample_ticks_log2 =
(internal_frequency / adc_frequency).log2().round() as usize;
let adc_sample_ticks_log2 = (internal_frequency).log2().round() as usize;
assert!(
adc_sample_ticks_log2 + sample_buffer_size_log2 <= 32,
"The base-2 log of the number of ADC ticks in a sampling period plus the base-2 log of the sample buffer size must be less than 32."
@ -426,7 +408,7 @@ fn lowpass_test(
as u32,
IIR {
ba: lowpass_iir_coefficients(
corner_frequency / adc_frequency,
corner_frequency,
1. / 2f64.sqrt(),
2.,
),
@ -444,13 +426,13 @@ fn lowpass_test(
// Account for the pll settling time (see its documentation).
let pll_time_constant_samples =
(1 << pll_shift_phase.max(pll_shift_frequency)) as usize;
let low_pass_time_constant_samples =
(time_constant_factor * time_constant * adc_frequency
/ (1 << sample_buffer_size_log2) as f64) as usize;
let low_pass_time_constant_samples = (time_constant_factor * time_constant
/ (1 << sample_buffer_size_log2) as f64)
as usize;
let samples = pll_time_constant_samples + low_pass_time_constant_samples;
// Ensure the result remains within tolerance for 1 time constant after `time_constant_factor`
// time constants.
let extra_samples = (time_constant * adc_frequency) as usize;
let extra_samples = time_constant as usize;
let batch_sample_count =
1_u64 << (adc_sample_ticks_log2 + sample_buffer_size_log2);
@ -482,10 +464,9 @@ fn lowpass_test(
tones.push(desired_input);
for n in 0..(samples + extra_samples) {
let adc_signal = adc_sampled_signal(
let adc_signal = sample_tones(
&tones,
timestamp_start as f64 / internal_frequency,
adc_frequency,
1 << sample_buffer_size_log2,
);
let timestamp = adc_batch_timestamps(
@ -588,14 +569,13 @@ fn lowpass_test(
#[test]
fn lowpass() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 100e3;
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 64e-3;
let harmonic: u32 = 1;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 3;
let pll_shift_phase: u8 = 2;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 6.;
@ -603,7 +583,6 @@ fn lowpass() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -635,14 +614,13 @@ fn lowpass() {
#[test]
fn lowpass_demodulation_phase_offset_pi_2() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 100e3;
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 64e-3;
let harmonic: u32 = 1;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 3;
let pll_shift_phase: u8 = 2;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = PI / 2.;
let time_constant_factor: f64 = 6.;
@ -650,7 +628,6 @@ fn lowpass_demodulation_phase_offset_pi_2() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -682,14 +659,13 @@ fn lowpass_demodulation_phase_offset_pi_2() {
#[test]
fn lowpass_phase_offset_pi_2() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 100e3;
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 64e-3;
let harmonic: u32 = 1;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 3;
let pll_shift_phase: u8 = 2;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 6.;
@ -697,7 +673,6 @@ fn lowpass_phase_offset_pi_2() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -728,15 +703,14 @@ fn lowpass_phase_offset_pi_2() {
}
#[test]
fn lowpass_fundamental_111e3_phase_offset_pi_4() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 111e3;
fn lowpass_fundamental_71e_3_phase_offset_pi_4() {
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 71e-3;
let harmonic: u32 = 1;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 3;
let pll_shift_phase: u8 = 2;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 0.6e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 5.;
@ -744,7 +718,6 @@ fn lowpass_fundamental_111e3_phase_offset_pi_4() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -776,14 +749,13 @@ fn lowpass_fundamental_111e3_phase_offset_pi_4() {
#[test]
fn lowpass_first_harmonic() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 50e3;
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 50e-3;
let harmonic: u32 = 2;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 2;
let pll_shift_phase: u8 = 1;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 5.;
@ -791,7 +763,6 @@ fn lowpass_first_harmonic() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -823,14 +794,13 @@ fn lowpass_first_harmonic() {
#[test]
fn lowpass_second_harmonic() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 50e3;
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 50e-3;
let harmonic: u32 = 3;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 2;
let pll_shift_phase: u8 = 1;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 5.;
@ -838,7 +808,6 @@ fn lowpass_second_harmonic() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -870,14 +839,13 @@ fn lowpass_second_harmonic() {
#[test]
fn lowpass_third_harmonic() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 50e3;
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 50e-3;
let harmonic: u32 = 4;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 2;
let pll_shift_phase: u8 = 1;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 5.;
@ -885,7 +853,6 @@ fn lowpass_third_harmonic() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -917,14 +884,13 @@ fn lowpass_third_harmonic() {
#[test]
fn lowpass_first_harmonic_phase_shift() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 50e3;
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 50e-3;
let harmonic: u32 = 2;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 2;
let pll_shift_phase: u8 = 1;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 5.;
@ -932,7 +898,6 @@ fn lowpass_first_harmonic_phase_shift() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -964,14 +929,13 @@ fn lowpass_first_harmonic_phase_shift() {
#[test]
fn lowpass_adc_frequency_1e6() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 32.;
let signal_frequency: f64 = 100e3;
let internal_frequency: f64 = 32.;
let signal_frequency: f64 = 100e-3;
let harmonic: u32 = 1;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 2;
let pll_shift_phase: u8 = 1;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 5.;
@ -979,7 +943,6 @@ fn lowpass_adc_frequency_1e6() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -1011,14 +974,13 @@ fn lowpass_adc_frequency_1e6() {
#[test]
fn lowpass_internal_frequency_125e6() {
let internal_frequency: f64 = 125e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 100e3;
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 100e-3;
let harmonic: u32 = 1;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 2;
let pll_shift_phase: u8 = 1;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 5.;
@ -1026,7 +988,6 @@ fn lowpass_internal_frequency_125e6() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,
@ -1058,14 +1019,13 @@ fn lowpass_internal_frequency_125e6() {
#[test]
fn lowpass_low_signal_frequency() {
let internal_frequency: f64 = 100e6;
let adc_frequency: f64 = internal_frequency / 64.;
let signal_frequency: f64 = 10e3;
let internal_frequency: f64 = 64.;
let signal_frequency: f64 = 10e-3;
let harmonic: u32 = 1;
let sample_buffer_size_log2: usize = 2;
let pll_shift_frequency: u8 = 2;
let pll_shift_phase: u8 = 1;
let corner_frequency: f64 = 1e3;
let corner_frequency: f64 = 1e-3;
let demodulation_frequency: f64 = harmonic as f64 * signal_frequency;
let demodulation_phase_offset: f64 = 0.;
let time_constant_factor: f64 = 5.;
@ -1073,7 +1033,6 @@ fn lowpass_low_signal_frequency() {
lowpass_test(
internal_frequency,
adc_frequency,
signal_frequency,
demodulation_phase_offset,
harmonic,