Merge pull request #165 from vertigo-designs/feature/dma-updates

Stabilizer asynchronous batch sampling support
This commit is contained in:
Ryan Summers 2020-11-25 07:58:37 -08:00 committed by GitHub
commit b0153b8e78
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 1072 additions and 240 deletions

13
Cargo.lock generated
View File

@ -192,6 +192,15 @@ dependencies = [
"serde", "serde",
] ]
[[package]]
name = "embedded-dma"
version = "0.1.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "46c8c02e4347a0267ca60813c952017f4c5948c232474c6010a381a337f1bda4"
dependencies = [
"stable_deref_trait",
]
[[package]] [[package]]
name = "embedded-hal" name = "embedded-hal"
version = "0.2.4" version = "0.2.4"
@ -473,6 +482,7 @@ dependencies = [
"nb 1.0.0", "nb 1.0.0",
"panic-halt", "panic-halt",
"panic-semihosting", "panic-semihosting",
"paste",
"serde", "serde",
"serde-json-core", "serde-json-core",
"smoltcp", "smoltcp",
@ -500,12 +510,13 @@ dependencies = [
[[package]] [[package]]
name = "stm32h7xx-hal" name = "stm32h7xx-hal"
version = "0.8.0" version = "0.8.0"
source = "git+https://github.com/stm32-rs/stm32h7xx-hal#cbb31d0b6d0c8530437367032a600a4ff74657f7" source = "git+https://github.com/stm32-rs/stm32h7xx-hal?branch=dma#0bfeeca4ce120c1b7c6d140a7da73a4372b874d8"
dependencies = [ dependencies = [
"bare-metal 1.0.0", "bare-metal 1.0.0",
"cast", "cast",
"cortex-m", "cortex-m",
"cortex-m-rt", "cortex-m-rt",
"embedded-dma",
"embedded-hal", "embedded-hal",
"nb 1.0.0", "nb 1.0.0",
"paste", "paste",

View File

@ -40,6 +40,7 @@ embedded-hal = "0.2.4"
nb = "1.0.0" nb = "1.0.0"
asm-delay = "0.9.0" asm-delay = "0.9.0"
enum-iterator = "0.6.0" enum-iterator = "0.6.0"
paste = "1"
dsp = { path = "dsp" } dsp = { path = "dsp" }
[dependencies.mcp23017] [dependencies.mcp23017]
@ -56,6 +57,7 @@ path = "ad9959"
[dependencies.stm32h7xx-hal] [dependencies.stm32h7xx-hal]
features = ["stm32h743v", "rt", "unproven", "ethernet", "quadspi"] features = ["stm32h743v", "rt", "unproven", "ethernet", "quadspi"]
git = "https://github.com/stm32-rs/stm32h7xx-hal" git = "https://github.com/stm32-rs/stm32h7xx-hal"
branch = "dma"
[features] [features]
semihosting = ["panic-semihosting", "cortex-m-log/semihosting"] semihosting = ["panic-semihosting", "cortex-m-log/semihosting"]

View File

@ -17,7 +17,7 @@ SECTIONS {
*(.itcm .itcm.*); *(.itcm .itcm.*);
. = ALIGN(8); . = ALIGN(8);
} > ITCM } > ITCM
.axisram : ALIGN(8) { .axisram (NOLOAD) : ALIGN(8) {
*(.axisram .axisram.*); *(.axisram .axisram.*);
. = ALIGN(8); . = ALIGN(8);
} > AXISRAM } > AXISRAM

384
src/adc.rs Normal file
View File

@ -0,0 +1,384 @@
///! Stabilizer ADC management interface
///!
///! The Stabilizer ADCs utilize a DMA channel to trigger sampling. The SPI streams are configured
///! for full-duplex operation, but only RX is connected to physical pins. A timer channel is
///! configured to generate a DMA write into the SPI TXFIFO, which initiates a SPI transfer and
///! results in an ADC sample read for both channels.
///!
///! In order to read multiple samples without interrupting the CPU, a separate DMA transfer is
///! configured to read from each of the ADC SPI RX FIFOs. Due to the design of the SPI peripheral,
///! these DMA transfers stall when no data is available in the FIFO. Thus, the DMA transfer only
///! completes after all samples have been read. When this occurs, a CPU interrupt is generated so
///! that software can process the acquired samples from both ADCs. Only one of the ADC DMA streams
///! is configured to generate an interrupt to handle both transfers, so it is necessary to ensure
///! both transfers are completed before reading the data. This is usually not significant for
///! busy-waiting because the transfers should complete at approximately the same time.
use super::{
hal, sampling_timer, DMAReq, DmaConfig, MemoryToPeripheral,
PeripheralToMemory, Priority, TargetAddress, Transfer, SAMPLE_BUFFER_SIZE,
};
// The following data is written by the timer ADC sample trigger into each of the SPI TXFIFOs. Note
// that because the SPI MOSI line is not connected, this data is dont-care. Data in AXI SRAM is not
// initialized on boot, so the contents are random.
#[link_section = ".axisram.buffers"]
static mut SPI_START: [u16; 1] = [0x00];
// The following global buffers are used for the ADC sample DMA transfers. Two buffers are used for
// each transfer in a ping-pong buffer configuration (one is being acquired while the other is being
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
// startup are undefined.
#[link_section = ".axisram.buffers"]
static mut ADC0_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut ADC0_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut ADC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut ADC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
/// SPI2 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI2 TX FIFO
/// whenever the tim2 update dma request occurs.
struct SPI2 {
_channel: sampling_timer::tim2::Channel1,
}
impl SPI2 {
pub fn new(_channel: sampling_timer::tim2::Channel1) -> Self {
Self { _channel }
}
}
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
// may only be used if ownership of the timer2 channel 1 compare channel is assured, which is
// ensured by maintaining ownership of the channel.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
/// SPI2 is configured to operate using 16-bit transfer words.
type MemSize = u16;
/// SPI2 DMA requests are generated whenever TIM2 CH1 comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH1 as u8);
/// Whenever the DMA request occurs, it should write into SPI2's TX FIFO to start a DMA
/// transfer.
fn address(&self) -> u32 {
// Note(unsafe): It is assumed that SPI2 is owned by another DMA transfer and this DMA is
// only used for the transmit-half of DMA.
let regs = unsafe { &*hal::stm32::SPI2::ptr() };
&regs.txdr as *const _ as u32
}
}
/// SPI3 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI3 TX FIFO
/// whenever the tim2 update dma request occurs.
struct SPI3 {
_channel: sampling_timer::tim2::Channel2,
}
impl SPI3 {
pub fn new(_channel: sampling_timer::tim2::Channel2) -> Self {
Self { _channel }
}
}
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
// may only be used if ownership of the timer2 channel 2 compare channel is assured, which is
// ensured by maintaining ownership of the channel.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI3 {
/// SPI3 is configured to operate using 16-bit transfer words.
type MemSize = u16;
/// SPI3 DMA requests are generated whenever TIM2 CH2 comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH2 as u8);
/// Whenever the DMA request occurs, it should write into SPI3's TX FIFO to start a DMA
/// transfer.
fn address(&self) -> u32 {
// Note(unsafe): It is assumed that SPI3 is owned by another DMA transfer and this DMA is
// only used for the transmit-half of DMA.
let regs = unsafe { &*hal::stm32::SPI3::ptr() };
&regs.txdr as *const _ as u32
}
}
/// Represents both ADC input channels.
pub struct AdcInputs {
adc0: Adc0Input,
adc1: Adc1Input,
}
impl AdcInputs {
/// Construct the ADC inputs.
pub fn new(adc0: Adc0Input, adc1: Adc1Input) -> Self {
Self { adc0, adc1 }
}
/// Interrupt handler to handle when the sample collection DMA transfer completes.
///
/// # Returns
/// (adc0, adc1) where adcN is a reference to the collected ADC samples. Two array references
/// are returned - one for each ADC sample stream.
pub fn transfer_complete_handler(
&mut self,
) -> (&[u16; SAMPLE_BUFFER_SIZE], &[u16; SAMPLE_BUFFER_SIZE]) {
let adc0_buffer = self.adc0.transfer_complete_handler();
let adc1_buffer = self.adc1.transfer_complete_handler();
(adc0_buffer, adc1_buffer)
}
}
/// Represents data associated with ADC0.
pub struct Adc0Input {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
transfer: Transfer<
hal::dma::dma::Stream1<hal::stm32::DMA1>,
hal::spi::Spi<hal::stm32::SPI2, hal::spi::Disabled, u16>,
PeripheralToMemory,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
_trigger_transfer: Transfer<
hal::dma::dma::Stream0<hal::stm32::DMA1>,
SPI2,
MemoryToPeripheral,
&'static mut [u16; 1],
>,
}
impl Adc0Input {
/// Construct the ADC0 input channel.
///
/// # Args
/// * `spi` - The SPI interface used to communicate with the ADC.
/// * `trigger_stream` - The DMA stream used to trigger each ADC transfer by writing a word into
/// the SPI TX FIFO.
/// * `data_stream` - The DMA stream used to read samples received over SPI into a data buffer.
/// * `_trigger_channel` - The ADC sampling timer output compare channel for read triggers.
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI2, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::Stream0<hal::stm32::DMA1>,
data_stream: hal::dma::dma::Stream1<hal::stm32::DMA1>,
trigger_channel: sampling_timer::tim2::Channel1,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(0);
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
// contents). Thus, neither the memory or peripheral address ever change. This is run in
// circular mode to be completed at every DMA request.
let trigger_config = DmaConfig::default()
.priority(Priority::High)
.circular_buffer(true);
// Construct the trigger stream to write from memory to the peripheral.
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
Transfer::init(
trigger_stream,
SPI2::new(trigger_channel),
// Note(unsafe): Because this is a Memory->Peripheral transfer, this data is never
// actually modified. It technically only needs to be immutably borrowed, but the
// current HAL API only supports mutable borrows.
unsafe { &mut SPI_START },
None,
trigger_config,
);
// The data stream constantly reads from the SPI RX FIFO into a RAM buffer. The peripheral
// stalls reads of the SPI RX FIFO until data is available, so the DMA transfer completes
// after the requested number of samples have been collected. Note that only ADC1's data
// stream is used to trigger a transfer completion interrupt.
let data_config = DmaConfig::default()
.memory_increment(true)
.priority(Priority::VeryHigh);
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
// indicates that samples were dropped due to excessive processing time in the main
// application (e.g. a second DMA transfer completes before the first was done with
// processing). This is used as a flow control indicator to guarantee that no ADC samples
// are lost.
let mut spi = spi.disable();
spi.listen(hal::spi::Event::Error);
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init(
data_stream,
spi,
// Note(unsafe): The ADC0_BUF0 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
unsafe { &mut ADC0_BUF0 },
None,
data_config,
);
data_transfer.start(|spi| {
// Allow the SPI FIFOs to operate using only DMA data channels.
spi.enable_dma_rx();
spi.enable_dma_tx();
// Enable SPI and start it in infinite transaction mode.
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
spi.inner().cr1.modify(|_, w| w.cstart().started());
});
trigger_transfer.start(|_| {});
Self {
// Note(unsafe): The ADC0_BUF1 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
next_buffer: unsafe { Some(&mut ADC0_BUF1) },
transfer: data_transfer,
_trigger_transfer: trigger_transfer,
}
}
/// Handle a transfer completion.
///
/// # Returns
/// A reference to the underlying buffer that has been filled with ADC samples.
pub fn transfer_complete_handler(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
let next_buffer = self.next_buffer.take().unwrap();
// Wait for the transfer to fully complete before continuing.
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
// no time-out checks here in the interest of execution speed.
while self.transfer.get_transfer_complete_flag() == false {}
// Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _) =
self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer);
self.next_buffer.as_ref().unwrap()
}
}
/// Represents the data input stream from ADC1
pub struct Adc1Input {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
transfer: Transfer<
hal::dma::dma::Stream3<hal::stm32::DMA1>,
hal::spi::Spi<hal::stm32::SPI3, hal::spi::Disabled, u16>,
PeripheralToMemory,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
_trigger_transfer: Transfer<
hal::dma::dma::Stream2<hal::stm32::DMA1>,
SPI3,
MemoryToPeripheral,
&'static mut [u16; 1],
>,
}
impl Adc1Input {
/// Construct a new ADC1 input data stream.
///
/// # Args
/// * `spi` - The SPI interface connected to ADC1.
/// * `trigger_stream` - The DMA stream used to trigger ADC conversions on the SPI interface.
/// * `data_stream` - The DMA stream used to read ADC samples from the SPI RX FIFO.
/// * `trigger_channel` - The ADC sampling timer output compare channel for read triggers.
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI3, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::Stream2<hal::stm32::DMA1>,
data_stream: hal::dma::dma::Stream3<hal::stm32::DMA1>,
trigger_channel: sampling_timer::tim2::Channel2,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(0);
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
// contents). Thus, neither the memory or peripheral address ever change. This is run in
// circular mode to be completed at every DMA request.
let trigger_config = DmaConfig::default()
.priority(Priority::High)
.circular_buffer(true);
// Construct the trigger stream to write from memory to the peripheral.
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
Transfer::init(
trigger_stream,
SPI3::new(trigger_channel),
// Note(unsafe). This transaction is read-only and SPI_START is a dont-care value,
// so it is always safe to share.
unsafe { &mut SPI_START },
None,
trigger_config,
);
// The data stream constantly reads from the SPI RX FIFO into a RAM buffer. The peripheral
// stalls reads of the SPI RX FIFO until data is available, so the DMA transfer completes
// after the requested number of samples have been collected. Note that only ADC1's data
// stream is used to trigger a transfer completion interrupt.
let data_config = DmaConfig::default()
.memory_increment(true)
.transfer_complete_interrupt(true)
.priority(Priority::VeryHigh);
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
// indicates that samples were dropped due to excessive processing time in the main
// application (e.g. a second DMA transfer completes before the first was done with
// processing). This is used as a flow control indicator to guarantee that no ADC samples
// are lost.
let mut spi = spi.disable();
spi.listen(hal::spi::Event::Error);
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init(
data_stream,
spi,
// Note(unsafe): The ADC1_BUF0 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
unsafe { &mut ADC1_BUF0 },
None,
data_config,
);
data_transfer.start(|spi| {
// Allow the SPI FIFOs to operate using only DMA data channels.
spi.enable_dma_rx();
spi.enable_dma_tx();
// Enable SPI and start it in infinite transaction mode.
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
spi.inner().cr1.modify(|_, w| w.cstart().started());
});
trigger_transfer.start(|_| {});
Self {
// Note(unsafe): The ADC1_BUF1 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
next_buffer: unsafe { Some(&mut ADC1_BUF1) },
transfer: data_transfer,
_trigger_transfer: trigger_transfer,
}
}
/// Handle a transfer completion.
///
/// # Returns
/// A reference to the underlying buffer that has been filled with ADC samples.
pub fn transfer_complete_handler(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
let next_buffer = self.next_buffer.take().unwrap();
// Wait for the transfer to fully complete before continuing.
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
// no time-out checks here in the interest of execution speed.
while self.transfer.get_transfer_complete_flag() == false {}
// Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _) =
self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer);
self.next_buffer.as_ref().unwrap()
}
}

316
src/dac.rs Normal file
View File

@ -0,0 +1,316 @@
///! Stabilizer DAC management interface
///!
///! The Stabilizer DAC utilize a DMA channel to generate output updates. A timer channel is
///! configured to generate a DMA write into the SPI TXFIFO, which initiates a SPI transfer and
///! results in DAC update for both channels.
use super::{
hal, sampling_timer, DMAReq, DmaConfig, MemoryToPeripheral, TargetAddress,
Transfer, SAMPLE_BUFFER_SIZE,
};
// The following global buffers are used for the DAC code DMA transfers. Two buffers are used for
// each transfer in a ping-pong buffer configuration (one is being prepared while the other is being
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
// startup are undefined.
#[link_section = ".axisram.buffers"]
static mut DAC0_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut DAC0_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut DAC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut DAC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
/// SPI4 is used as a type for indicating a DMA transfer into the SPI4 TX FIFO
struct SPI4 {
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
_channel: sampling_timer::tim2::Channel3,
}
impl SPI4 {
pub fn new(
_channel: sampling_timer::tim2::Channel3,
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
) -> Self {
Self { _channel, spi }
}
}
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
// sizes.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI4 {
/// SPI2 is configured to operate using 16-bit transfer words.
type MemSize = u16;
/// SPI4 DMA requests are generated whenever TIM2 CH3 comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH3 as u8);
/// Whenever the DMA request occurs, it should write into SPI4's TX FIFO.
fn address(&self) -> u32 {
&self.spi.inner().txdr as *const _ as u32
}
}
/// SPI5 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI5 TX FIFO
struct SPI5 {
_channel: sampling_timer::tim2::Channel4,
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
}
impl SPI5 {
pub fn new(
_channel: sampling_timer::tim2::Channel4,
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
) -> Self {
Self { _channel, spi }
}
}
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
// sizes.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI5 {
/// SPI5 is configured to operate using 16-bit transfer words.
type MemSize = u16;
/// SPI5 DMA requests are generated whenever TIM2 CH4 comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH4 as u8);
/// Whenever the DMA request occurs, it should write into SPI5's TX FIFO
fn address(&self) -> u32 {
&self.spi.inner().txdr as *const _ as u32
}
}
/// Represents both DAC output channels.
pub struct DacOutputs {
dac0: Dac0Output,
dac1: Dac1Output,
}
impl DacOutputs {
/// Construct the DAC outputs.
pub fn new(dac0: Dac0Output, dac1: Dac1Output) -> Self {
Self { dac0, dac1 }
}
/// Borrow the next DAC output buffers to populate the DAC output codes in-place.
///
/// # Returns
/// (dac0, dac1) where each value is a mutable reference to the output code array for DAC0 and
/// DAC1 respectively.
pub fn prepare_data(
&mut self,
) -> (
&mut [u16; SAMPLE_BUFFER_SIZE],
&mut [u16; SAMPLE_BUFFER_SIZE],
) {
(self.dac0.prepare_buffer(), self.dac1.prepare_buffer())
}
/// Enqueue the next DAC output codes for transmission.
///
/// # Note
/// It is assumed that data was populated using `prepare_data()` before this function is
/// called.
pub fn commit_data(&mut self) {
self.dac0.commit_buffer();
self.dac1.commit_buffer();
}
}
/// Represents data associated with DAC0.
pub struct Dac0Output {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
transfer: Transfer<
hal::dma::dma::Stream4<hal::stm32::DMA1>,
SPI4,
MemoryToPeripheral,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
first_transfer: bool,
}
impl Dac0Output {
/// Construct the DAC0 output channel.
///
/// # Args
/// * `spi` - The SPI interface used to communicate with the ADC.
/// * `stream` - The DMA stream used to write DAC codes over SPI.
/// * `trigger_channel` - The sampling timer output compare channel for update triggers.
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>,
stream: hal::dma::dma::Stream4<hal::stm32::DMA1>,
trigger_channel: sampling_timer::tim2::Channel3,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(0);
// The stream constantly writes to the TX FIFO to write new update codes.
let trigger_config = DmaConfig::default()
.memory_increment(true)
.peripheral_increment(false);
// Listen for any potential SPI error signals, which may indicate that we are not generating
// update codes.
let mut spi = spi.disable();
spi.listen(hal::spi::Event::Error);
// Allow the SPI FIFOs to operate using only DMA data channels.
spi.enable_dma_tx();
// Enable SPI and start it in infinite transaction mode.
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
spi.inner().cr1.modify(|_, w| w.cstart().started());
// Construct the trigger stream to write from memory to the peripheral.
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
stream,
SPI4::new(trigger_channel, spi),
// Note(unsafe): This buffer is only used once and provided for the DMA transfer.
unsafe { &mut DAC0_BUF0 },
None,
trigger_config,
);
Self {
transfer,
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
next_buffer: unsafe { Some(&mut DAC0_BUF1) },
first_transfer: true,
}
}
/// Mutably borrow the next output buffer to populate it with DAC codes.
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
self.next_buffer.as_mut().unwrap()
}
/// Enqueue the next buffer for transmission to the DAC.
///
/// # Args
/// * `data` - The next data to write to the DAC.
pub fn commit_buffer(&mut self) {
let next_buffer = self.next_buffer.take().unwrap();
// If the last transfer was not complete, we didn't write all our previous DAC codes.
// Wait for all the DAC codes to get written as well.
if self.first_transfer {
self.first_transfer = false
} else {
// Note: If a device hangs up, check that this conditional is passing correctly, as
// there is no time-out checks here in the interest of execution speed.
while self.transfer.get_transfer_complete_flag() == false {}
}
// Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _) =
self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer);
}
}
/// Represents the data output stream from DAC1.
pub struct Dac1Output {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
transfer: Transfer<
hal::dma::dma::Stream5<hal::stm32::DMA1>,
SPI5,
MemoryToPeripheral,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
first_transfer: bool,
}
impl Dac1Output {
/// Construct a new DAC1 output data stream.
///
/// # Args
/// * `spi` - The SPI interface connected to DAC1.
/// * `stream` - The DMA stream used to write DAC codes the SPI TX FIFO.
/// * `trigger_channel` - The timer channel used to generate DMA requests for DAC updates.
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
stream: hal::dma::dma::Stream5<hal::stm32::DMA1>,
trigger_channel: sampling_timer::tim2::Channel4,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(0);
// The trigger stream constantly writes to the TX FIFO to generate DAC updates.
let trigger_config = DmaConfig::default()
.memory_increment(true)
.peripheral_increment(false)
.circular_buffer(true);
// Listen for any SPI errors, as this may indicate that we are not generating updates on the
// DAC.
let mut spi = spi.disable();
spi.listen(hal::spi::Event::Error);
// Allow the SPI FIFOs to operate using only DMA data channels.
spi.enable_dma_tx();
// Enable SPI and start it in infinite transaction mode.
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
spi.inner().cr1.modify(|_, w| w.cstart().started());
// Construct the stream to write from memory to the peripheral.
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
stream,
SPI5::new(trigger_channel, spi),
// Note(unsafe): This buffer is only used once and provided to the transfer.
unsafe { &mut DAC1_BUF0 },
None,
trigger_config,
);
Self {
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
next_buffer: unsafe { Some(&mut DAC1_BUF1) },
transfer,
first_transfer: true,
}
}
/// Mutably borrow the next output buffer to populate it with DAC codes.
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
self.next_buffer.as_mut().unwrap()
}
/// Enqueue the next buffer for transmission to the DAC.
///
/// # Args
/// * `data` - The next data to write to the DAC.
pub fn commit_buffer(&mut self) {
let next_buffer = self.next_buffer.take().unwrap();
// If the last transfer was not complete, we didn't write all our previous DAC codes.
// Wait for all the DAC codes to get written as well.
if self.first_transfer {
self.first_transfer = false
} else {
// Note: If a device hangs up, check that this conditional is passing correctly, as
// there is no time-out checks here in the interest of execution speed.
while self.transfer.get_transfer_complete_flag() == false {}
}
// Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _) =
self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer);
}
}

6
src/design_parameters.rs Normal file
View File

@ -0,0 +1,6 @@
/// The ADC setup time is the number of seconds after the CSn line goes low before the serial clock
/// may begin. This is used for performing the internal ADC conversion.
pub const ADC_SETUP_TIME: f32 = 220e-9;
/// The maximum DAC/ADC serial clock line frequency. This is a hardware limit.
pub const ADC_DAC_SCK_MHZ_MAX: u32 = 50;

View File

@ -1,6 +1,4 @@
#![deny(warnings)] #![deny(warnings)]
// Deprecation warnings are temporarily allowed as the HAL DMA goes through updates.
#![allow(deprecated)]
#![allow(clippy::missing_safety_doc)] #![allow(clippy::missing_safety_doc)]
#![no_std] #![no_std]
#![no_main] #![no_main]
@ -38,9 +36,13 @@ use stm32h7xx_hal::prelude::*;
use embedded_hal::digital::v2::{InputPin, OutputPin}; use embedded_hal::digital::v2::{InputPin, OutputPin};
use hal::{ use hal::{
dma::{DmaChannel, DmaExt, DmaInternal}, dma::{
config::Priority,
dma::{DMAReq, DmaConfig},
traits::TargetAddress,
MemoryToPeripheral, PeripheralToMemory, Transfer,
},
ethernet::{self, PHY}, ethernet::{self, PHY},
rcc::rec::ResetEnable,
}; };
use smoltcp as net; use smoltcp as net;
@ -49,14 +51,26 @@ use smoltcp::wire::Ipv4Address;
use heapless::{consts::*, String}; use heapless::{consts::*, String};
// The desired sampling frequency of the ADCs.
const SAMPLE_FREQUENCY_KHZ: u32 = 500;
// The desired ADC sample processing buffer size.
const SAMPLE_BUFFER_SIZE: usize = 1;
#[link_section = ".sram3.eth"] #[link_section = ".sram3.eth"]
static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new(); static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
mod adc;
mod afe; mod afe;
mod dac;
mod design_parameters;
mod eeprom; mod eeprom;
mod pounder; mod pounder;
mod sampling_timer;
mod server; mod server;
use adc::{Adc0Input, Adc1Input, AdcInputs};
use dac::{Dac0Output, Dac1Output, DacOutputs};
use dsp::iir; use dsp::iir;
#[cfg(not(feature = "semihosting"))] #[cfg(not(feature = "semihosting"))]
@ -102,8 +116,6 @@ static mut NET_STORE: NetStorage = NetStorage {
const SCALE: f32 = ((1 << 15) - 1) as f32; const SCALE: f32 = ((1 << 15) - 1) as f32;
const SPI_START: u32 = 0x00;
// static ETHERNET_PENDING: AtomicBool = AtomicBool::new(true); // static ETHERNET_PENDING: AtomicBool = AtomicBool::new(true);
const TCP_RX_BUFFER_SIZE: usize = 8192; const TCP_RX_BUFFER_SIZE: usize = 8192;
@ -173,17 +185,13 @@ macro_rules! route_request {
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)] #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = { const APP: () = {
struct Resources { struct Resources {
adc0: hal::spi::Spi<hal::stm32::SPI2, hal::spi::Enabled, u16>,
dac0: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>,
afe0: AFE0, afe0: AFE0,
adc1: hal::spi::Spi<hal::stm32::SPI3, hal::spi::Enabled, u16>,
dac1: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
afe1: AFE1, afe1: AFE1,
eeprom_i2c: hal::i2c::I2c<hal::stm32::I2C2>, adcs: AdcInputs,
dacs: DacOutputs,
timer: hal::timer::Timer<hal::stm32::TIM2>, eeprom_i2c: hal::i2c::I2c<hal::stm32::I2C2>,
// Note: It appears that rustfmt generates a format that GDB cannot recognize, which // Note: It appears that rustfmt generates a format that GDB cannot recognize, which
// results in GDB breakpoints being set improperly. // results in GDB breakpoints being set improperly.
@ -257,207 +265,183 @@ const APP: () = {
afe::ProgrammableGainAmplifier::new(a0_pin, a1_pin) afe::ProgrammableGainAmplifier::new(a0_pin, a1_pin)
}; };
ccdr.peripheral.DMA1.reset().enable(); let dma_streams =
let mut dma_channels = dp.DMA1.split(); hal::dma::dma::StreamsTuple::new(dp.DMA1, ccdr.peripheral.DMA1);
// Configure timer 2 to trigger conversions for the ADC
let timer2 = dp.TIM2.timer(
SAMPLE_FREQUENCY_KHZ.khz(),
ccdr.peripheral.TIM2,
&ccdr.clocks,
);
let mut sampling_timer = sampling_timer::SamplingTimer::new(timer2);
let sampling_timer_channels = sampling_timer.channels();
// Configure the SPI interfaces to the ADCs and DACs. // Configure the SPI interfaces to the ADCs and DACs.
let adc0_spi = { let adcs = {
let spi_miso = gpiob let adc0 = {
.pb14 let spi_miso = gpiob
.into_alternate_af5() .pb14
.set_speed(hal::gpio::Speed::VeryHigh); .into_alternate_af5()
let spi_sck = gpiob .set_speed(hal::gpio::Speed::VeryHigh);
.pb10 let spi_sck = gpiob
.into_alternate_af5() .pb10
.set_speed(hal::gpio::Speed::VeryHigh); .into_alternate_af5()
let _spi_nss = gpiob .set_speed(hal::gpio::Speed::VeryHigh);
.pb9 let _spi_nss = gpiob
.into_alternate_af5() .pb9
.set_speed(hal::gpio::Speed::VeryHigh); .into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode { let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh, polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition, phase: hal::spi::Phase::CaptureOnSecondTransition,
}) })
.manage_cs() .manage_cs()
.suspend_when_inactive() .suspend_when_inactive()
.cs_delay(220e-9); .cs_delay(design_parameters::ADC_SETUP_TIME);
dma_channels.0.set_peripheral_address( let spi: hal::spi::Spi<_, _, u16> = dp.SPI2.spi(
&dp.SPI2.txdr as *const _ as u32, (spi_sck, spi_miso, hal::spi::NoMosi),
false, config,
); design_parameters::ADC_DAC_SCK_MHZ_MAX.mhz(),
dma_channels ccdr.peripheral.SPI2,
.0 &ccdr.clocks,
.set_memory_address(&SPI_START as *const _ as u32, false); );
dma_channels
.0
.set_direction(hal::dma::Direction::MemoryToPeripherial);
dma_channels.0.set_transfer_length(1);
dma_channels.0.cr().modify(|_, w| {
w.circ()
.enabled()
.psize()
.bits16()
.msize()
.bits16()
.pfctrl()
.dma()
});
dma_channels.0.dmamux().modify(|_, w| {
w.dmareq_id()
.variant(hal::stm32::dmamux1::ccr::DMAREQ_ID_A::TIM2_UP)
});
let mut spi: hal::spi::Spi<_, _, u16> = dp.SPI2.spi( Adc0Input::new(
(spi_sck, spi_miso, hal::spi::NoMosi), spi,
config, dma_streams.0,
50.mhz(), dma_streams.1,
ccdr.peripheral.SPI2, sampling_timer_channels.ch1,
&ccdr.clocks, )
); };
// Kick-start the SPI transaction - we will add data to the TXFIFO to read from the ADC. let adc1 = {
let spi_regs = unsafe { &*hal::stm32::SPI2::ptr() }; let spi_miso = gpiob
spi_regs.cr1.modify(|_, w| w.cstart().started()); .pb4
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpioc
.pc10
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpioa
.pa15
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
spi.listen(hal::spi::Event::Rxp); let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.cs_delay(design_parameters::ADC_SETUP_TIME);
spi let spi: hal::spi::Spi<_, _, u16> = dp.SPI3.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MHZ_MAX.mhz(),
ccdr.peripheral.SPI3,
&ccdr.clocks,
);
Adc1Input::new(
spi,
dma_streams.2,
dma_streams.3,
sampling_timer_channels.ch2,
)
};
AdcInputs::new(adc0, adc1)
}; };
let adc1_spi = { let dacs = {
let spi_miso = gpiob let _dac_clr_n =
.pb4 gpioe.pe12.into_push_pull_output().set_high().unwrap();
.into_alternate_af6() let _dac0_ldac_n =
.set_speed(hal::gpio::Speed::VeryHigh); gpioe.pe11.into_push_pull_output().set_low().unwrap();
let spi_sck = gpioc let _dac1_ldac_n =
.pc10 gpioe.pe15.into_push_pull_output().set_low().unwrap();
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpioa
.pa15
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode { let dac0_spi = {
polarity: hal::spi::Polarity::IdleHigh, let spi_miso = gpioe
phase: hal::spi::Phase::CaptureOnSecondTransition, .pe5
}) .into_alternate_af5()
.manage_cs() .set_speed(hal::gpio::Speed::VeryHigh);
.suspend_when_inactive() let spi_sck = gpioe
.cs_delay(220e-9); .pe2
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpioe
.pe4
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
dma_channels.1.set_peripheral_address( let config = hal::spi::Config::new(hal::spi::Mode {
&dp.SPI3.txdr as *const _ as u32, polarity: hal::spi::Polarity::IdleHigh,
false, phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Transmitter)
.swap_mosi_miso();
dp.SPI4.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MHZ_MAX.mhz(),
ccdr.peripheral.SPI4,
&ccdr.clocks,
)
};
let dac1_spi = {
let spi_miso = gpiof
.pf8
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpiof
.pf7
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpiof
.pf6
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.communication_mode(hal::spi::CommunicationMode::Transmitter)
.suspend_when_inactive()
.swap_mosi_miso();
dp.SPI5.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MHZ_MAX.mhz(),
ccdr.peripheral.SPI5,
&ccdr.clocks,
)
};
let dac0 = Dac0Output::new(
dac0_spi,
dma_streams.4,
sampling_timer_channels.ch3,
); );
dma_channels let dac1 = Dac1Output::new(
.1 dac1_spi,
.set_memory_address(&SPI_START as *const _ as u32, false); dma_streams.5,
dma_channels sampling_timer_channels.ch4,
.1
.set_direction(hal::dma::Direction::MemoryToPeripherial);
dma_channels.1.dmamux().modify(|_, w| {
w.dmareq_id()
.variant(hal::stm32::dmamux1::ccr::DMAREQ_ID_A::TIM2_UP)
});
dma_channels.1.set_transfer_length(1);
dma_channels.1.cr().modify(|_, w| {
w.circ()
.enabled()
.psize()
.bits16()
.msize()
.bits16()
.pfctrl()
.dma()
});
let mut spi: hal::spi::Spi<_, _, u16> = dp.SPI3.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
50.mhz(),
ccdr.peripheral.SPI3,
&ccdr.clocks,
); );
DacOutputs::new(dac0, dac1)
let spi_regs = unsafe { &*hal::stm32::SPI3::ptr() };
spi_regs.cr1.modify(|_, w| w.cstart().started());
spi.listen(hal::spi::Event::Rxp);
spi
};
let _dac_clr_n = gpioe.pe12.into_push_pull_output().set_high().unwrap();
let _dac0_ldac_n =
gpioe.pe11.into_push_pull_output().set_low().unwrap();
let _dac1_ldac_n =
gpioe.pe15.into_push_pull_output().set_low().unwrap();
let dac0_spi = {
let spi_miso = gpioe
.pe5
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpioe
.pe2
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpioe
.pe4
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Transmitter)
.swap_mosi_miso();
dp.SPI4.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
50.mhz(),
ccdr.peripheral.SPI4,
&ccdr.clocks,
)
};
let dac1_spi = {
let spi_miso = gpiof
.pf8
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpiof
.pf7
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpiof
.pf6
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Transmitter)
.swap_mosi_miso();
dp.SPI5.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
50.mhz(),
ccdr.peripheral.SPI5,
&ccdr.clocks,
)
}; };
let mut fp_led_0 = gpiod.pd5.into_push_pull_output(); let mut fp_led_0 = gpiod.pd5.into_push_pull_output();
@ -741,28 +725,16 @@ const APP: () = {
// Utilize the cycle counter for RTIC scheduling. // Utilize the cycle counter for RTIC scheduling.
cp.DWT.enable_cycle_counter(); cp.DWT.enable_cycle_counter();
// Configure timer 2 to trigger conversions for the ADC // Start sampling ADCs.
let timer2 = sampling_timer.start();
dp.TIM2.timer(500.khz(), ccdr.peripheral.TIM2, &ccdr.clocks);
{
let t2_regs = unsafe { &*hal::stm32::TIM2::ptr() };
t2_regs.dier.modify(|_, w| w.ude().set_bit());
}
// Start the SPI transfers.
dma_channels.0.start();
dma_channels.1.start();
init::LateResources { init::LateResources {
afe0: afe0, afe0: afe0,
adc0: adc0_spi,
dac0: dac0_spi,
afe1: afe1, afe1: afe1,
adc1: adc1_spi,
dac1: dac1_spi,
timer: timer2, adcs,
dacs,
pounder: pounder_devices, pounder: pounder_devices,
eeprom_i2c, eeprom_i2c,
@ -772,30 +744,32 @@ const APP: () = {
} }
} }
#[task(binds = SPI3, resources = [adc1, dac1, iir_state, iir_ch], priority = 2)] #[task(binds=DMA1_STR3, resources=[adcs, dacs, iir_state, iir_ch], priority=2)]
fn spi3(c: spi3::Context) { fn adc_update(c: adc_update::Context) {
let output: u16 = { let (adc0_samples, adc1_samples) =
let a: u16 = c.resources.adc1.read().unwrap(); c.resources.adcs.transfer_complete_handler();
let x0 = f32::from(a as i16);
let y0 =
c.resources.iir_ch[1].update(&mut c.resources.iir_state[1], x0);
y0 as i16 as u16 ^ 0x8000
};
c.resources.dac1.send(output).unwrap(); let (dac0, dac1) = c.resources.dacs.prepare_data();
}
#[task(binds = SPI2, resources = [adc0, dac0, iir_state, iir_ch], priority = 2)] for (i, (adc0, adc1)) in
fn spi2(c: spi2::Context) { adc0_samples.iter().zip(adc1_samples.iter()).enumerate()
let output: u16 = { {
let a: u16 = c.resources.adc0.read().unwrap(); dac0[i] = {
let x0 = f32::from(a as i16); let x0 = f32::from(*adc0 as i16);
let y0 = let y0 = c.resources.iir_ch[0]
c.resources.iir_ch[0].update(&mut c.resources.iir_state[0], x0); .update(&mut c.resources.iir_state[0], x0);
y0 as i16 as u16 ^ 0x8000 y0 as i16 as u16 ^ 0x8000
}; };
c.resources.dac0.send(output).unwrap(); dac1[i] = {
let x1 = f32::from(*adc1 as i16);
let y1 = c.resources.iir_ch[1]
.update(&mut c.resources.iir_state[1], x1);
y1 as i16 as u16 ^ 0x8000
};
}
c.resources.dacs.commit_data();
} }
#[idle(resources=[net_interface, pounder, mac_addr, eth_mac, iir_state, iir_ch, afe0, afe1])] #[idle(resources=[net_interface, pounder, mac_addr, eth_mac, iir_state, iir_ch, afe0, afe1])]
@ -988,6 +962,26 @@ const APP: () = {
unsafe { ethernet::interrupt_handler() } unsafe { ethernet::interrupt_handler() }
} }
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
extern "C" { extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks // hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority // one per priority

119
src/sampling_timer.rs Normal file
View File

@ -0,0 +1,119 @@
///! The sampling timer is used for managing ADC sampling and external reference timestamping.
use super::hal;
/// The timer used for managing ADC sampling.
pub struct SamplingTimer {
timer: hal::timer::Timer<hal::stm32::TIM2>,
channels: Option<tim2::Channels>,
}
impl SamplingTimer {
/// Construct the sampling timer.
pub fn new(mut timer: hal::timer::Timer<hal::stm32::TIM2>) -> Self {
timer.pause();
Self {
timer,
// Note(unsafe): Once these channels are taken, we guarantee that we do not modify any
// of the underlying timer channel registers, as ownership of the channels is now
// provided through the associated channel structures. We additionally guarantee this
// can only be called once because there is only one Timer2 and this resource takes
// ownership of it once instantiated.
channels: unsafe { Some(tim2::Channels::new()) },
}
}
/// Get the timer capture/compare channels.
pub fn channels(&mut self) -> tim2::Channels {
self.channels.take().unwrap()
}
/// Start the sampling timer.
pub fn start(&mut self) {
self.timer.reset_counter();
self.timer.resume();
}
}
macro_rules! timer_channel {
($name:ident, $TY:ty, ($ccxde:expr, $ccrx:expr, $ccmrx_output:expr, $ccxs:expr)) => {
pub struct $name {}
paste::paste! {
impl $name {
/// Construct a new timer channel.
///
/// Note(unsafe): This function must only be called once. Once constructed, the
/// constructee guarantees to never modify the timer channel.
unsafe fn new() -> Self {
Self {}
}
/// Allow CH4 to generate DMA requests.
pub fn listen_dma(&self) {
let regs = unsafe { &*<$TY>::ptr() };
regs.dier.modify(|_, w| w.[< $ccxde >]().set_bit());
}
/// Operate CH2 as an output-compare.
///
/// # Args
/// * `value` - The value to compare the sampling timer's counter against.
pub fn to_output_compare(&self, value: u32) {
let regs = unsafe { &*<$TY>::ptr() };
assert!(value <= regs.arr.read().bits());
regs.[< $ccrx >].write(|w| w.ccr().bits(value));
regs.[< $ccmrx_output >]()
.modify(|_, w| unsafe { w.[< $ccxs >]().bits(0) });
}
}
}
};
}
pub mod tim2 {
use stm32h7xx_hal as hal;
/// The channels representing the timer.
pub struct Channels {
pub ch1: Channel1,
pub ch2: Channel2,
pub ch3: Channel3,
pub ch4: Channel4,
}
impl Channels {
/// Construct a new set of channels.
///
/// Note(unsafe): This is only safe to call once.
pub unsafe fn new() -> Self {
Self {
ch1: Channel1::new(),
ch2: Channel2::new(),
ch3: Channel3::new(),
ch4: Channel4::new(),
}
}
}
timer_channel!(
Channel1,
hal::stm32::TIM2,
(cc1de, ccr1, ccmr1_output, cc1s)
);
timer_channel!(
Channel2,
hal::stm32::TIM2,
(cc2de, ccr2, ccmr1_output, cc1s)
);
timer_channel!(
Channel3,
hal::stm32::TIM2,
(cc3de, ccr3, ccmr2_output, cc3s)
);
timer_channel!(
Channel4,
hal::stm32::TIM2,
(cc4de, ccr4, ccmr2_output, cc4s)
);
}