Refactoring telemetry to support binaries

This commit is contained in:
Ryan Summers 2021-04-20 14:12:47 +02:00
parent 1c9f30b4d5
commit afcf058590
5 changed files with 92 additions and 170 deletions

View File

@ -5,7 +5,7 @@
use stabilizer::{hardware, net}; use stabilizer::{hardware, net};
use miniconf::{minimq, Miniconf}; use miniconf::{minimq, Miniconf};
use serde::{Deserialize, Serialize}; use serde::Deserialize;
use dsp::iir; use dsp::iir;
use hardware::{ use hardware::{
@ -20,13 +20,6 @@ const SCALE: f32 = i16::MAX as _;
// The number of cascaded IIR biquads per channel. Select 1 or 2! // The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1; const IIR_CASCADE_LENGTH: usize = 1;
#[derive(Serialize, Clone)]
pub struct Telemetry {
latest_samples: [i16; 2],
latest_outputs: [i16; 2],
digital_inputs: [bool; 2],
}
#[derive(Clone, Copy, Debug, Deserialize, Miniconf)] #[derive(Clone, Copy, Debug, Deserialize, Miniconf)]
pub struct Settings { pub struct Settings {
afe: [AfeGain; 2], afe: [AfeGain; 2],
@ -48,17 +41,7 @@ impl Default for Settings {
} }
} }
impl Default for Telemetry { #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = stabilizer::hardware::SystemTimer)]
fn default() -> Self {
Self {
latest_samples: [0, 0],
latest_outputs: [0, 0],
digital_inputs: [false, false],
}
}
}
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = crate::hardware::SystemTimer)]
const APP: () = { const APP: () = {
struct Resources { struct Resources {
afes: (AFE0, AFE1), afes: (AFE0, AFE1),
@ -66,7 +49,7 @@ const APP: () = {
adcs: (Adc0Input, Adc1Input), adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output), dacs: (Dac0Output, Dac1Output),
mqtt_config: MiniconfInterface<Settings>, mqtt_config: MiniconfInterface<Settings>,
telemetry: Telemetry, telemetry: net::Telemetry,
settings: Settings, settings: Settings,
// Format: iir_state[ch][cascade-no][coeff] // Format: iir_state[ch][cascade-no][coeff]
@ -107,7 +90,7 @@ const APP: () = {
afes: stabilizer.afes, afes: stabilizer.afes,
adcs: stabilizer.adcs, adcs: stabilizer.adcs,
dacs: stabilizer.dacs, dacs: stabilizer.dacs,
telemetry: Telemetry::default(), telemetry: net::Telemetry::default(),
digital_inputs: stabilizer.digital_inputs, digital_inputs: stabilizer.digital_inputs,
mqtt_config, mqtt_config,
settings: Settings::default(), settings: Settings::default(),

View File

@ -1,143 +0,0 @@
#![deny(warnings)]
#![no_std]
#![no_main]
use dsp::{Accu, Complex, ComplexExt, Lockin};
use generic_array::typenum::U2;
use hardware::{Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1};
use stabilizer::{hardware, hardware::design_parameters};
// A constant sinusoid to send on the DAC output.
// Full-scale gives a +/- 10V amplitude waveform. Scale it down to give +/- 1V.
const ONE: i16 = (0.1 * u16::MAX as f32) as _;
const SQRT2: i16 = (ONE as f32 * 0.707) as _;
const DAC_SEQUENCE: [i16; design_parameters::SAMPLE_BUFFER_SIZE] =
[ONE, SQRT2, 0, -SQRT2, -ONE, -SQRT2, 0, SQRT2];
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
adc: Adc1Input,
dacs: (Dac0Output, Dac1Output),
lockin: Lockin<U2>,
}
#[init]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
// Enable ADC/DAC events
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
// Start sampling ADCs.
stabilizer.adc_dac_timer.start();
init::LateResources {
lockin: Lockin::default(),
afes: stabilizer.afes,
adc: stabilizer.adcs.1,
dacs: stabilizer.dacs,
}
}
/// Main DSP processing routine.
///
/// See `dual-iir` for general notes on processing time and timing.
///
/// This is an implementation of an internal-reference lockin on the ADC1 signal.
/// The reference at f_sample/8 is output on DAC0 and the phase of the demodulated
/// signal on DAC1.
#[task(binds=DMA1_STR4, resources=[adc, dacs, lockin], priority=2)]
fn process(c: process::Context) {
let lockin = c.resources.lockin;
let adc_samples = c.resources.adc.acquire_buffer();
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
c.resources.dacs.1.acquire_buffer(),
];
// Reference phase and frequency are known.
let pll_phase = 0i32;
let pll_frequency =
1i32 << (32 - design_parameters::SAMPLE_BUFFER_SIZE_LOG2);
// Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate)
let harmonic: i32 = -1;
// Demodulation LO phase offset
let phase_offset: i32 = 1 << 30;
// Log2 lowpass time constant.
let time_constant: u8 = 8;
let sample_frequency = (pll_frequency as i32).wrapping_mul(harmonic);
let sample_phase =
phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic));
let output: Complex<i32> = adc_samples
.iter()
// Zip in the LO phase.
.zip(Accu::new(sample_phase, sample_frequency))
// Convert to signed, MSB align the ADC sample, update the Lockin (demodulate, filter)
.map(|(&sample, phase)| {
let s = (sample as i16 as i32) << 16;
lockin.update(s, phase, time_constant)
})
// Decimate
.last()
.unwrap()
* 2; // Full scale assuming the 2f component is gone.
// Convert to DAC data.
for (i, data) in DAC_SEQUENCE.iter().enumerate() {
// DAC0 always generates a fixed sinusoidal output.
dac_samples[0][i] = *data as u16 ^ 0x8000;
dac_samples[1][i] = (output.arg() >> 16) as u16 ^ 0x8000;
}
}
#[idle(resources=[afes])]
fn idle(_: idle::Context) -> ! {
loop {
cortex_m::asm::wfi();
}
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { stm32h7xx_hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC1 input overrun");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority
fn DCMI();
fn JPEG();
fn SDMMC();
}
};

View File

@ -2,6 +2,7 @@
#![no_std] #![no_std]
#![no_main] #![no_main]
use embedded_hal::digital::v2::InputPin;
use generic_array::typenum::U4; use generic_array::typenum::U4;
use serde::Deserialize; use serde::Deserialize;
@ -12,10 +13,11 @@ use stabilizer::net;
use stabilizer::hardware::{ use stabilizer::hardware::{
design_parameters, setup, Adc0Input, Adc1Input, AfeGain, Dac0Output, design_parameters, setup, Adc0Input, Adc1Input, AfeGain, Dac0Output,
Dac1Output, InputStamper, AFE0, AFE1, Dac1Output, DigitalInput0, DigitalInput1, InputStamper, SystemTimer, AFE0,
AFE1,
}; };
use miniconf::Miniconf; use miniconf::{minimq, Miniconf};
use stabilizer::net::{Action, MiniconfInterface}; use stabilizer::net::{Action, MiniconfInterface};
#[derive(Copy, Clone, Debug, Deserialize, Miniconf)] #[derive(Copy, Clone, Debug, Deserialize, Miniconf)]
@ -36,6 +38,7 @@ pub struct Settings {
lockin_phase: i32, lockin_phase: i32,
output_conf: [Conf; 2], output_conf: [Conf; 2],
telemetry_period_secs: u16,
} }
impl Default for Settings { impl Default for Settings {
@ -50,11 +53,12 @@ impl Default for Settings {
lockin_phase: 0, // Demodulation LO phase offset lockin_phase: 0, // Demodulation LO phase offset
output_conf: [Conf::Quadrature; 2], output_conf: [Conf::Quadrature; 2],
telemetry_period_secs: 10,
} }
} }
} }
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)] #[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = stabilizer::hardware::SystemTimer)]
const APP: () = { const APP: () = {
struct Resources { struct Resources {
afes: (AFE0, AFE1), afes: (AFE0, AFE1),
@ -62,13 +66,15 @@ const APP: () = {
dacs: (Dac0Output, Dac1Output), dacs: (Dac0Output, Dac1Output),
mqtt_config: MiniconfInterface<Settings>, mqtt_config: MiniconfInterface<Settings>,
settings: Settings, settings: Settings,
telemetry: net::Telemetry,
digital_inputs: (DigitalInput0, DigitalInput1),
timestamper: InputStamper, timestamper: InputStamper,
pll: RPLL, pll: RPLL,
lockin: Lockin<U4>, lockin: Lockin<U4>,
} }
#[init(spawn=[settings_update])] #[init(spawn=[settings_update, telemetry])]
fn init(c: init::Context) -> init::LateResources { fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller // Configure the microcontroller
let (mut stabilizer, _pounder) = setup(c.core, c.device); let (mut stabilizer, _pounder) = setup(c.core, c.device);
@ -91,8 +97,9 @@ const APP: () = {
+ design_parameters::SAMPLE_BUFFER_SIZE_LOG2, + design_parameters::SAMPLE_BUFFER_SIZE_LOG2,
); );
// Spawn a settings update for default settings. // Spawn a settings and telemetry update for default settings.
c.spawn.settings_update().unwrap(); c.spawn.settings_update().unwrap();
c.spawn.telemetry().unwrap();
// Enable ADC/DAC events // Enable ADC/DAC events
stabilizer.adcs.0.start(); stabilizer.adcs.0.start();
@ -113,8 +120,10 @@ const APP: () = {
afes: stabilizer.afes, afes: stabilizer.afes,
adcs: stabilizer.adcs, adcs: stabilizer.adcs,
dacs: stabilizer.dacs, dacs: stabilizer.dacs,
digital_inputs: stabilizer.digital_inputs,
mqtt_config, mqtt_config,
timestamper: stabilizer.timestamper, timestamper: stabilizer.timestamper,
telemetry: net::Telemetry::default(),
settings, settings,
@ -130,7 +139,7 @@ const APP: () = {
/// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal. /// This is an implementation of a externally (DI0) referenced PLL lockin on the ADC0 signal.
/// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale. /// It outputs either I/Q or power/phase on DAC0/DAC1. Data is normalized to full scale.
/// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available. /// PLL bandwidth, filter bandwidth, slope, and x/y or power/phase post-filters are available.
#[task(binds=DMA1_STR4, resources=[adcs, dacs, lockin, timestamper, pll, settings], priority=2)] #[task(binds=DMA1_STR4, resources=[adcs, dacs, lockin, timestamper, pll, settings, telemetry], priority=2)]
fn process(c: process::Context) { fn process(c: process::Context) {
let adc_samples = [ let adc_samples = [
c.resources.adcs.0.acquire_buffer(), c.resources.adcs.0.acquire_buffer(),
@ -193,6 +202,14 @@ const APP: () = {
dac_samples[0][i] = (output[0] >> 16) as u16 ^ 0x8000; dac_samples[0][i] = (output[0] >> 16) as u16 ^ 0x8000;
dac_samples[1][i] = (output[1] >> 16) as u16 ^ 0x8000; dac_samples[1][i] = (output[1] >> 16) as u16 ^ 0x8000;
} }
// Update telemetry measurements.
// TODO: Should we report these as voltages?
c.resources.telemetry.latest_samples =
[adc_samples[0][0] as i16, adc_samples[1][0] as i16];
c.resources.telemetry.latest_outputs =
[dac_samples[0][0] as i16, dac_samples[1][0] as i16];
} }
#[idle(resources=[mqtt_config], spawn=[settings_update])] #[idle(resources=[mqtt_config], spawn=[settings_update])]
@ -222,6 +239,50 @@ const APP: () = {
c.resources.settings.lock(|current| *current = *settings); c.resources.settings.lock(|current| *current = *settings);
} }
#[task(priority = 1, resources=[mqtt_config, digital_inputs, settings, telemetry], schedule=[telemetry])]
fn telemetry(mut c: telemetry::Context) {
let mut telemetry =
c.resources.telemetry.lock(|telemetry| telemetry.clone());
telemetry.digital_inputs = [
c.resources.digital_inputs.0.is_high().unwrap(),
c.resources.digital_inputs.1.is_high().unwrap(),
];
// Serialize telemetry outside of a critical section to prevent blocking the processing
// task.
let telemetry = miniconf::serde_json_core::to_string::<
heapless::consts::U256,
_,
>(&telemetry)
.unwrap();
c.resources.mqtt_config.mqtt.client(|client| {
// TODO: Incorporate current MQTT prefix instead of hard-coded value.
client
.publish(
"dt/sinara/dual-iir/telemetry",
telemetry.as_bytes(),
minimq::QoS::AtMostOnce,
&[],
)
.ok()
});
let telemetry_period = c
.resources
.settings
.lock(|settings| settings.telemetry_period_secs);
// Schedule the telemetry task in the future.
c.schedule
.telemetry(
c.scheduled
+ SystemTimer::ticks_from_secs(telemetry_period as u32),
)
.unwrap();
}
#[task(binds = ETH, priority = 1)] #[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) { fn eth(_: eth::Context) {
unsafe { stm32h7xx_hal::ethernet::interrupt_handler() } unsafe { stm32h7xx_hal::ethernet::interrupt_handler() }

View File

@ -7,6 +7,9 @@ use core::fmt::Write;
use heapless::{consts, String}; use heapless::{consts, String};
use miniconf::minimq; use miniconf::minimq;
mod telemetry;
pub use telemetry::Telemetry;
/// Potential actions for firmware to take. /// Potential actions for firmware to take.
pub enum Action { pub enum Action {
/// Indicates that firmware can sleep for the next event. /// Indicates that firmware can sleep for the next event.

18
src/net/telemetry.rs Normal file
View File

@ -0,0 +1,18 @@
use serde::Serialize;
#[derive(Serialize, Clone)]
pub struct Telemetry {
pub latest_samples: [i16; 2],
pub latest_outputs: [i16; 2],
pub digital_inputs: [bool; 2],
}
impl Default for Telemetry {
fn default() -> Self {
Self {
latest_samples: [0, 0],
latest_outputs: [0, 0],
digital_inputs: [false, false],
}
}
}