More updates after PR review
This commit is contained in:
parent
67b6990fc0
commit
7ecd08d86b
|
@ -9,3 +9,18 @@ pub const ADC_DAC_SCK_MAX: MegaHertz = MegaHertz(50);
|
|||
|
||||
/// The optimal counting frequency of the hardware timers used for timestamping and sampling.
|
||||
pub const TIMER_FREQUENCY: MegaHertz = MegaHertz(100);
|
||||
|
||||
/// The QSPI frequency for communicating with the pounder DDS.
|
||||
pub const POUNDER_QSPI_FREQUENCY: MegaHertz = MegaHertz(40);
|
||||
|
||||
/// The delay after initiating a QSPI transfer before asserting the IO_Update for the pounder DDS.
|
||||
// Pounder Profile writes are always 16 bytes, with 2 cycles required per byte, coming out to a
|
||||
// total of 32 QSPI clock cycles. The QSPI is configured for 40MHz, so this comes out to an offset
|
||||
// of 800nS. We use 900ns to be safe.
|
||||
pub const POUNDER_IO_UPDATE_DELAY: f32 = 900_e-9;
|
||||
|
||||
/// The duration to assert IO_Update for the pounder DDS.
|
||||
// IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile write. With pounder
|
||||
// SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 400MHz), this corresponds to
|
||||
// 40ns. To accomodate rounding errors, we use 50ns instead.
|
||||
pub const POUNDER_IO_UPDATE_DURATION: f32 = 50_e-9;
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
///!
|
||||
///! This module only supports DI0 for timestamping due to trigger constraints on the DIx pins. If
|
||||
///! timestamping is desired in DI1, a separate timer + capture channel will be necessary.
|
||||
use super::{hal, timers, SAMPLE_BUFFER_SIZE, ADC_SAMPLE_TICKS};
|
||||
use super::{hal, timers, ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE};
|
||||
|
||||
/// Calculate the period of the digital input timestampe timer.
|
||||
///
|
||||
|
@ -39,7 +39,8 @@ use super::{hal, timers, SAMPLE_BUFFER_SIZE, ADC_SAMPLE_TICKS};
|
|||
/// A 32-bit value that can be programmed into a hardware timer period register.
|
||||
pub fn calculate_timestamp_timer_period() -> u32 {
|
||||
// Calculate how long a single batch requires in timer ticks.
|
||||
let batch_duration_ticks: u64 = SAMPLE_BUFFER_SIZE as u64 * ADC_SAMPLE_TICKS as u64;
|
||||
let batch_duration_ticks: u64 =
|
||||
SAMPLE_BUFFER_SIZE as u64 * ADC_SAMPLE_TICKS as u64;
|
||||
|
||||
// Calculate the largest power-of-two that is less than or equal to
|
||||
// `batches_per_overflow`. This is completed by eliminating the least significant
|
||||
|
@ -101,10 +102,8 @@ impl InputStamper {
|
|||
/// To prevent timestamp loss, the batch size and sampling rate must be adjusted such that at
|
||||
/// most one timestamp will occur in each data processing cycle.
|
||||
pub fn latest_timestamp(&mut self) -> Option<u32> {
|
||||
if self.capture_channel.check_overcapture() {
|
||||
panic!("DI0 timestamp overrun");
|
||||
}
|
||||
|
||||
self.capture_channel.latest_capture()
|
||||
self.capture_channel
|
||||
.latest_capture()
|
||||
.expect("DI0 timestamp overrun")
|
||||
}
|
||||
}
|
||||
|
|
31
src/main.rs
31
src/main.rs
|
@ -318,7 +318,8 @@ const APP: () = {
|
|||
// timer, but use a period that is longer.
|
||||
let mut timer = timers::TimestampTimer::new(timer5);
|
||||
|
||||
let period = digital_input_stamper::calculate_timestamp_timer_period();
|
||||
let period =
|
||||
digital_input_stamper::calculate_timestamp_timer_period();
|
||||
timer.set_period_ticks(period);
|
||||
|
||||
timer
|
||||
|
@ -543,7 +544,7 @@ const APP: () = {
|
|||
let qspi = hal::qspi::Qspi::bank2(
|
||||
dp.QUADSPI,
|
||||
qspi_pins,
|
||||
40.mhz(),
|
||||
design_parameters::POUNDER_QSPI_FREQUENCY,
|
||||
&ccdr.clocks,
|
||||
ccdr.peripheral.QSPI,
|
||||
);
|
||||
|
@ -665,30 +666,26 @@ const APP: () = {
|
|||
ccdr.peripheral.HRTIM,
|
||||
);
|
||||
|
||||
// IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile
|
||||
// write. With pounder SYNC_CLK running at 100MHz (1/4 of the pounder reference
|
||||
// clock of 400MHz), this corresponds to 40ns. To accomodate rounding errors, we
|
||||
// use 50ns instead.
|
||||
//
|
||||
// Profile writes are always 16 bytes, with 2 cycles required per byte, coming
|
||||
// out to a total of 32 QSPI clock cycles. The QSPI is configured for 40MHz, so
|
||||
// this comes out to an offset of 800nS. We use 900ns to be safe - note that the
|
||||
// timer is triggered after the QSPI write, which can take approximately 120nS,
|
||||
// so there is additional margin.
|
||||
// IO_Update occurs after a fixed delay from the QSPI write. Note that the timer
|
||||
// is triggered after the QSPI write, which can take approximately 120nS, so
|
||||
// there is additional margin.
|
||||
hrtimer.configure_single_shot(
|
||||
hrtimer::Channel::Two,
|
||||
50_e-9,
|
||||
900_e-9,
|
||||
design_parameters::POUNDER_IO_UPDATE_DURATION,
|
||||
design_parameters::POUNDER_IO_UPDATE_DELAY,
|
||||
);
|
||||
|
||||
// Ensure that we have enough time for an IO-update every sample.
|
||||
let sample_frequency =
|
||||
(design_parameters::TIMER_FREQUENCY.0 as f32
|
||||
let sample_frequency = (design_parameters::TIMER_FREQUENCY.0
|
||||
as f32
|
||||
* 1_000_000.0)
|
||||
/ ADC_SAMPLE_TICKS as f32;
|
||||
|
||||
let sample_period = 1.0 / sample_frequency;
|
||||
assert!(sample_period > 900_e-9);
|
||||
assert!(
|
||||
sample_period
|
||||
> design_parameters::POUNDER_IO_UPDATE_DELAY
|
||||
);
|
||||
|
||||
hrtimer
|
||||
};
|
||||
|
|
|
@ -147,17 +147,25 @@ macro_rules! timer_channels {
|
|||
impl [< Channel $index InputCapture >] {
|
||||
/// Get the latest capture from the channel.
|
||||
#[allow(dead_code)]
|
||||
pub fn latest_capture(&mut self) -> Option<u32> {
|
||||
pub fn latest_capture(&mut self) -> Result<Option<u32>, ()> {
|
||||
// Note(unsafe): This channel owns all access to the specific timer channel.
|
||||
// Only atomic operations on completed on the timer registers.
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
let sr = regs.sr.read();
|
||||
let ccx = regs.[< ccr $index >].read();
|
||||
if sr.[< cc $index if >]().bit_is_set() {
|
||||
|
||||
let result = if sr.[< cc $index if >]().bit_is_set() {
|
||||
regs.sr.modify(|_, w| w.[< cc $index if >]().clear_bit());
|
||||
Some(ccx.ccr().bits())
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
// If there is an overcapture, return an error.
|
||||
if sr.[< cc $index of >]().bit_is_clear() {
|
||||
Ok(result)
|
||||
} else {
|
||||
Err(())
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue