More updates after PR review

master
Ryan Summers 2021-01-04 18:04:01 +01:00
parent 67b6990fc0
commit 7ecd08d86b
4 changed files with 47 additions and 28 deletions

View File

@ -9,3 +9,18 @@ pub const ADC_DAC_SCK_MAX: MegaHertz = MegaHertz(50);
/// The optimal counting frequency of the hardware timers used for timestamping and sampling.
pub const TIMER_FREQUENCY: MegaHertz = MegaHertz(100);
/// The QSPI frequency for communicating with the pounder DDS.
pub const POUNDER_QSPI_FREQUENCY: MegaHertz = MegaHertz(40);
/// The delay after initiating a QSPI transfer before asserting the IO_Update for the pounder DDS.
// Pounder Profile writes are always 16 bytes, with 2 cycles required per byte, coming out to a
// total of 32 QSPI clock cycles. The QSPI is configured for 40MHz, so this comes out to an offset
// of 800nS. We use 900ns to be safe.
pub const POUNDER_IO_UPDATE_DELAY: f32 = 900_e-9;
/// The duration to assert IO_Update for the pounder DDS.
// IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile write. With pounder
// SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 400MHz), this corresponds to
// 40ns. To accomodate rounding errors, we use 50ns instead.
pub const POUNDER_IO_UPDATE_DURATION: f32 = 50_e-9;

View File

@ -24,7 +24,7 @@
///!
///! This module only supports DI0 for timestamping due to trigger constraints on the DIx pins. If
///! timestamping is desired in DI1, a separate timer + capture channel will be necessary.
use super::{hal, timers, SAMPLE_BUFFER_SIZE, ADC_SAMPLE_TICKS};
use super::{hal, timers, ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE};
/// Calculate the period of the digital input timestampe timer.
///
@ -39,7 +39,8 @@ use super::{hal, timers, SAMPLE_BUFFER_SIZE, ADC_SAMPLE_TICKS};
/// A 32-bit value that can be programmed into a hardware timer period register.
pub fn calculate_timestamp_timer_period() -> u32 {
// Calculate how long a single batch requires in timer ticks.
let batch_duration_ticks: u64 = SAMPLE_BUFFER_SIZE as u64 * ADC_SAMPLE_TICKS as u64;
let batch_duration_ticks: u64 =
SAMPLE_BUFFER_SIZE as u64 * ADC_SAMPLE_TICKS as u64;
// Calculate the largest power-of-two that is less than or equal to
// `batches_per_overflow`. This is completed by eliminating the least significant
@ -101,10 +102,8 @@ impl InputStamper {
/// To prevent timestamp loss, the batch size and sampling rate must be adjusted such that at
/// most one timestamp will occur in each data processing cycle.
pub fn latest_timestamp(&mut self) -> Option<u32> {
if self.capture_channel.check_overcapture() {
panic!("DI0 timestamp overrun");
}
self.capture_channel.latest_capture()
self.capture_channel
.latest_capture()
.expect("DI0 timestamp overrun")
}
}

View File

@ -318,7 +318,8 @@ const APP: () = {
// timer, but use a period that is longer.
let mut timer = timers::TimestampTimer::new(timer5);
let period = digital_input_stamper::calculate_timestamp_timer_period();
let period =
digital_input_stamper::calculate_timestamp_timer_period();
timer.set_period_ticks(period);
timer
@ -543,7 +544,7 @@ const APP: () = {
let qspi = hal::qspi::Qspi::bank2(
dp.QUADSPI,
qspi_pins,
40.mhz(),
design_parameters::POUNDER_QSPI_FREQUENCY,
&ccdr.clocks,
ccdr.peripheral.QSPI,
);
@ -665,30 +666,26 @@ const APP: () = {
ccdr.peripheral.HRTIM,
);
// IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile
// write. With pounder SYNC_CLK running at 100MHz (1/4 of the pounder reference
// clock of 400MHz), this corresponds to 40ns. To accomodate rounding errors, we
// use 50ns instead.
//
// Profile writes are always 16 bytes, with 2 cycles required per byte, coming
// out to a total of 32 QSPI clock cycles. The QSPI is configured for 40MHz, so
// this comes out to an offset of 800nS. We use 900ns to be safe - note that the
// timer is triggered after the QSPI write, which can take approximately 120nS,
// so there is additional margin.
// IO_Update occurs after a fixed delay from the QSPI write. Note that the timer
// is triggered after the QSPI write, which can take approximately 120nS, so
// there is additional margin.
hrtimer.configure_single_shot(
hrtimer::Channel::Two,
50_e-9,
900_e-9,
design_parameters::POUNDER_IO_UPDATE_DURATION,
design_parameters::POUNDER_IO_UPDATE_DELAY,
);
// Ensure that we have enough time for an IO-update every sample.
let sample_frequency =
(design_parameters::TIMER_FREQUENCY.0 as f32
* 1_000_000.0)
/ ADC_SAMPLE_TICKS as f32;
let sample_frequency = (design_parameters::TIMER_FREQUENCY.0
as f32
* 1_000_000.0)
/ ADC_SAMPLE_TICKS as f32;
let sample_period = 1.0 / sample_frequency;
assert!(sample_period > 900_e-9);
assert!(
sample_period
> design_parameters::POUNDER_IO_UPDATE_DELAY
);
hrtimer
};

View File

@ -147,17 +147,25 @@ macro_rules! timer_channels {
impl [< Channel $index InputCapture >] {
/// Get the latest capture from the channel.
#[allow(dead_code)]
pub fn latest_capture(&mut self) -> Option<u32> {
pub fn latest_capture(&mut self) -> Result<Option<u32>, ()> {
// Note(unsafe): This channel owns all access to the specific timer channel.
// Only atomic operations on completed on the timer registers.
let regs = unsafe { &*<$TY>::ptr() };
let sr = regs.sr.read();
let ccx = regs.[< ccr $index >].read();
if sr.[< cc $index if >]().bit_is_set() {
let result = if sr.[< cc $index if >]().bit_is_set() {
regs.sr.modify(|_, w| w.[< cc $index if >]().clear_bit());
Some(ccx.ccr().bits())
} else {
None
};
// If there is an overcapture, return an error.
if sr.[< cc $index of >]().bit_is_clear() {
Ok(result)
} else {
Err(())
}
}