Merge branch 'master' into rj/visibility-cleanup
* master: (34 commits) miniconf: update example usage apps: spi isrs are spi errors pounder/timestamp: docs updatew pll: update tests and benches pll: merge advance into update (like rpll) pll: add advance() pounder_timestamper: use input capture prescaler Revert "Revert "pounder timestmper: don't use DMA"" miniconf: add some checks, simplify miniconf.py: make retain an option refactor flatten_closures clippy recursion fix a few clippy lints on files that are touched Revert "pounder timestmper: don't use DMA" pounder timestmper: don't use DMA lockin: dma fence lockin: port to fast double buffered DMA dma: implement overflow checking pounder: clippy pounder: add comment on channel enum ...
This commit is contained in:
commit
50ea2f360c
|
@ -404,8 +404,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "mcp23017"
|
||||
version = "0.1.1"
|
||||
source = "git+https://github.com/lucazulian/mcp23017.git?rev=523d71d#523d71dcb11fc0ea4bd9385ef2527ae7a7eee987"
|
||||
version = "1.0.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "2c32fd6627e73f1cfa95c00ddcdcb5a6a6ddbd10b308d08588a502c018b6e12c"
|
||||
dependencies = [
|
||||
"embedded-hal",
|
||||
]
|
||||
|
@ -775,8 +776,7 @@ dependencies = [
|
|||
[[package]]
|
||||
name = "stm32h7xx-hal"
|
||||
version = "0.9.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "67034b80041bc33a48df1c1c435b6ae3bb18c35e42aa7e702ce8363b96793398"
|
||||
source = "git+https://github.com/quartiq/stm32h7xx-hal.git?rev=b0b8a93#b0b8a930b2c3bc5fcebc2e905b4c5e13360111a5"
|
||||
dependencies = [
|
||||
"bare-metal 1.0.0",
|
||||
"cast",
|
||||
|
|
11
Cargo.toml
11
Cargo.toml
|
@ -45,20 +45,19 @@ ad9959 = { path = "ad9959" }
|
|||
miniconf = "0.1.0"
|
||||
shared-bus = {version = "0.2.2", features = ["cortex-m"] }
|
||||
serde-json-core = "0.4"
|
||||
mcp23017 = "1.0"
|
||||
|
||||
# rtt-target bump
|
||||
[dependencies.rtt-logger]
|
||||
git = "https://github.com/quartiq/rtt-logger.git"
|
||||
rev = "70b0eb5"
|
||||
|
||||
# rewrite
|
||||
[dependencies.mcp23017]
|
||||
git = "https://github.com/lucazulian/mcp23017.git"
|
||||
rev = "523d71d"
|
||||
|
||||
# fast double buffered DMA without poisoning and buffer swapping
|
||||
[dependencies.stm32h7xx-hal]
|
||||
features = ["stm32h743v", "rt", "unproven", "ethernet", "quadspi"]
|
||||
version = "0.9.0"
|
||||
# version = "0.9.0"
|
||||
git = "https://github.com/quartiq/stm32h7xx-hal.git"
|
||||
rev = "b0b8a93"
|
||||
|
||||
# link.x section start/end
|
||||
[patch.crates-io.cortex-m-rt]
|
||||
|
|
|
@ -43,6 +43,7 @@ pub enum Mode {
|
|||
|
||||
/// The configuration registers within the AD9959 DDS device. The values of each register are
|
||||
/// equivalent to the address.
|
||||
#[allow(clippy::upper_case_acronyms)]
|
||||
pub enum Register {
|
||||
CSR = 0x00,
|
||||
FR1 = 0x01,
|
||||
|
@ -596,6 +597,22 @@ impl ProfileSerializer {
|
|||
self.index += value.len() + 1;
|
||||
}
|
||||
|
||||
fn pad(&mut self) {
|
||||
// Pad the buffer to 32-bit (4 byte) alignment by adding dummy writes to CSR and LSRR.
|
||||
match self.index & 3 {
|
||||
3 => {
|
||||
// For a level of 3, we have to pad with 5 bytes to align things.
|
||||
self.add_write(Register::CSR, &[(self.mode as u8) << 1]);
|
||||
self.add_write(Register::LSRR, &[0, 0]);
|
||||
}
|
||||
2 => self.add_write(Register::CSR, &[(self.mode as u8) << 1]),
|
||||
1 => self.add_write(Register::LSRR, &[0, 0]),
|
||||
0 => {}
|
||||
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the serialized profile as a slice of 32-bit words.
|
||||
///
|
||||
/// # Note
|
||||
|
@ -604,21 +621,8 @@ impl ProfileSerializer {
|
|||
///
|
||||
/// # Returns
|
||||
/// A slice of `u32` words representing the serialized profile.
|
||||
pub fn finalize<'a>(&'a mut self) -> &[u32] {
|
||||
// Pad the buffer to 32-bit alignment by adding dummy writes to CSR and LSRR.
|
||||
let padding = 4 - (self.index % 4);
|
||||
match padding {
|
||||
1 => {
|
||||
// For a pad size of 1, we have to pad with 5 bytes to align things.
|
||||
self.add_write(Register::CSR, &[(self.mode as u8) << 1]);
|
||||
self.add_write(Register::LSRR, &[0, 0]);
|
||||
}
|
||||
2 => self.add_write(Register::CSR, &[(self.mode as u8) << 1]),
|
||||
3 => self.add_write(Register::LSRR, &[0, 0]),
|
||||
4 => {}
|
||||
|
||||
_ => unreachable!(),
|
||||
}
|
||||
pub fn finalize<'a>(&'a mut self) -> &'a [u32] {
|
||||
self.pad();
|
||||
unsafe {
|
||||
core::slice::from_raw_parts::<'a, u32>(
|
||||
&self.data as *const _ as *const u32,
|
||||
|
|
|
@ -44,11 +44,11 @@ fn pll_bench() {
|
|||
let mut dut = PLL::default();
|
||||
println!(
|
||||
"PLL::update(t, 12, 12): {}",
|
||||
bench_env(0x241, |x| dut.update(*x, 12, 12))
|
||||
bench_env(Some(0x241), |x| dut.update(*x, 12, 12))
|
||||
);
|
||||
println!(
|
||||
"PLL::update(t, sf, sp): {}",
|
||||
bench_env((0x241, 21, 20), |(x, p, q)| dut.update(*x, *p, *q))
|
||||
bench_env((Some(0x241), 21, 20), |(x, p, q)| dut.update(*x, *p, *q))
|
||||
);
|
||||
}
|
||||
|
||||
|
|
|
@ -77,6 +77,8 @@ pub fn atan2(y: i32, x: i32) -> i32 {
|
|||
|
||||
if sign.1 {
|
||||
angle = angle.wrapping_neg();
|
||||
// Negation ends up in slightly faster assembly
|
||||
// angle = !angle;
|
||||
}
|
||||
|
||||
angle
|
||||
|
|
|
@ -45,7 +45,7 @@ impl PLL {
|
|||
/// The signal's phase/frequency is reconstructed relative to the sampling period.
|
||||
///
|
||||
/// Args:
|
||||
/// * `x`: New input phase sample.
|
||||
/// * `x`: New input phase sample or None if a sample has been missed.
|
||||
/// * `shift_frequency`: Frequency error scaling. The frequency gain per update is
|
||||
/// `1/(1 << shift_frequency)`.
|
||||
/// * `shift_phase`: Phase error scaling. The phase gain is `1/(1 << shift_phase)`
|
||||
|
@ -55,12 +55,13 @@ impl PLL {
|
|||
/// A tuple of instantaneous phase and frequency (the current phase increment).
|
||||
pub fn update(
|
||||
&mut self,
|
||||
x: i32,
|
||||
x: Option<i32>,
|
||||
shift_frequency: u8,
|
||||
shift_phase: u8,
|
||||
) -> (i32, i32) {
|
||||
debug_assert!((1..=30).contains(&shift_frequency));
|
||||
debug_assert!((1..=30).contains(&shift_phase));
|
||||
let f = if let Some(x) = x {
|
||||
let e = x.wrapping_sub(self.f);
|
||||
self.f = self.f.wrapping_add(
|
||||
(1i32 << (shift_frequency - 1))
|
||||
|
@ -69,12 +70,16 @@ impl PLL {
|
|||
>> shift_frequency,
|
||||
);
|
||||
self.x = x;
|
||||
let f = self.f.wrapping_add(
|
||||
self.f.wrapping_add(
|
||||
(1i32 << (shift_phase - 1))
|
||||
.wrapping_add(e)
|
||||
.wrapping_sub(self.y)
|
||||
>> shift_phase,
|
||||
);
|
||||
)
|
||||
} else {
|
||||
self.x = self.x.wrapping_add(self.f);
|
||||
self.f
|
||||
};
|
||||
self.y = self.y.wrapping_add(f);
|
||||
(self.y, f)
|
||||
}
|
||||
|
@ -86,7 +91,7 @@ mod tests {
|
|||
#[test]
|
||||
fn mini() {
|
||||
let mut p = PLL::default();
|
||||
let (y, f) = p.update(0x10000, 8, 4);
|
||||
let (y, f) = p.update(Some(0x10000), 8, 4);
|
||||
assert_eq!(y, 0x1100);
|
||||
assert_eq!(f, y);
|
||||
}
|
||||
|
@ -100,7 +105,7 @@ mod tests {
|
|||
let mut x = 0i32;
|
||||
for i in 0..n {
|
||||
x = x.wrapping_add(f0);
|
||||
let (y, f) = p.update(x, shift.0, shift.1);
|
||||
let (y, f) = p.update(Some(x), shift.0, shift.1);
|
||||
if i > n / 4 {
|
||||
assert_eq!(f.wrapping_sub(f0).abs() <= 1, true);
|
||||
}
|
||||
|
|
|
@ -87,20 +87,3 @@ pub fn macc_i32(y0: i32, x: &[i32], a: &[i32], shift: u32) -> i32 {
|
|||
.fold(y0, |y, xa| y + xa);
|
||||
(y >> shift) as i32
|
||||
}
|
||||
|
||||
/// Combine high and low i32 into a single downscaled i32, saturating the type.
|
||||
pub fn saturating_scale(lo: i32, hi: i32, shift: u32) -> i32 {
|
||||
debug_assert!(shift & 31 == shift);
|
||||
|
||||
let shift_hi = 31 - shift;
|
||||
debug_assert!(shift_hi & 31 == shift_hi);
|
||||
|
||||
let over = hi >> shift;
|
||||
if over < -1 {
|
||||
i32::MIN
|
||||
} else if over > 0 {
|
||||
i32::MAX
|
||||
} else {
|
||||
(lo >> shift) + (hi << shift_hi)
|
||||
}
|
||||
}
|
||||
|
|
|
@ -16,6 +16,27 @@ pub fn overflowing_sub(y: i32, x: i32) -> (i32, i8) {
|
|||
(delta, wrap)
|
||||
}
|
||||
|
||||
/// Combine high and low i32 into a single downscaled i32, saturating monotonically.
|
||||
///
|
||||
/// Args:
|
||||
/// `lo`: LSB i32 to scale down by `shift` and range-extend with `hi`
|
||||
/// `hi`: MSB i32 to scale up and extend `lo` with. Output will be clipped if
|
||||
/// `hi` exceeds the output i32 range.
|
||||
/// `shift`: Downscale `lo` by that many bits. Values from 1 to 32 inclusive
|
||||
/// are valid.
|
||||
pub fn saturating_scale(lo: i32, hi: i32, shift: u32) -> i32 {
|
||||
debug_assert!(shift > 0);
|
||||
debug_assert!(shift <= 32);
|
||||
let hi_range = -1 << (shift - 1);
|
||||
if hi <= hi_range {
|
||||
i32::MIN - hi_range
|
||||
} else if -hi <= hi_range {
|
||||
hi_range - i32::MIN
|
||||
} else {
|
||||
(lo >> shift) + (hi << (32 - shift))
|
||||
}
|
||||
}
|
||||
|
||||
/// Overflow unwrapper.
|
||||
///
|
||||
/// This is unwrapping as in the phase and overflow unwrapping context, not
|
||||
|
|
70
miniconf.py
70
miniconf.py
|
@ -16,6 +16,7 @@ from gmqtt import Client as MqttClient
|
|||
|
||||
LOGGER = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Miniconf:
|
||||
"""An asynchronous API for controlling Miniconf devices using MQTT."""
|
||||
|
||||
|
@ -33,64 +34,64 @@ class Miniconf:
|
|||
client: A connected MQTT5 client.
|
||||
prefix: The MQTT toptic prefix of the device to control.
|
||||
"""
|
||||
self.uuid = uuid.uuid1()
|
||||
self.request_id = 0
|
||||
self.client = client
|
||||
self.prefix = prefix
|
||||
self.inflight = {}
|
||||
self.client.on_message = self._handle_response
|
||||
self.client.subscribe(f'{prefix}/response/{self.uuid.hex}')
|
||||
self.response_topic = f'{prefix}/response/{uuid.uuid1().hex}'
|
||||
self.client.subscribe(self.response_topic)
|
||||
|
||||
def _handle_response(self, _client, _topic, payload, _qos, properties):
|
||||
def _handle_response(self, _client, topic, payload, _qos, properties):
|
||||
"""Callback function for when messages are received over MQTT.
|
||||
|
||||
Args:
|
||||
_client: The MQTT client.
|
||||
_topic: The topic that the message was received on.
|
||||
topic: The topic that the message was received on.
|
||||
payload: The payload of the message.
|
||||
_qos: The quality-of-service level of the received packet
|
||||
properties: A dictionary of properties associated with the message.
|
||||
"""
|
||||
# Extract corrleation data from the properties
|
||||
correlation_data = json.loads(properties['correlation_data'][0].decode('ascii'))
|
||||
|
||||
# Get the request ID from the correlation data
|
||||
request_id = correlation_data['request_id']
|
||||
if topic == self.response_topic:
|
||||
# Extract request_id corrleation data from the properties
|
||||
request_id = int.from_bytes(
|
||||
properties['correlation_data'][0], 'big')
|
||||
|
||||
self.inflight[request_id].set_result(json.loads(payload))
|
||||
del self.inflight[request_id]
|
||||
else:
|
||||
LOGGER.warn('Unexpected message on "%s"', topic)
|
||||
|
||||
|
||||
async def command(self, path, value):
|
||||
async def command(self, path, value, retain=True):
|
||||
"""Write the provided data to the specified path.
|
||||
|
||||
Args:
|
||||
path: The path to write the message to.
|
||||
value: The value to write to the path.
|
||||
retain: Retain the MQTT message changing the setting
|
||||
by the broker.
|
||||
|
||||
Returns:
|
||||
The response to the command as a dictionary.
|
||||
"""
|
||||
setting_topic = f'{self.prefix}/settings/{path}'
|
||||
response_topic = f'{self.prefix}/response/{self.uuid.hex}'
|
||||
topic = f'{self.prefix}/settings/{path}'
|
||||
|
||||
# Assign a unique identifier to this update request.
|
||||
request_id = self.request_id
|
||||
self.request_id += 1
|
||||
assert request_id not in self.inflight, 'Invalid ID encountered'
|
||||
|
||||
correlation_data = json.dumps({
|
||||
'request_id': request_id,
|
||||
}).encode('ascii')
|
||||
|
||||
value = json.dumps(value)
|
||||
LOGGER.info('Sending %s to "%s"', value, setting_topic)
|
||||
fut = asyncio.get_running_loop().create_future()
|
||||
|
||||
self.inflight[request_id] = fut
|
||||
self.client.publish(setting_topic, payload=value, qos=0, retain=True,
|
||||
response_topic=response_topic,
|
||||
# Assign unique correlation data for response dispatch
|
||||
assert self.request_id not in self.inflight
|
||||
self.inflight[self.request_id] = fut
|
||||
correlation_data = self.request_id.to_bytes(4, 'big')
|
||||
self.request_id += 1
|
||||
|
||||
payload = json.dumps(value)
|
||||
LOGGER.info('Sending "%s" to "%s"', value, topic)
|
||||
|
||||
self.client.publish(
|
||||
topic, payload=payload, qos=0, retain=retain,
|
||||
response_topic=self.response_topic,
|
||||
correlation_data=correlation_data)
|
||||
|
||||
return await fut
|
||||
|
||||
|
||||
|
@ -100,16 +101,20 @@ def main():
|
|||
description='Miniconf command line interface.',
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog='''Examples:
|
||||
%(prog)s dt/sinara/stabilizer afe/0='"G2"' iir_ch/0/0=\
|
||||
%(prog)s dt/sinara/dual-iir/00-11-22-33-aa-bb iir_ch/0/0=\
|
||||
'{"y_min":-32767,"y_max":32767,"y_offset":0,"ba":[1.0,0,0,0,0]}'
|
||||
%(prog)s dt/sinara/lockin/00-11-22-33-aa-bb afe/0='"G2"'\
|
||||
''')
|
||||
parser.add_argument('-v', '--verbose', action='count', default=0,
|
||||
help='Increase logging verbosity')
|
||||
parser.add_argument('--broker', '-b', default='mqtt', type=str,
|
||||
help='The MQTT broker address')
|
||||
parser.add_argument('--no-retain', '-n', default=False,
|
||||
action='store_true',
|
||||
help='Do not retain the affected settings')
|
||||
parser.add_argument('prefix', type=str,
|
||||
help='The MQTT topic prefix of the target')
|
||||
parser.add_argument('settings', metavar="KEY=VALUE", nargs='+',
|
||||
parser.add_argument('settings', metavar="PATH=VALUE", nargs='+',
|
||||
help='JSON encoded values for settings path keys.')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
@ -122,9 +127,10 @@ def main():
|
|||
|
||||
async def configure_settings():
|
||||
interface = await Miniconf.create(args.prefix, args.broker)
|
||||
for key_value in args.settings:
|
||||
path, value = key_value.split("=", 1)
|
||||
response = await interface.command(path, json.loads(value))
|
||||
for setting in args.settings:
|
||||
path, value = setting.split("=", 1)
|
||||
response = await interface.command(path, json.loads(value),
|
||||
not args.no_retain)
|
||||
print(f'{path}: {response}')
|
||||
if response['code'] != 0:
|
||||
return response['code']
|
||||
|
|
|
@ -2,16 +2,19 @@
|
|||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use core::sync::atomic::{fence, Ordering};
|
||||
use miniconf::Miniconf;
|
||||
use serde::Deserialize;
|
||||
|
||||
use dsp::iir;
|
||||
use stabilizer::{
|
||||
flatten_closures,
|
||||
hardware::{
|
||||
hal, setup, Adc0Input, Adc1Input, AdcCode, AfeGain, Dac0Output,
|
||||
Dac1Output, DacCode, DigitalInput0, DigitalInput1, InputPin,
|
||||
SystemTimer, AFE0, AFE1,
|
||||
},
|
||||
net::{Miniconf, NetworkState, NetworkUsers, Telemetry, TelemetryBuffer},
|
||||
net::{NetworkState, NetworkUsers, Telemetry, TelemetryBuffer},
|
||||
};
|
||||
|
||||
const SCALE: f32 = i16::MAX as _;
|
||||
|
@ -121,51 +124,63 @@ const APP: () = {
|
|||
#[task(binds=DMA1_STR4, resources=[adcs, digital_inputs, dacs, iir_state, settings, telemetry], priority=2)]
|
||||
#[inline(never)]
|
||||
#[link_section = ".itcm.process"]
|
||||
fn process(c: process::Context) {
|
||||
let adc_samples = [
|
||||
c.resources.adcs.0.acquire_buffer(),
|
||||
c.resources.adcs.1.acquire_buffer(),
|
||||
];
|
||||
|
||||
let dac_samples = [
|
||||
c.resources.dacs.0.acquire_buffer(),
|
||||
c.resources.dacs.1.acquire_buffer(),
|
||||
];
|
||||
fn process(mut c: process::Context) {
|
||||
let process::Resources {
|
||||
adcs: (ref mut adc0, ref mut adc1),
|
||||
dacs: (ref mut dac0, ref mut dac1),
|
||||
ref digital_inputs,
|
||||
ref settings,
|
||||
ref mut iir_state,
|
||||
ref mut telemetry,
|
||||
} = c.resources;
|
||||
|
||||
let digital_inputs = [
|
||||
c.resources.digital_inputs.0.is_high().unwrap(),
|
||||
c.resources.digital_inputs.1.is_high().unwrap(),
|
||||
digital_inputs.0.is_high().unwrap(),
|
||||
digital_inputs.1.is_high().unwrap(),
|
||||
];
|
||||
telemetry.digital_inputs = digital_inputs;
|
||||
|
||||
let hold = c.resources.settings.force_hold
|
||||
|| (digital_inputs[1] && c.resources.settings.allow_hold);
|
||||
let hold =
|
||||
settings.force_hold || (digital_inputs[1] && settings.allow_hold);
|
||||
|
||||
flatten_closures!(with_buffer, adc0, adc1, dac0, dac1, {
|
||||
let adc_samples = [adc0, adc1];
|
||||
let dac_samples = [dac0, dac1];
|
||||
|
||||
// Preserve instruction and data ordering w.r.t. DMA flag access.
|
||||
fence(Ordering::SeqCst);
|
||||
|
||||
for channel in 0..adc_samples.len() {
|
||||
for sample in 0..adc_samples[0].len() {
|
||||
let mut y = f32::from(adc_samples[channel][sample] as i16);
|
||||
for i in 0..c.resources.iir_state[channel].len() {
|
||||
y = c.resources.settings.iir_ch[channel][i].update(
|
||||
&mut c.resources.iir_state[channel][i],
|
||||
y,
|
||||
hold,
|
||||
);
|
||||
}
|
||||
// Note(unsafe): The filter limits ensure that the value is in range.
|
||||
adc_samples[channel]
|
||||
.iter()
|
||||
.zip(dac_samples[channel].iter_mut())
|
||||
.map(|(ai, di)| {
|
||||
let x = f32::from(*ai as i16);
|
||||
let y = settings.iir_ch[channel]
|
||||
.iter()
|
||||
.zip(iir_state[channel].iter_mut())
|
||||
.fold(x, |yi, (ch, state)| {
|
||||
ch.update(state, yi, hold)
|
||||
});
|
||||
// Note(unsafe): The filter limits must ensure that the value is in range.
|
||||
// The truncation introduces 1/2 LSB distortion.
|
||||
let y = unsafe { y.to_int_unchecked::<i16>() };
|
||||
let y: i16 = unsafe { y.to_int_unchecked() };
|
||||
// Convert to DAC code
|
||||
dac_samples[channel][sample] = DacCode::from(y).0;
|
||||
}
|
||||
*di = DacCode::from(y).0;
|
||||
})
|
||||
.last();
|
||||
}
|
||||
|
||||
// Update telemetry measurements.
|
||||
c.resources.telemetry.adcs =
|
||||
telemetry.adcs =
|
||||
[AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])];
|
||||
|
||||
c.resources.telemetry.dacs =
|
||||
telemetry.dacs =
|
||||
[DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])];
|
||||
|
||||
c.resources.telemetry.digital_inputs = digital_inputs;
|
||||
// Preserve instruction and data ordering w.r.t. DMA flag access.
|
||||
fence(Ordering::SeqCst);
|
||||
});
|
||||
}
|
||||
|
||||
#[idle(resources=[network], spawn=[settings_update])]
|
||||
|
@ -223,22 +238,22 @@ const APP: () = {
|
|||
|
||||
#[task(binds = SPI2, priority = 3)]
|
||||
fn spi2(_: spi2::Context) {
|
||||
panic!("ADC0 input overrun");
|
||||
panic!("ADC0 SPI error");
|
||||
}
|
||||
|
||||
#[task(binds = SPI3, priority = 3)]
|
||||
fn spi3(_: spi3::Context) {
|
||||
panic!("ADC1 input overrun");
|
||||
panic!("ADC1 SPI error");
|
||||
}
|
||||
|
||||
#[task(binds = SPI4, priority = 3)]
|
||||
fn spi4(_: spi4::Context) {
|
||||
panic!("DAC0 output error");
|
||||
panic!("DAC0 SPI error");
|
||||
}
|
||||
|
||||
#[task(binds = SPI5, priority = 3)]
|
||||
fn spi5(_: spi5::Context) {
|
||||
panic!("DAC1 output error");
|
||||
panic!("DAC1 SPI error");
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
|
|
|
@ -2,16 +2,19 @@
|
|||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use core::sync::atomic::{fence, Ordering};
|
||||
use miniconf::Miniconf;
|
||||
use serde::Deserialize;
|
||||
|
||||
use dsp::{Accu, Complex, ComplexExt, Lockin, RPLL};
|
||||
use stabilizer::{
|
||||
flatten_closures,
|
||||
hardware::{
|
||||
design_parameters, hal, setup, Adc0Input, Adc1Input, AdcCode, AfeGain,
|
||||
Dac0Output, Dac1Output, DacCode, DigitalInput0, DigitalInput1,
|
||||
InputPin, InputStamper, SystemTimer, AFE0, AFE1,
|
||||
},
|
||||
net::{Miniconf, NetworkState, NetworkUsers, Telemetry, TelemetryBuffer},
|
||||
net::{NetworkState, NetworkUsers, Telemetry, TelemetryBuffer},
|
||||
};
|
||||
|
||||
// A constant sinusoid to send on the DAC output.
|
||||
|
@ -154,26 +157,22 @@ const APP: () = {
|
|||
#[task(binds=DMA1_STR4, resources=[adcs, dacs, lockin, timestamper, pll, settings, telemetry], priority=2)]
|
||||
#[inline(never)]
|
||||
#[link_section = ".itcm.process"]
|
||||
fn process(c: process::Context) {
|
||||
let adc_samples = [
|
||||
c.resources.adcs.0.acquire_buffer(),
|
||||
c.resources.adcs.1.acquire_buffer(),
|
||||
];
|
||||
|
||||
let mut dac_samples = [
|
||||
c.resources.dacs.0.acquire_buffer(),
|
||||
c.resources.dacs.1.acquire_buffer(),
|
||||
];
|
||||
|
||||
let lockin = c.resources.lockin;
|
||||
let settings = c.resources.settings;
|
||||
fn process(mut c: process::Context) {
|
||||
let process::Resources {
|
||||
adcs: (ref mut adc0, ref mut adc1),
|
||||
dacs: (ref mut dac0, ref mut dac1),
|
||||
ref settings,
|
||||
ref mut telemetry,
|
||||
ref mut lockin,
|
||||
ref mut pll,
|
||||
ref mut timestamper,
|
||||
} = c.resources;
|
||||
|
||||
let (reference_phase, reference_frequency) = match settings.lockin_mode
|
||||
{
|
||||
LockinMode::External => {
|
||||
let timestamp =
|
||||
c.resources.timestamper.latest_timestamp().unwrap_or(None); // Ignore data from timer capture overflows.
|
||||
let (pll_phase, pll_frequency) = c.resources.pll.update(
|
||||
let timestamp = timestamper.latest_timestamp().unwrap_or(None); // Ignore data from timer capture overflows.
|
||||
let (pll_phase, pll_frequency) = pll.update(
|
||||
timestamp.map(|t| t as i32),
|
||||
settings.pll_tc[0],
|
||||
settings.pll_tc[1],
|
||||
|
@ -200,6 +199,13 @@ const APP: () = {
|
|||
reference_phase.wrapping_mul(settings.lockin_harmonic),
|
||||
);
|
||||
|
||||
flatten_closures!(with_buffer, adc0, adc1, dac0, dac1, {
|
||||
let adc_samples = [adc0, adc1];
|
||||
let mut dac_samples = [dac0, dac1];
|
||||
|
||||
// Preserve instruction and data ordering w.r.t. DMA flag access.
|
||||
fence(Ordering::SeqCst);
|
||||
|
||||
let output: Complex<i32> = adc_samples[0]
|
||||
.iter()
|
||||
// Zip in the LO phase.
|
||||
|
@ -232,13 +238,16 @@ const APP: () = {
|
|||
*sample = DacCode::from(value as i16).0;
|
||||
}
|
||||
}
|
||||
|
||||
// Update telemetry measurements.
|
||||
c.resources.telemetry.adcs =
|
||||
telemetry.adcs =
|
||||
[AdcCode(adc_samples[0][0]), AdcCode(adc_samples[1][0])];
|
||||
|
||||
c.resources.telemetry.dacs =
|
||||
telemetry.dacs =
|
||||
[DacCode(dac_samples[0][0]), DacCode(dac_samples[1][0])];
|
||||
|
||||
// Preserve instruction and data ordering w.r.t. DMA flag access.
|
||||
fence(Ordering::SeqCst);
|
||||
});
|
||||
}
|
||||
|
||||
#[idle(resources=[network], spawn=[settings_update])]
|
||||
|
@ -300,22 +309,22 @@ const APP: () = {
|
|||
|
||||
#[task(binds = SPI2, priority = 3)]
|
||||
fn spi2(_: spi2::Context) {
|
||||
panic!("ADC0 input overrun");
|
||||
panic!("ADC0 SPI error");
|
||||
}
|
||||
|
||||
#[task(binds = SPI3, priority = 3)]
|
||||
fn spi3(_: spi3::Context) {
|
||||
panic!("ADC1 input overrun");
|
||||
panic!("ADC1 SPI error");
|
||||
}
|
||||
|
||||
#[task(binds = SPI4, priority = 3)]
|
||||
fn spi4(_: spi4::Context) {
|
||||
panic!("DAC0 output error");
|
||||
panic!("DAC0 SPI error");
|
||||
}
|
||||
|
||||
#[task(binds = SPI5, priority = 3)]
|
||||
fn spi5(_: spi5::Context) {
|
||||
panic!("DAC1 output error");
|
||||
panic!("DAC1 SPI error");
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
|
|
|
@ -29,15 +29,9 @@
|
|||
///! available. When enough samples have been collected, a transfer-complete interrupt is generated
|
||||
///! and the ADC samples are available for processing.
|
||||
///!
|
||||
///! The SPI peripheral internally has an 8- or 16-byte TX and RX FIFO, which corresponds to a 4- or
|
||||
///! 8-sample buffer for incoming ADC samples. During the handling of the DMA transfer completion,
|
||||
///! there is a small window where buffers are swapped over where it's possible that a sample could
|
||||
///! be lost. In order to avoid this, the SPI RX FIFO is effectively used as a "sample overflow"
|
||||
///! region and can buffer a number of samples until the next DMA transfer is configured. If a DMA
|
||||
///! transfer is still not set in time, the SPI peripheral will generate an input-overrun interrupt.
|
||||
///! This interrupt then serves as a means of detecting if samples have been lost, which will occur
|
||||
///! whenever data processing takes longer than the collection period.
|
||||
///!
|
||||
///! After a complete transfer of a batch of samples, the inactive buffer is available to the
|
||||
///! user for processing. The processing must complete before the DMA transfer of the next batch
|
||||
///! completes.
|
||||
///!
|
||||
///! ## Starting Data Collection
|
||||
///!
|
||||
|
@ -68,26 +62,26 @@
|
|||
///! sample DMA requests, which can be completed by setting e.g. ADC0's comparison to a counter
|
||||
///! value of 0 and ADC1's comparison to a counter value of 1.
|
||||
///!
|
||||
///! In this implementation, single buffer mode DMA transfers are used because the SPI RX FIFO can
|
||||
///! be used as a means to both detect and buffer ADC samples during the buffer swap-over. Because
|
||||
///! of this, double-buffered mode does not offer any advantages over single-buffered mode (unless
|
||||
///! double-buffered mode offers less overhead due to the DMA disable/enable procedure).
|
||||
///! In this implementation, double buffer mode DMA transfers are used because the SPI RX FIFOs
|
||||
///! have finite depth, FIFO access is slower than AXISRAM access, and because the single
|
||||
///! buffer mode DMA disable/enable and buffer update sequence is slow.
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
use super::design_parameters::SAMPLE_BUFFER_SIZE;
|
||||
use super::design_parameters::{SampleBuffer, SAMPLE_BUFFER_SIZE};
|
||||
use super::timers;
|
||||
|
||||
use hal::dma::{
|
||||
config::Priority,
|
||||
dma::{DMAReq, DmaConfig},
|
||||
traits::TargetAddress,
|
||||
MemoryToPeripheral, PeripheralToMemory, Transfer,
|
||||
DMAError, MemoryToPeripheral, PeripheralToMemory, Transfer,
|
||||
};
|
||||
|
||||
/// A type representing an ADC sample.
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct AdcCode(pub u16);
|
||||
|
||||
#[allow(clippy::from_over_into)]
|
||||
impl Into<f32> for AdcCode {
|
||||
/// Convert raw ADC codes to/from voltage levels.
|
||||
///
|
||||
|
@ -119,8 +113,7 @@ static mut SPI_EOT_CLEAR: [u32; 1] = [0x00];
|
|||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined. The dimensions are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut ADC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 2]; 2] =
|
||||
[[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
|
||||
static mut ADC_BUF: [[SampleBuffer; 2]; 2] = [[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
|
||||
|
||||
macro_rules! adc_input {
|
||||
($name:ident, $index:literal, $trigger_stream:ident, $data_stream:ident, $clear_stream:ident,
|
||||
|
@ -192,12 +185,11 @@ macro_rules! adc_input {
|
|||
|
||||
/// Represents data associated with ADC.
|
||||
pub struct $name {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
&'static mut SampleBuffer,
|
||||
hal::dma::DBTransfer,
|
||||
>,
|
||||
trigger_transfer: Transfer<
|
||||
|
@ -316,6 +308,7 @@ macro_rules! adc_input {
|
|||
// data stream is used to trigger a transfer completion interrupt.
|
||||
let data_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.double_buffer(true)
|
||||
.transfer_complete_interrupt($index == 1)
|
||||
.priority(Priority::VeryHigh);
|
||||
|
||||
|
@ -333,17 +326,14 @@ macro_rules! adc_input {
|
|||
Transfer::init(
|
||||
data_stream,
|
||||
spi,
|
||||
// Note(unsafe): The ADC_BUF[$index][0] is "owned" by this peripheral.
|
||||
// Note(unsafe): The ADC_BUF[$index] is "owned" by this peripheral.
|
||||
// It shall not be used anywhere else in the module.
|
||||
unsafe { &mut ADC_BUF[$index][0] },
|
||||
None,
|
||||
unsafe { Some(&mut ADC_BUF[$index][1]) },
|
||||
data_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
// Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It
|
||||
// shall not be used anywhere else in the module.
|
||||
next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) },
|
||||
transfer: data_transfer,
|
||||
trigger_transfer,
|
||||
clear_transfer,
|
||||
|
@ -364,27 +354,17 @@ macro_rules! adc_input {
|
|||
|
||||
}
|
||||
|
||||
/// Obtain a buffer filled with ADC samples.
|
||||
/// Wait for the transfer of the currently active buffer to complete,
|
||||
/// then call a function on the now inactive buffer and acknowledge the
|
||||
/// transfer complete flag.
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with ADC samples.
|
||||
pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
// Wait for the transfer to fully complete before continuing. Note: If a device
|
||||
// hangs up, check that this conditional is passing correctly, as there is no
|
||||
// time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
let (prev_buffer, _, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
// .unwrap_none() https://github.com/rust-lang/rust/issues/62633
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
|
||||
self.next_buffer.as_ref().unwrap()
|
||||
/// NOTE(unsafe): Memory safety and access ordering is not guaranteed
|
||||
/// (see the HAL DMA docs).
|
||||
pub fn with_buffer<F, R>(&mut self, f: F) -> Result<R, DMAError>
|
||||
where
|
||||
F: FnOnce(&mut SampleBuffer) -> R,
|
||||
{
|
||||
unsafe { self.transfer.next_dbm_transfer_with(|buf, _current| f(buf)) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -233,11 +233,6 @@ pub fn setup(
|
|||
let dma_streams =
|
||||
hal::dma::dma::StreamsTuple::new(device.DMA1, ccdr.peripheral.DMA1);
|
||||
|
||||
// Early, before the DMA1 peripherals (#272)
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
let dma2_streams =
|
||||
hal::dma::dma::StreamsTuple::new(device.DMA2, ccdr.peripheral.DMA2);
|
||||
|
||||
// Configure timer 2 to trigger conversions for the ADC
|
||||
let mut sampling_timer = {
|
||||
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
|
||||
|
@ -802,7 +797,7 @@ pub fn setup(
|
|||
let scl = gpiob.pb8.into_alternate_af4().set_open_drain();
|
||||
let i2c1 = device.I2C1.i2c(
|
||||
(scl, sda),
|
||||
100.khz(),
|
||||
400.khz(),
|
||||
ccdr.peripheral.I2C1,
|
||||
&ccdr.clocks,
|
||||
);
|
||||
|
@ -946,7 +941,6 @@ pub fn setup(
|
|||
|
||||
pounder::timestamp::Timestamper::new(
|
||||
timestamp_timer,
|
||||
dma2_streams.0,
|
||||
tim8_channels.ch1,
|
||||
&mut sampling_timer,
|
||||
etr_pin,
|
||||
|
|
|
@ -52,13 +52,13 @@
|
|||
///! served promptly after the transfer completes.
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
use super::design_parameters::SAMPLE_BUFFER_SIZE;
|
||||
use super::design_parameters::{SampleBuffer, SAMPLE_BUFFER_SIZE};
|
||||
use super::timers;
|
||||
|
||||
use hal::dma::{
|
||||
dma::{DMAReq, DmaConfig},
|
||||
traits::TargetAddress,
|
||||
MemoryToPeripheral, Transfer,
|
||||
DMAError, MemoryToPeripheral, Transfer,
|
||||
};
|
||||
|
||||
// The following global buffers are used for the DAC code DMA transfers. Two buffers are used for
|
||||
|
@ -66,14 +66,14 @@ use hal::dma::{
|
|||
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
|
||||
// startup are undefined. The dimensions are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 3]; 2] =
|
||||
[[[0; SAMPLE_BUFFER_SIZE]; 3]; 2];
|
||||
static mut DAC_BUF: [[SampleBuffer; 2]; 2] = [[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
|
||||
|
||||
/// Custom type for referencing DAC output codes.
|
||||
/// The internal integer is the raw code written to the DAC output register.
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct DacCode(pub u16);
|
||||
|
||||
#[allow(clippy::from_over_into)]
|
||||
impl Into<f32> for DacCode {
|
||||
fn into(self) -> f32 {
|
||||
// The DAC output range in bipolar mode (including the external output op-amp) is +/- 4.096
|
||||
|
@ -105,7 +105,7 @@ macro_rules! dac_output {
|
|||
_channel: timers::tim2::$trigger_channel,
|
||||
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
|
||||
) -> Self {
|
||||
Self { _channel, spi }
|
||||
Self { spi, _channel }
|
||||
}
|
||||
|
||||
/// Start the SPI and begin operating in a DMA-driven transfer mode.
|
||||
|
@ -137,13 +137,12 @@ macro_rules! dac_output {
|
|||
|
||||
/// Represents data associated with DAC.
|
||||
pub struct $name {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::$data_stream<hal::stm32::DMA1>,
|
||||
$spi,
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
&'static mut SampleBuffer,
|
||||
hal::dma::DBTransfer,
|
||||
>,
|
||||
}
|
||||
|
@ -198,33 +197,26 @@ macro_rules! dac_output {
|
|||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
transfer,
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC_BUF[$index][2]) },
|
||||
}
|
||||
Self { transfer }
|
||||
}
|
||||
|
||||
pub fn start(&mut self) {
|
||||
self.transfer.start(|spi| spi.start_dma());
|
||||
}
|
||||
|
||||
/// Acquire the next output buffer to populate it with DAC codes.
|
||||
pub fn acquire_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Start the next transfer.
|
||||
let (prev_buffer, _, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
// .unwrap_none() https://github.com/rust-lang/rust/issues/62633
|
||||
self.next_buffer.replace(prev_buffer);
|
||||
|
||||
self.next_buffer.as_mut().unwrap()
|
||||
/// Wait for the transfer of the currently active buffer to complete,
|
||||
/// then call a function on the now inactive buffer and acknowledge the
|
||||
/// transfer complete flag.
|
||||
///
|
||||
/// NOTE(unsafe): Memory safety and access ordering is not guaranteed
|
||||
/// (see the HAL DMA docs).
|
||||
pub fn with_buffer<F, R>(&mut self, f: F) -> Result<R, DMAError>
|
||||
where
|
||||
F: FnOnce(&mut SampleBuffer) -> R,
|
||||
{
|
||||
unsafe {
|
||||
self.transfer.next_dbm_transfer_with(|buf, _current| f(buf))
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
|
|
@ -50,5 +50,7 @@ pub const ADC_SAMPLE_TICKS: u16 = 1 << ADC_SAMPLE_TICKS_LOG2;
|
|||
pub const SAMPLE_BUFFER_SIZE_LOG2: u8 = 3;
|
||||
pub const SAMPLE_BUFFER_SIZE: usize = 1 << SAMPLE_BUFFER_SIZE_LOG2;
|
||||
|
||||
pub type SampleBuffer = [u16; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
// The MQTT broker IPv4 address
|
||||
pub const MQTT_BROKER: [u8; 4] = [10, 34, 16, 10];
|
||||
|
|
|
@ -30,16 +30,16 @@ pub trait AttenuatorInterface {
|
|||
// Read all the channels, modify the channel of interest, and write all the channels back.
|
||||
// This ensures the staging register and the output register are always in sync.
|
||||
let mut channels = [0_u8; 4];
|
||||
self.read_all_attenuators(&mut channels)?;
|
||||
self.transfer_attenuators(&mut channels)?;
|
||||
|
||||
// The lowest 2 bits of the 8-bit shift register on the attenuator are ignored. Shift the
|
||||
// attenuator code into the upper 6 bits of the register value. Note that the attenuator
|
||||
// treats inputs as active-low, so the code is inverted before writing.
|
||||
channels[channel as usize] = (!attenuation_code) << 2;
|
||||
self.write_all_attenuators(&channels)?;
|
||||
channels[channel as usize] = !(attenuation_code << 2);
|
||||
self.transfer_attenuators(&mut channels)?;
|
||||
|
||||
// Finally, latch the output of the updated channel to force it into an active state.
|
||||
self.latch_attenuators(channel)?;
|
||||
self.latch_attenuator(channel)?;
|
||||
|
||||
Ok(attenuation_code as f32 / 2.0)
|
||||
}
|
||||
|
@ -57,8 +57,8 @@ pub trait AttenuatorInterface {
|
|||
// Reading the data always shifts data out of the staging registers, so we perform a
|
||||
// duplicate write-back to ensure the staging register is always equal to the output
|
||||
// register.
|
||||
self.read_all_attenuators(&mut channels)?;
|
||||
self.write_all_attenuators(&channels)?;
|
||||
self.transfer_attenuators(&mut channels)?;
|
||||
self.transfer_attenuators(&mut channels)?;
|
||||
|
||||
// The attenuation code is stored in the upper 6 bits of the register, where each LSB
|
||||
// represents 0.5 dB. The attenuator stores the code as active-low, so inverting the result
|
||||
|
@ -74,13 +74,10 @@ pub trait AttenuatorInterface {
|
|||
|
||||
fn reset_attenuators(&mut self) -> Result<(), Error>;
|
||||
|
||||
fn latch_attenuators(&mut self, channel: Channel) -> Result<(), Error>;
|
||||
fn read_all_attenuators(
|
||||
fn latch_attenuator(&mut self, channel: Channel) -> Result<(), Error>;
|
||||
|
||||
fn transfer_attenuators(
|
||||
&mut self,
|
||||
channels: &mut [u8; 4],
|
||||
) -> Result<(), Error>;
|
||||
fn write_all_attenuators(
|
||||
&mut self,
|
||||
channels: &[u8; 4],
|
||||
) -> Result<(), Error>;
|
||||
}
|
||||
|
|
|
@ -52,9 +52,11 @@
|
|||
///! compile-time-known register update sequence needed for the application, the serialization
|
||||
///! process can be done once and then register values can be written into a pre-computed serialized
|
||||
///! buffer to avoid the software overhead of much of the serialization process.
|
||||
use log::warn;
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
use super::{hrtimer::HighResTimerE, QspiInterface};
|
||||
use ad9959::{Channel, DdsConfig, ProfileSerializer};
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
/// The DDS profile update stream.
|
||||
pub struct DdsOutput {
|
||||
|
|
|
@ -15,14 +15,21 @@ pub use dds_output::*;
|
|||
pub use hrtimer::{Channel as HRTimerChannel, *};
|
||||
pub use rf_power::*;
|
||||
|
||||
const EXT_CLK_SEL_PIN: u8 = 8 + 7;
|
||||
#[allow(dead_code)]
|
||||
const OSC_EN_N_PIN: u8 = 8 + 6;
|
||||
const ATT_RST_N_PIN: u8 = 8 + 5;
|
||||
const ATT_LE3_PIN: u8 = 8 + 3;
|
||||
const ATT_LE2_PIN: u8 = 8 + 2;
|
||||
const ATT_LE1_PIN: u8 = 8 + 1;
|
||||
const ATT_LE0_PIN: u8 = 8;
|
||||
pub enum GpioPin {
|
||||
Led4Green = 0,
|
||||
Led5Red = 1,
|
||||
Led6Green = 2,
|
||||
Led7Red = 3,
|
||||
Led8Green = 4,
|
||||
Led9Red = 5,
|
||||
AttLe0 = 8,
|
||||
AttLe1 = 8 + 1,
|
||||
AttLe2 = 8 + 2,
|
||||
AttLe3 = 8 + 3,
|
||||
AttRstN = 8 + 5,
|
||||
OscEnN = 8 + 6,
|
||||
ExtClkSel = 8 + 7,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub enum Error {
|
||||
|
@ -35,13 +42,15 @@ pub enum Error {
|
|||
Adc,
|
||||
}
|
||||
|
||||
/// The numerical value (discriminant) of the Channel enum is the index in the attenuator shift
|
||||
/// register as well as the attenuator latch enable signal index on the GPIO extender.
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
#[allow(dead_code)]
|
||||
pub enum Channel {
|
||||
In0,
|
||||
In1,
|
||||
Out0,
|
||||
Out1,
|
||||
In0 = 0,
|
||||
Out0 = 1,
|
||||
In1 = 2,
|
||||
Out1 = 3,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize, Copy, Clone, Debug)]
|
||||
|
@ -78,14 +87,14 @@ pub struct DdsClockConfig {
|
|||
pub external_clock: bool,
|
||||
}
|
||||
|
||||
impl Into<ad9959::Channel> for Channel {
|
||||
impl From<Channel> for ad9959::Channel {
|
||||
/// Translate pounder channels to DDS output channels.
|
||||
fn into(self) -> ad9959::Channel {
|
||||
match self {
|
||||
Channel::In0 => ad9959::Channel::Two,
|
||||
Channel::In1 => ad9959::Channel::Four,
|
||||
Channel::Out0 => ad9959::Channel::One,
|
||||
Channel::Out1 => ad9959::Channel::Three,
|
||||
fn from(other: Channel) -> Self {
|
||||
match other {
|
||||
Channel::In0 => Self::Two,
|
||||
Channel::In1 => Self::Four,
|
||||
Channel::Out0 => Self::One,
|
||||
Channel::Out1 => Self::Three,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -298,25 +307,20 @@ impl PounderDevices {
|
|||
adc2_in_p,
|
||||
};
|
||||
|
||||
// Configure power-on-default state for pounder. All LEDs are on, on-board oscillator
|
||||
// selected, attenuators out of reset. Note that testing indicates the output state needs to
|
||||
// be set first to properly update the output registers.
|
||||
// Configure power-on-default state for pounder. All LEDs are off, on-board oscillator
|
||||
// selected and enabled, attenuators out of reset. Note that testing indicates the
|
||||
// output state needs to be set first to properly update the output registers.
|
||||
devices
|
||||
.mcp23017
|
||||
.all_pin_mode(mcp23017::PinMode::OUTPUT)
|
||||
.map_err(|_| Error::I2c)?;
|
||||
devices
|
||||
.mcp23017
|
||||
.write_gpio(mcp23017::Port::GPIOA, 0x3F)
|
||||
.write_gpio(mcp23017::Port::GPIOA, 0x00)
|
||||
.map_err(|_| Error::I2c)?;
|
||||
devices
|
||||
.mcp23017
|
||||
.write_gpio(mcp23017::Port::GPIOB, 1 << 5)
|
||||
.map_err(|_| Error::I2c)?;
|
||||
|
||||
devices
|
||||
.mcp23017
|
||||
.digital_write(EXT_CLK_SEL_PIN, false)
|
||||
.write_gpio(mcp23017::Port::GPIOB, 0x2F)
|
||||
.map_err(|_| Error::I2c)?;
|
||||
|
||||
Ok(devices)
|
||||
|
@ -327,12 +331,11 @@ impl AttenuatorInterface for PounderDevices {
|
|||
/// Reset all of the attenuators to a power-on default state.
|
||||
fn reset_attenuators(&mut self) -> Result<(), Error> {
|
||||
self.mcp23017
|
||||
.digital_write(ATT_RST_N_PIN, false)
|
||||
.write_gpio(mcp23017::Port::GPIOB, 0x0f)
|
||||
.map_err(|_| Error::I2c)?;
|
||||
// TODO: Measure the I2C transaction speed to the RST pin to ensure that the delay is
|
||||
// sufficient. Document the delay here.
|
||||
// Duration of one I2C transaction is sufficiently long.
|
||||
self.mcp23017
|
||||
.digital_write(ATT_RST_N_PIN, true)
|
||||
.write_gpio(mcp23017::Port::GPIOB, 0x2f)
|
||||
.map_err(|_| Error::I2c)?;
|
||||
|
||||
Ok(())
|
||||
|
@ -342,31 +345,24 @@ impl AttenuatorInterface for PounderDevices {
|
|||
///
|
||||
/// Args:
|
||||
/// * `channel` - The attenuator channel to latch.
|
||||
fn latch_attenuators(&mut self, channel: Channel) -> Result<(), Error> {
|
||||
let pin = match channel {
|
||||
Channel::In0 => ATT_LE0_PIN,
|
||||
Channel::In1 => ATT_LE2_PIN,
|
||||
Channel::Out0 => ATT_LE1_PIN,
|
||||
Channel::Out1 => ATT_LE3_PIN,
|
||||
};
|
||||
|
||||
fn latch_attenuator(&mut self, channel: Channel) -> Result<(), Error> {
|
||||
let pin = channel as u8;
|
||||
self.mcp23017
|
||||
.digital_write(pin, true)
|
||||
.write_gpio(mcp23017::Port::GPIOB, 0x2f & !(1 << pin))
|
||||
.map_err(|_| Error::I2c)?;
|
||||
// TODO: Measure the I2C transaction speed to the RST pin to ensure that the delay is
|
||||
// sufficient. Document the delay here.
|
||||
// Duration of one I2C transaction is sufficiently long.
|
||||
self.mcp23017
|
||||
.digital_write(pin, false)
|
||||
.write_gpio(mcp23017::Port::GPIOB, 0x2f)
|
||||
.map_err(|_| Error::I2c)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Read the raw attenuation codes stored in the attenuator shift registers.
|
||||
///
|
||||
/// Args:
|
||||
/// * `channels` - A slice to store the channel readings into.
|
||||
fn read_all_attenuators(
|
||||
/// * `channels` - A 4 byte slice to be shifted into the
|
||||
/// attenuators and to contain the data shifted out.
|
||||
fn transfer_attenuators(
|
||||
&mut self,
|
||||
channels: &mut [u8; 4],
|
||||
) -> Result<(), Error> {
|
||||
|
@ -376,23 +372,6 @@ impl AttenuatorInterface for PounderDevices {
|
|||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Write the attenuator shift registers.
|
||||
///
|
||||
/// Args:
|
||||
/// * `channels` - The data to write into the attenuators.
|
||||
fn write_all_attenuators(
|
||||
&mut self,
|
||||
channels: &[u8; 4],
|
||||
) -> Result<(), Error> {
|
||||
let mut result = [0_u8; 4];
|
||||
result.clone_from_slice(channels);
|
||||
self.attenuator_spi
|
||||
.transfer(&mut result)
|
||||
.map_err(|_| Error::Spi)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl PowerMeasurementInterface for PounderDevices {
|
||||
|
|
|
@ -1,20 +1,22 @@
|
|||
use super::{Channel, Error};
|
||||
|
||||
/// Provide an interface to measure RF input power in dB.
|
||||
/// Provide an interface to measure RF input power in dBm.
|
||||
pub trait PowerMeasurementInterface {
|
||||
fn sample_converter(&mut self, channel: Channel) -> Result<f32, Error>;
|
||||
|
||||
/// Measure the power of an input channel in dBm.
|
||||
///
|
||||
/// Note: This function assumes the input channel is connected to an AD8363 output.
|
||||
///
|
||||
/// Args:
|
||||
/// * `channel` - The pounder channel to measure the power of in dBm.
|
||||
/// * `channel` - The pounder input channel to measure the power of.
|
||||
///
|
||||
/// Returns:
|
||||
/// Power in dBm after the digitally controlled attenuator before the amplifier.
|
||||
fn measure_power(&mut self, channel: Channel) -> Result<f32, Error> {
|
||||
let analog_measurement = self.sample_converter(channel)?;
|
||||
|
||||
// The AD8363 with VSET connected to VOUT provides an output voltage of 51.7 mV/dB at
|
||||
// 100MHz. It also indicates a y-intercept of -58dBm.
|
||||
Ok(analog_measurement / 0.0517 - 58.0)
|
||||
// 100MHz with an intercept of -58 dBm.
|
||||
// It is placed behind a 20 dB tap.
|
||||
Ok(analog_measurement * (1. / 0.0517) + (-58. + 20.))
|
||||
}
|
||||
}
|
||||
|
|
|
@ -13,50 +13,24 @@
|
|||
///! Once the timer is configured, an input capture is configured to record the timer count
|
||||
///! register. The input capture is configured to utilize an internal trigger for the input capture.
|
||||
///! The internal trigger is selected such that when a sample is generated on ADC0, the input
|
||||
///! capture is simultaneously triggered. This results in the input capture triggering identically
|
||||
///! to when the ADC samples the input.
|
||||
///!
|
||||
///! Once the input capture is properly configured, a DMA transfer is configured to collect all of
|
||||
///! timestamps. The DMA transfer collects 1 timestamp for each ADC sample collected. In order to
|
||||
///! avoid potentially losing a timestamp for a sample, the DMA transfer operates in double-buffer
|
||||
///! mode. As soon as the DMA transfer completes, the hardware automatically swaps over to a second
|
||||
///! buffer to continue capturing. This alleviates timing sensitivities of the DMA transfer
|
||||
///! schedule.
|
||||
///! capture is simultaneously triggered. That trigger is prescaled (its rate is divided) by the
|
||||
///! batch size. This results in the input capture triggering identically to when the ADC samples
|
||||
///! the last sample of the batch. That sample is then available for processing by the user.
|
||||
use crate::hardware::{design_parameters, timers};
|
||||
use core::convert::TryFrom;
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
use hal::dma::{dma::DmaConfig, PeripheralToMemory, Transfer};
|
||||
|
||||
use crate::hardware::{design_parameters::SAMPLE_BUFFER_SIZE, timers};
|
||||
|
||||
// Three buffers are required for double buffered mode - 2 are owned by the DMA stream and 1 is the
|
||||
// working data provided to the application. These buffers must exist in a DMA-accessible memory
|
||||
// region. Note that AXISRAM is not initialized on boot, so their initial contents are undefined.
|
||||
#[link_section = ".axisram.buffers"]
|
||||
static mut BUF: [[u16; SAMPLE_BUFFER_SIZE]; 3] = [[0; SAMPLE_BUFFER_SIZE]; 3];
|
||||
|
||||
/// Software unit to timestamp stabilizer ADC samples using an external pounder reference clock.
|
||||
pub struct Timestamper {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
timer: timers::PounderTimestampTimer,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream0<hal::stm32::DMA2>,
|
||||
timers::tim8::Channel1InputCapture,
|
||||
PeripheralToMemory,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
hal::dma::DBTransfer,
|
||||
>,
|
||||
capture_channel: timers::tim8::Channel1InputCapture,
|
||||
}
|
||||
|
||||
impl Timestamper {
|
||||
/// Construct the pounder sample timestamper.
|
||||
///
|
||||
/// # Note
|
||||
/// The DMA is immediately configured after instantiation. It will not collect any samples
|
||||
/// until the sample timer begins to cause input capture triggers.
|
||||
///
|
||||
/// # Args
|
||||
/// * `timestamp_timer` - The timer peripheral used for capturing timestamps from.
|
||||
/// * `stream` - The DMA stream to use for collecting timestamps.
|
||||
/// * `capture_channel` - The input capture channel for collecting timestamps.
|
||||
/// * `sampling_timer` - The stabilizer ADC sampling timer.
|
||||
/// * `_clock_input` - The input pin for the external clock from Pounder.
|
||||
|
@ -65,18 +39,12 @@ impl Timestamper {
|
|||
/// The new pounder timestamper in an operational state.
|
||||
pub fn new(
|
||||
mut timestamp_timer: timers::PounderTimestampTimer,
|
||||
stream: hal::dma::dma::Stream0<hal::stm32::DMA2>,
|
||||
capture_channel: timers::tim8::Channel1,
|
||||
sampling_timer: &mut timers::SamplingTimer,
|
||||
_clock_input: hal::gpio::gpioa::PA0<
|
||||
hal::gpio::Alternate<hal::gpio::AF3>,
|
||||
>,
|
||||
) -> Self {
|
||||
let config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.circular_buffer(true)
|
||||
.double_buffer(true);
|
||||
|
||||
// The sampling timer should generate a trigger output when CH1 comparison occurs.
|
||||
sampling_timer.generate_trigger(timers::TriggerGenerator::ComparePulse);
|
||||
|
||||
|
@ -85,64 +53,39 @@ impl Timestamper {
|
|||
timestamp_timer.set_trigger_source(timers::TriggerSource::Trigger1);
|
||||
|
||||
// The capture channel should capture whenever the trigger input occurs.
|
||||
let input_capture = capture_channel
|
||||
let mut input_capture = capture_channel
|
||||
.into_input_capture(timers::tim8::CaptureSource1::TRC);
|
||||
input_capture.listen_dma();
|
||||
|
||||
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
|
||||
let data_transfer: Transfer<_, _, PeripheralToMemory, _, _> =
|
||||
Transfer::init(
|
||||
stream,
|
||||
input_capture,
|
||||
// Note(unsafe): BUF[0] and BUF[1] are "owned" by this peripheral.
|
||||
// They shall not be used anywhere else in the module.
|
||||
unsafe { &mut BUF[0] },
|
||||
unsafe { Some(&mut BUF[1]) },
|
||||
config,
|
||||
// Capture at the batch period.
|
||||
input_capture.configure_prescaler(
|
||||
timers::Prescaler::try_from(
|
||||
design_parameters::SAMPLE_BUFFER_SIZE_LOG2,
|
||||
)
|
||||
.unwrap(),
|
||||
);
|
||||
|
||||
Self {
|
||||
timer: timestamp_timer,
|
||||
transfer: data_transfer,
|
||||
|
||||
// Note(unsafe): BUF[2] is "owned" by this peripheral. It shall not be used anywhere
|
||||
// else in the module.
|
||||
next_buffer: unsafe { Some(&mut BUF[2]) },
|
||||
capture_channel: input_capture,
|
||||
}
|
||||
}
|
||||
|
||||
/// Start the DMA transfer for collecting timestamps.
|
||||
#[allow(dead_code)]
|
||||
/// Start collecting timestamps.
|
||||
pub fn start(&mut self) {
|
||||
self.transfer
|
||||
.start(|capture_channel| capture_channel.enable());
|
||||
self.capture_channel.enable();
|
||||
}
|
||||
|
||||
/// Update the period of the underlying timestamp timer.
|
||||
#[allow(dead_code)]
|
||||
pub fn update_period(&mut self, period: u16) {
|
||||
self.timer.set_period_ticks(period);
|
||||
}
|
||||
|
||||
/// Obtain a buffer filled with timestamps.
|
||||
/// Obtain a timestamp.
|
||||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with timestamps.
|
||||
#[allow(dead_code)]
|
||||
pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
|
||||
// no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Start the next transfer.
|
||||
let (prev_buffer, _, _) =
|
||||
self.transfer.next_transfer(next_buffer).unwrap();
|
||||
|
||||
self.next_buffer.replace(prev_buffer); // .unwrap_none() https://github.com/rust-lang/rust/issues/62633
|
||||
|
||||
self.next_buffer.as_ref().unwrap()
|
||||
/// A `Result` potentially indicating capture overflow and containing a `Option` of a captured
|
||||
/// timestamp.
|
||||
pub fn latest_timestamp(&mut self) -> Result<Option<u16>, Option<u16>> {
|
||||
self.capture_channel.latest_capture()
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
///! The sampling timer is used for managing ADC sampling and external reference timestamping.
|
||||
use super::hal;
|
||||
use num_enum::TryFromPrimitive;
|
||||
|
||||
use hal::stm32::{
|
||||
// TIM1 and TIM8 have identical registers.
|
||||
|
@ -34,6 +35,8 @@ pub enum TriggerSource {
|
|||
|
||||
/// Prescalers for externally-supplied reference clocks.
|
||||
#[allow(dead_code)]
|
||||
#[derive(TryFromPrimitive)]
|
||||
#[repr(u8)]
|
||||
pub enum Prescaler {
|
||||
Div1 = 0b00,
|
||||
Div2 = 0b01,
|
||||
|
@ -353,6 +356,21 @@ macro_rules! timer_channels {
|
|||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
regs.[< $ccmrx _input >]().modify(|_, w| w.[< ic $index f >]().bits(filter as u8));
|
||||
}
|
||||
|
||||
/// Configure the input capture prescaler.
|
||||
///
|
||||
/// # Args
|
||||
/// * `psc` - Prescaler exponent.
|
||||
#[allow(dead_code)]
|
||||
pub fn configure_prescaler(&mut self, prescaler: super::Prescaler) {
|
||||
// Note(unsafe): This channel owns all access to the specific timer channel.
|
||||
// Only atomic operations on completed on the timer registers.
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
// Note(unsafe): Enum values are all valid.
|
||||
#[allow(unused_unsafe)]
|
||||
regs.[< $ccmrx _input >]().modify(|_, w| unsafe {
|
||||
w.[< ic $index psc >]().bits(prescaler as u8)});
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This manually implements DMA support for input-capture channels. This
|
||||
|
|
16
src/lib.rs
16
src/lib.rs
|
@ -1,8 +1,18 @@
|
|||
#![no_std]
|
||||
#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
|
||||
|
||||
#[macro_use]
|
||||
extern crate log;
|
||||
|
||||
pub mod hardware;
|
||||
pub mod net;
|
||||
|
||||
/// Macro to reduce rightward drift when calling the same closure-based API
|
||||
/// on multiple structs simultaneously, e.g. when accessing DMA buffers.
|
||||
/// This could be improved a bit using the tuple-based style from `mutex-trait`.
|
||||
#[macro_export]
|
||||
macro_rules! flatten_closures {
|
||||
($fn:ident, $e:ident, $fun:block) => {
|
||||
$e.$fn(|$e| $fun ).unwrap()
|
||||
};
|
||||
($fn:ident, $e:ident, $($es:ident),+, $fun:block) => {
|
||||
$e.$fn(|$e| flatten_closures!($fn, $($es),*, $fun)).unwrap()
|
||||
};
|
||||
}
|
||||
|
|
|
@ -11,6 +11,7 @@
|
|||
///! Respones to settings updates are sent without quality-of-service guarantees, so there's no
|
||||
///! guarantee that the requestee will be informed that settings have been applied.
|
||||
use heapless::String;
|
||||
use log::info;
|
||||
|
||||
use super::{MqttMessage, NetworkReference, SettingsResponse, UpdateState};
|
||||
use crate::hardware::design_parameters::MQTT_BROKER;
|
||||
|
@ -102,7 +103,7 @@ where
|
|||
let path = match topic.strip_prefix(prefix) {
|
||||
// For paths, we do not want to include the leading slash.
|
||||
Some(path) => {
|
||||
if path.len() > 0 {
|
||||
if !path.is_empty() {
|
||||
&path[1..]
|
||||
} else {
|
||||
path
|
||||
|
@ -116,9 +117,8 @@ where
|
|||
|
||||
let message: SettingsResponse = settings
|
||||
.string_set(path.split('/').peekable(), message)
|
||||
.and_then(|_| {
|
||||
.map(|_| {
|
||||
update = true;
|
||||
Ok(())
|
||||
})
|
||||
.into();
|
||||
|
||||
|
|
Loading…
Reference in New Issue