Refactoring to support multiple apps

This commit is contained in:
Ryan Summers 2021-01-18 16:47:47 +01:00
parent d447501c47
commit 20535a721d
18 changed files with 1045 additions and 982 deletions

View File

@ -27,7 +27,6 @@ jobs:
command: fmt command: fmt
args: --all -- --check args: --all -- --check
- uses: actions-rs/clippy-check@v1 - uses: actions-rs/clippy-check@v1
continue-on-error: true
with: with:
token: ${{ secrets.GITHUB_TOKEN }} token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -1,3 +1,10 @@
use super::timers;
use hal::dma::{
config::Priority,
dma::{DMAReq, DmaConfig},
traits::TargetAddress,
MemoryToPeripheral, PeripheralToMemory, Transfer,
};
///! Stabilizer ADC management interface ///! Stabilizer ADC management interface
///! ///!
///! # Design ///! # Design
@ -72,10 +79,9 @@
///! be used as a means to both detect and buffer ADC samples during the buffer swap-over. Because ///! be used as a means to both detect and buffer ADC samples during the buffer swap-over. Because
///! of this, double-buffered mode does not offer any advantages over single-buffered mode (unless ///! of this, double-buffered mode does not offer any advantages over single-buffered mode (unless
///! double-buffered mode offers less overhead due to the DMA disable/enable procedure). ///! double-buffered mode offers less overhead due to the DMA disable/enable procedure).
use super::{ use stm32h7xx_hal as hal;
hal, timers, DMAReq, DmaConfig, MemoryToPeripheral, PeripheralToMemory,
Priority, TargetAddress, Transfer, SAMPLE_BUFFER_SIZE, use crate::SAMPLE_BUFFER_SIZE;
};
// The following data is written by the timer ADC sample trigger into the SPI CR1 to start the // The following data is written by the timer ADC sample trigger into the SPI CR1 to start the
// transfer. Data in AXI SRAM is not initialized on boot, so the contents are random. This value is // transfer. Data in AXI SRAM is not initialized on boot, so the contents are random. This value is
@ -174,13 +180,13 @@ macro_rules! adc_input {
PeripheralToMemory, PeripheralToMemory,
&'static mut [u16; SAMPLE_BUFFER_SIZE], &'static mut [u16; SAMPLE_BUFFER_SIZE],
>, >,
_trigger_transfer: Transfer< trigger_transfer: Transfer<
hal::dma::dma::$trigger_stream<hal::stm32::DMA1>, hal::dma::dma::$trigger_stream<hal::stm32::DMA1>,
[< $spi CR >], [< $spi CR >],
MemoryToPeripheral, MemoryToPeripheral,
&'static mut [u32; 1], &'static mut [u32; 1],
>, >,
_flag_clear_transfer: Transfer< clear_transfer: Transfer<
hal::dma::dma::$clear_stream<hal::stm32::DMA1>, hal::dma::dma::$clear_stream<hal::stm32::DMA1>,
[< $spi IFCR >], [< $spi IFCR >],
MemoryToPeripheral, MemoryToPeripheral,
@ -227,7 +233,7 @@ macro_rules! adc_input {
clear_channel.listen_dma(); clear_channel.listen_dma();
clear_channel.to_output_compare(0); clear_channel.to_output_compare(0);
let mut clear_transfer: Transfer< let clear_transfer: Transfer<
_, _,
_, _,
MemoryToPeripheral, MemoryToPeripheral,
@ -264,7 +270,7 @@ macro_rules! adc_input {
}; };
// Construct the trigger stream to write from memory to the peripheral. // Construct the trigger stream to write from memory to the peripheral.
let mut trigger_transfer: Transfer< let trigger_transfer: Transfer<
_, _,
_, _,
MemoryToPeripheral, MemoryToPeripheral,
@ -299,7 +305,7 @@ macro_rules! adc_input {
// The data transfer is always a transfer of data from the peripheral to a RAM // The data transfer is always a transfer of data from the peripheral to a RAM
// buffer. // buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> = let data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init( Transfer::init(
data_stream, data_stream,
spi, spi,
@ -310,29 +316,30 @@ macro_rules! adc_input {
data_config, data_config,
); );
data_transfer.start(|spi| {
// Allow the SPI RX FIFO to generate DMA transfer requests when data is
// available.
spi.enable_dma_rx();
// Each transaction is 1 word (16 bytes).
spi.inner().cr2.modify(|_, w| w.tsize().bits(1));
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
});
clear_transfer.start(|_| {});
trigger_transfer.start(|_| {});
Self { Self {
// Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It // Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It
// shall not be used anywhere else in the module. // shall not be used anywhere else in the module.
next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) }, next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) },
transfer: data_transfer, transfer: data_transfer,
_trigger_transfer: trigger_transfer, trigger_transfer,
_flag_clear_transfer: clear_transfer, clear_transfer,
} }
} }
/// Enable the ADC DMA transfer sequence.
pub fn start(&mut self) {
self.transfer.start(|spi| {
spi.enable_dma_rx();
spi.inner().cr2.modify(|_, w| w.tsize().bits(1));
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
});
self.clear_transfer.start(|_| {});
self.trigger_transfer.start(|_| {});
}
/// Obtain a buffer filled with ADC samples. /// Obtain a buffer filled with ADC samples.
/// ///
/// # Returns /// # Returns

View File

@ -0,0 +1,819 @@
///! Stabilizer hardware configuration
///!
///! This file contains all of the hardware-specific configuration of Stabilizer.
use crate::ADC_SAMPLE_TICKS;
#[cfg(feature = "pounder_v1_1")]
use crate::SAMPLE_BUFFER_SIZE;
use smoltcp::{iface::Routes, wire::Ipv4Address};
use stm32h7xx_hal::{
self as hal,
ethernet::{self, PHY},
prelude::*,
};
use embedded_hal::digital::v2::{InputPin, OutputPin};
use super::{
adc, afe, dac, design_parameters, digital_input_stamper, eeprom, pounder,
timers, DdsOutput, Ethernet, AFE0, AFE1,
};
// Network storage definition for the ethernet interface.
struct NetStorage {
ip_addrs: [smoltcp::wire::IpCidr; 1],
neighbor_cache:
[Option<(smoltcp::wire::IpAddress, smoltcp::iface::Neighbor)>; 8],
routes_storage: [Option<(smoltcp::wire::IpCidr, smoltcp::iface::Route)>; 1],
}
/// The available networking devices on Stabilizer.
pub struct NetworkDevices {
pub interface: Ethernet,
pub phy: ethernet::phy::LAN8742A<ethernet::EthernetMAC>,
}
/// The available hardware interfaces on Stabilizer.
pub struct StabilizerDevices {
pub afes: (AFE0, AFE1),
pub adcs: (adc::Adc0Input, adc::Adc1Input),
pub dacs: (dac::Dac0Output, dac::Dac1Output),
pub timestamper: digital_input_stamper::InputStamper,
pub adc_dac_timer: timers::SamplingTimer,
pub timestamp_timer: timers::TimestampTimer,
pub net: NetworkDevices,
}
/// The available Pounder-specific hardware interfaces.
pub struct PounderDevices {
pub pounder: pounder::PounderDevices,
pub dds_output: DdsOutput,
#[cfg(feature = "pounder_v1_1")]
pub timestamper: pounder::timestamp::Timestamper,
}
#[link_section = ".sram3.eth"]
/// Static storage for the ethernet DMA descriptor ring.
static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
/// Static, global-scope network storage for the ethernet interface.
///
/// This is a static singleton so that the network storage can be referenced from all contexts.
static mut NET_STORE: NetStorage = NetStorage {
// Placeholder for the real IP address, which is initialized at runtime.
ip_addrs: [smoltcp::wire::IpCidr::Ipv6(
smoltcp::wire::Ipv6Cidr::SOLICITED_NODE_PREFIX,
)],
neighbor_cache: [None; 8],
routes_storage: [None; 1],
};
/// Configure the stabilizer hardware for operation.
///
/// # Args
/// * `core` - The RTIC core for configuring the cortex-M core of the device.
/// * `device` - The microcontroller peripherals to be configured.
///
/// # Returns
/// (stabilizer, pounder) where `stabilizer` is a `StabilizerDevices` structure containing all
/// stabilizer hardware interfaces in a disabled state. `pounder` is an `Option` containing
/// `Some(devices)` if pounder is detected, where `devices` is a `PounderDevices` structure
/// containing all of the pounder hardware interfaces in a disabled state.
pub fn setup(
mut core: rtic::export::Peripherals,
device: stm32h7xx_hal::stm32::Peripherals,
) -> (StabilizerDevices, Option<PounderDevices>) {
let pwr = device.PWR.constrain();
let vos = pwr.freeze();
// Enable SRAM3 for the ethernet descriptor ring.
device.RCC.ahb2enr.modify(|_, w| w.sram3en().set_bit());
// Clear reset flags.
device.RCC.rsr.write(|w| w.rmvf().set_bit());
// Select the PLLs for SPI.
device
.RCC
.d2ccip1r
.modify(|_, w| w.spi123sel().pll2_p().spi45sel().pll2_q());
let rcc = device.RCC.constrain();
let ccdr = rcc
.use_hse(8.mhz())
.sysclk(400.mhz())
.hclk(200.mhz())
.per_ck(100.mhz())
.pll2_p_ck(100.mhz())
.pll2_q_ck(100.mhz())
.freeze(vos, &device.SYSCFG);
#[cfg(feature = "semihosting")]
{
use cortex_m_log::log::{init as init_log, Logger};
use cortex_m_log::printer::semihosting::{hio::HStdout, InterruptOk};
use log::LevelFilter;
static mut LOGGER: Option<Logger<InterruptOk<HStdout>>> = None;
let logger = Logger {
inner: InterruptOk::<_>::stdout().unwrap(),
level: LevelFilter::Info,
};
let logger = unsafe { LOGGER.get_or_insert(logger) };
init_log(logger).unwrap();
}
let mut delay = hal::delay::Delay::new(core.SYST, ccdr.clocks);
let gpioa = device.GPIOA.split(ccdr.peripheral.GPIOA);
let gpiob = device.GPIOB.split(ccdr.peripheral.GPIOB);
let gpioc = device.GPIOC.split(ccdr.peripheral.GPIOC);
let gpiod = device.GPIOD.split(ccdr.peripheral.GPIOD);
let gpioe = device.GPIOE.split(ccdr.peripheral.GPIOE);
let gpiof = device.GPIOF.split(ccdr.peripheral.GPIOF);
let mut gpiog = device.GPIOG.split(ccdr.peripheral.GPIOG);
let dma_streams =
hal::dma::dma::StreamsTuple::new(device.DMA1, ccdr.peripheral.DMA1);
// Configure timer 2 to trigger conversions for the ADC
let mut sampling_timer = {
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
// dont-care.
let mut timer2 =
device
.TIM2
.timer(1.khz(), ccdr.peripheral.TIM2, &ccdr.clocks);
// Configure the timer to count at the designed tick rate. We will manually set the
// period below.
timer2.pause();
timer2.reset_counter();
timer2.set_tick_freq(design_parameters::TIMER_FREQUENCY);
let mut sampling_timer = timers::SamplingTimer::new(timer2);
sampling_timer.set_period_ticks((ADC_SAMPLE_TICKS - 1) as u32);
// The sampling timer is used as the master timer for the shadow-sampling timer. Thus,
// it generates a trigger whenever it is enabled.
sampling_timer
};
let mut shadow_sampling_timer = {
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
// dont-care.
let mut timer3 =
device
.TIM3
.timer(1.khz(), ccdr.peripheral.TIM3, &ccdr.clocks);
// Configure the timer to count at the designed tick rate. We will manually set the
// period below.
timer3.pause();
timer3.reset_counter();
timer3.set_tick_freq(design_parameters::TIMER_FREQUENCY);
let mut shadow_sampling_timer =
timers::ShadowSamplingTimer::new(timer3);
shadow_sampling_timer.set_period_ticks(ADC_SAMPLE_TICKS - 1);
// The shadow sampling timer is a slave-mode timer to the sampling timer. It should
// always be in-sync - thus, we configure it to operate in slave mode using "Trigger
// mode".
// For TIM3, TIM2 can be made the internal trigger connection using ITR1. Thus, the
// SamplingTimer start now gates the start of the ShadowSamplingTimer.
shadow_sampling_timer.set_slave_mode(
timers::TriggerSource::Trigger1,
timers::SlaveMode::Trigger,
);
shadow_sampling_timer
};
let sampling_timer_channels = sampling_timer.channels();
let shadow_sampling_timer_channels = shadow_sampling_timer.channels();
let mut timestamp_timer = {
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
// dont-care.
let mut timer5 =
device
.TIM5
.timer(1.khz(), ccdr.peripheral.TIM5, &ccdr.clocks);
// Configure the timer to count at the designed tick rate. We will manually set the
// period below.
timer5.pause();
timer5.set_tick_freq(design_parameters::TIMER_FREQUENCY);
// The timestamp timer must run at exactly a multiple of the sample timer based on the
// batch size. To accomodate this, we manually set the prescaler identical to the sample
// timer, but use a period that is longer.
let mut timer = timers::TimestampTimer::new(timer5);
let period = digital_input_stamper::calculate_timestamp_timer_period();
timer.set_period_ticks(period);
timer
};
let timestamp_timer_channels = timestamp_timer.channels();
// Configure the SPI interfaces to the ADCs and DACs.
let adcs = {
let adc0 = {
let spi_miso = gpiob
.pb14
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpiob
.pb10
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpiob
.pb9
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Receiver)
.cs_delay(design_parameters::ADC_SETUP_TIME);
let spi: hal::spi::Spi<_, _, u16> = device.SPI2.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MAX,
ccdr.peripheral.SPI2,
&ccdr.clocks,
);
adc::Adc0Input::new(
spi,
dma_streams.0,
dma_streams.1,
dma_streams.2,
sampling_timer_channels.ch1,
shadow_sampling_timer_channels.ch1,
)
};
let adc1 = {
let spi_miso = gpiob
.pb4
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpioc
.pc10
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpioa
.pa15
.into_alternate_af6()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Receiver)
.cs_delay(design_parameters::ADC_SETUP_TIME);
let spi: hal::spi::Spi<_, _, u16> = device.SPI3.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MAX,
ccdr.peripheral.SPI3,
&ccdr.clocks,
);
adc::Adc1Input::new(
spi,
dma_streams.3,
dma_streams.4,
dma_streams.5,
sampling_timer_channels.ch2,
shadow_sampling_timer_channels.ch2,
)
};
(adc0, adc1)
};
let dacs = {
let _dac_clr_n = gpioe.pe12.into_push_pull_output().set_high().unwrap();
let _dac0_ldac_n =
gpioe.pe11.into_push_pull_output().set_low().unwrap();
let _dac1_ldac_n =
gpioe.pe15.into_push_pull_output().set_low().unwrap();
let dac0_spi = {
let spi_miso = gpioe
.pe5
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpioe
.pe2
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpioe
.pe4
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Transmitter)
.swap_mosi_miso();
device.SPI4.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MAX,
ccdr.peripheral.SPI4,
&ccdr.clocks,
)
};
let dac1_spi = {
let spi_miso = gpiof
.pf8
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpiof
.pf7
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let _spi_nss = gpiof
.pf6
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
})
.manage_cs()
.communication_mode(hal::spi::CommunicationMode::Transmitter)
.suspend_when_inactive()
.swap_mosi_miso();
device.SPI5.spi(
(spi_sck, spi_miso, hal::spi::NoMosi),
config,
design_parameters::ADC_DAC_SCK_MAX,
ccdr.peripheral.SPI5,
&ccdr.clocks,
)
};
let dac0 = dac::Dac0Output::new(
dac0_spi,
dma_streams.6,
sampling_timer_channels.ch3,
);
let dac1 = dac::Dac1Output::new(
dac1_spi,
dma_streams.7,
sampling_timer_channels.ch4,
);
(dac0, dac1)
};
let afes = {
let afe0 = {
let a0_pin = gpiof.pf2.into_push_pull_output();
let a1_pin = gpiof.pf5.into_push_pull_output();
afe::ProgrammableGainAmplifier::new(a0_pin, a1_pin)
};
let afe1 = {
let a0_pin = gpiod.pd14.into_push_pull_output();
let a1_pin = gpiod.pd15.into_push_pull_output();
afe::ProgrammableGainAmplifier::new(a0_pin, a1_pin)
};
(afe0, afe1)
};
let input_stamper = {
let trigger = gpioa.pa3.into_alternate_af2();
digital_input_stamper::InputStamper::new(
trigger,
timestamp_timer_channels.ch4,
)
};
let mut eeprom_i2c = {
let sda = gpiof.pf0.into_alternate_af4().set_open_drain();
let scl = gpiof.pf1.into_alternate_af4().set_open_drain();
device.I2C2.i2c(
(scl, sda),
100.khz(),
ccdr.peripheral.I2C2,
&ccdr.clocks,
)
};
// Configure ethernet pins.
{
// Reset the PHY before configuring pins.
let mut eth_phy_nrst = gpioe.pe3.into_push_pull_output();
eth_phy_nrst.set_low().unwrap();
delay.delay_us(200u8);
eth_phy_nrst.set_high().unwrap();
let _rmii_ref_clk = gpioa
.pa1
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_mdio = gpioa
.pa2
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_mdc = gpioc
.pc1
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_crs_dv = gpioa
.pa7
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_rxd0 = gpioc
.pc4
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_rxd1 = gpioc
.pc5
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_tx_en = gpiob
.pb11
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_txd0 = gpiob
.pb12
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
let _rmii_txd1 = gpiog
.pg14
.into_alternate_af11()
.set_speed(hal::gpio::Speed::VeryHigh);
}
let mac_addr = match eeprom::read_eui48(&mut eeprom_i2c) {
Err(_) => {
info!("Could not read EEPROM, using default MAC address");
smoltcp::wire::EthernetAddress([0x10, 0xE2, 0xD5, 0x00, 0x03, 0x00])
}
Ok(raw_mac) => smoltcp::wire::EthernetAddress(raw_mac),
};
let network_devices = {
// Configure the ethernet controller
let (eth_dma, eth_mac) = unsafe {
ethernet::new_unchecked(
device.ETHERNET_MAC,
device.ETHERNET_MTL,
device.ETHERNET_DMA,
&mut DES_RING,
mac_addr,
ccdr.peripheral.ETH1MAC,
&ccdr.clocks,
)
};
// Reset and initialize the ethernet phy.
let mut lan8742a =
ethernet::phy::LAN8742A::new(eth_mac.set_phy_addr(0));
lan8742a.phy_reset();
lan8742a.phy_init();
unsafe { ethernet::enable_interrupt() };
let store = unsafe { &mut NET_STORE };
store.ip_addrs[0] = smoltcp::wire::IpCidr::new(
smoltcp::wire::IpAddress::v4(10, 0, 16, 99),
24,
);
let default_v4_gw = Ipv4Address::new(10, 0, 16, 1);
let mut routes = Routes::new(&mut store.routes_storage[..]);
routes.add_default_ipv4_route(default_v4_gw).unwrap();
let neighbor_cache =
smoltcp::iface::NeighborCache::new(&mut store.neighbor_cache[..]);
let interface = smoltcp::iface::EthernetInterfaceBuilder::new(eth_dma)
.ethernet_addr(mac_addr)
.neighbor_cache(neighbor_cache)
.ip_addrs(&mut store.ip_addrs[..])
.routes(routes)
.finalize();
NetworkDevices {
interface,
phy: lan8742a,
}
};
let mut fp_led_0 = gpiod.pd5.into_push_pull_output();
let mut fp_led_1 = gpiod.pd6.into_push_pull_output();
let mut fp_led_2 = gpiog.pg4.into_push_pull_output();
let mut fp_led_3 = gpiod.pd12.into_push_pull_output();
fp_led_0.set_low().unwrap();
fp_led_1.set_low().unwrap();
fp_led_2.set_low().unwrap();
fp_led_3.set_low().unwrap();
let stabilizer = StabilizerDevices {
afes,
adcs,
dacs,
timestamper: input_stamper,
net: network_devices,
adc_dac_timer: sampling_timer,
timestamp_timer,
};
// Measure the Pounder PGOOD output to detect if pounder is present on Stabilizer.
let pounder_pgood = gpiob.pb13.into_pull_down_input();
delay.delay_ms(2u8);
let pounder = if pounder_pgood.is_high().unwrap() {
let ad9959 = {
let qspi_interface = {
// Instantiate the QUADSPI pins and peripheral interface.
let qspi_pins = {
let _qspi_ncs = gpioc
.pc11
.into_alternate_af9()
.set_speed(hal::gpio::Speed::VeryHigh);
let clk = gpiob
.pb2
.into_alternate_af9()
.set_speed(hal::gpio::Speed::VeryHigh);
let io0 = gpioe
.pe7
.into_alternate_af10()
.set_speed(hal::gpio::Speed::VeryHigh);
let io1 = gpioe
.pe8
.into_alternate_af10()
.set_speed(hal::gpio::Speed::VeryHigh);
let io2 = gpioe
.pe9
.into_alternate_af10()
.set_speed(hal::gpio::Speed::VeryHigh);
let io3 = gpioe
.pe10
.into_alternate_af10()
.set_speed(hal::gpio::Speed::VeryHigh);
(clk, io0, io1, io2, io3)
};
let qspi = hal::qspi::Qspi::bank2(
device.QUADSPI,
qspi_pins,
design_parameters::POUNDER_QSPI_FREQUENCY,
&ccdr.clocks,
ccdr.peripheral.QSPI,
);
pounder::QspiInterface::new(qspi).unwrap()
};
#[cfg(feature = "pounder_v1_1")]
let reset_pin = gpiog.pg6.into_push_pull_output();
#[cfg(not(feature = "pounder_v1_1"))]
let reset_pin = gpioa.pa0.into_push_pull_output();
let mut io_update = gpiog.pg7.into_push_pull_output();
let ref_clk: hal::time::Hertz =
design_parameters::DDS_REF_CLK.into();
let ad9959 = ad9959::Ad9959::new(
qspi_interface,
reset_pin,
&mut io_update,
&mut delay,
ad9959::Mode::FourBitSerial,
ref_clk.0 as f32,
design_parameters::DDS_MULTIPLIER,
)
.unwrap();
// Return IO_Update
gpiog.pg7 = io_update.into_analog();
ad9959
};
let io_expander = {
let sda = gpiob.pb7.into_alternate_af4().set_open_drain();
let scl = gpiob.pb8.into_alternate_af4().set_open_drain();
let i2c1 = device.I2C1.i2c(
(scl, sda),
100.khz(),
ccdr.peripheral.I2C1,
&ccdr.clocks,
);
mcp23017::MCP23017::default(i2c1).unwrap()
};
let spi = {
let spi_mosi = gpiod
.pd7
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_miso = gpioa
.pa6
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let spi_sck = gpiog
.pg11
.into_alternate_af5()
.set_speed(hal::gpio::Speed::VeryHigh);
let config = hal::spi::Config::new(hal::spi::Mode {
polarity: hal::spi::Polarity::IdleHigh,
phase: hal::spi::Phase::CaptureOnSecondTransition,
});
// The maximum frequency of this SPI must be limited due to capacitance on the MISO
// line causing a long RC decay.
device.SPI1.spi(
(spi_sck, spi_miso, spi_mosi),
config,
5.mhz(),
ccdr.peripheral.SPI1,
&ccdr.clocks,
)
};
let (adc1, adc2) = {
let (mut adc1, mut adc2) = hal::adc::adc12(
device.ADC1,
device.ADC2,
&mut delay,
ccdr.peripheral.ADC12,
&ccdr.clocks,
);
let adc1 = {
adc1.calibrate();
adc1.enable()
};
let adc2 = {
adc2.calibrate();
adc2.enable()
};
(adc1, adc2)
};
let adc1_in_p = gpiof.pf11.into_analog();
let adc2_in_p = gpiof.pf14.into_analog();
let pounder_devices = pounder::PounderDevices::new(
io_expander,
spi,
adc1,
adc2,
adc1_in_p,
adc2_in_p,
)
.unwrap();
let dds_output = {
let io_update_trigger = {
let _io_update = gpiog
.pg7
.into_alternate_af2()
.set_speed(hal::gpio::Speed::VeryHigh);
// Configure the IO_Update signal for the DDS.
let mut hrtimer = pounder::hrtimer::HighResTimerE::new(
device.HRTIM_TIME,
device.HRTIM_MASTER,
device.HRTIM_COMMON,
ccdr.clocks,
ccdr.peripheral.HRTIM,
);
// IO_Update occurs after a fixed delay from the QSPI write. Note that the timer
// is triggered after the QSPI write, which can take approximately 120nS, so
// there is additional margin.
hrtimer.configure_single_shot(
pounder::hrtimer::Channel::Two,
design_parameters::POUNDER_IO_UPDATE_DURATION,
design_parameters::POUNDER_IO_UPDATE_DELAY,
);
// Ensure that we have enough time for an IO-update every sample.
let sample_frequency = {
let timer_frequency: hal::time::Hertz =
design_parameters::TIMER_FREQUENCY.into();
timer_frequency.0 as f32 / ADC_SAMPLE_TICKS as f32
};
let sample_period = 1.0 / sample_frequency;
assert!(
sample_period > design_parameters::POUNDER_IO_UPDATE_DELAY
);
hrtimer
};
let (qspi, config) = ad9959.freeze();
DdsOutput::new(qspi, io_update_trigger, config)
};
#[cfg(feature = "pounder_v1_1")]
let pounder_stamper = {
let dma2_streams = hal::dma::dma::StreamsTuple::new(
device.DMA2,
ccdr.peripheral.DMA2,
);
let etr_pin = gpioa.pa0.into_alternate_af3();
// The frequency in the constructor is dont-care, as we will modify the period + clock
// source manually below.
let tim8 =
device
.TIM8
.timer(1.khz(), ccdr.peripheral.TIM8, &ccdr.clocks);
let mut timestamp_timer = timers::PounderTimestampTimer::new(tim8);
// Pounder is configured to generate a 500MHz reference clock, so a 125MHz sync-clock is
// output. As a result, dividing the 125MHz sync-clk provides a 31.25MHz tick rate for
// the timestamp timer. 31.25MHz corresponds with a 32ns tick rate.
timestamp_timer.set_external_clock(timers::Prescaler::Div4);
timestamp_timer.start();
// We want the pounder timestamp timer to overflow once per batch.
let tick_ratio = {
let sync_clk_mhz: f32 = design_parameters::DDS_SYSTEM_CLK.0
as f32
/ design_parameters::DDS_SYNC_CLK_DIV as f32;
sync_clk_mhz / design_parameters::TIMER_FREQUENCY.0 as f32
};
let period = (tick_ratio
* ADC_SAMPLE_TICKS as f32
* SAMPLE_BUFFER_SIZE as f32) as u32
/ 4;
timestamp_timer.set_period_ticks((period - 1).try_into().unwrap());
let tim8_channels = timestamp_timer.channels();
pounder::timestamp::Timestamper::new(
timestamp_timer,
dma2_streams.0,
tim8_channels.ch1,
&mut sampling_timer,
etr_pin,
)
};
Some(PounderDevices {
pounder: pounder_devices,
dds_output,
#[cfg(feature = "pounder_v1_1")]
timestamper: pounder_stamper,
})
} else {
None
};
// info!("Version {} {}", build_info::PKG_VERSION, build_info::GIT_VERSION.unwrap());
// info!("Built on {}", build_info::BUILT_TIME_UTC);
// info!("{} {}", build_info::RUSTC_VERSION, build_info::TARGET);
// Enable the instruction cache.
core.SCB.enable_icache();
// Utilize the cycle counter for RTIC scheduling.
core.DWT.enable_cycle_counter();
(stabilizer, pounder)
}

View File

@ -50,9 +50,15 @@
///! While double-buffered mode is used for DMA to avoid lost DAC-update events, there is no check ///! While double-buffered mode is used for DMA to avoid lost DAC-update events, there is no check
///! for re-use of a previously provided DAC output buffer. It is assumed that the DMA request is ///! for re-use of a previously provided DAC output buffer. It is assumed that the DMA request is
///! served promptly after the transfer completes. ///! served promptly after the transfer completes.
use super::{ use stm32h7xx_hal as hal;
hal, timers, DMAReq, DmaConfig, MemoryToPeripheral, TargetAddress,
Transfer, SAMPLE_BUFFER_SIZE, use crate::SAMPLE_BUFFER_SIZE;
use super::timers;
use hal::dma::{
dma::{DMAReq, DmaConfig},
traits::TargetAddress,
MemoryToPeripheral, Transfer,
}; };
// The following global buffers are used for the DAC code DMA transfers. Two buffers are used for // The following global buffers are used for the DAC code DMA transfers. Two buffers are used for
@ -158,7 +164,7 @@ macro_rules! dac_output {
} }
// Construct the trigger stream to write from memory to the peripheral. // Construct the trigger stream to write from memory to the peripheral.
let mut transfer: Transfer<_, _, MemoryToPeripheral, _> = let transfer: Transfer<_, _, MemoryToPeripheral, _> =
Transfer::init( Transfer::init(
stream, stream,
$spi::new(trigger_channel, spi), $spi::new(trigger_channel, spi),
@ -169,8 +175,6 @@ macro_rules! dac_output {
trigger_config, trigger_config,
); );
transfer.start(|spi| spi.start_dma());
Self { Self {
transfer, transfer,
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer. // Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
@ -178,6 +182,10 @@ macro_rules! dac_output {
} }
} }
pub fn start(&mut self) {
self.transfer.start(|spi| spi.start_dma());
}
/// Acquire the next output buffer to populate it with DAC codes. /// Acquire the next output buffer to populate it with DAC codes.
pub fn acquire_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] { pub fn acquire_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
// Note: If a device hangs up, check that this conditional is passing correctly, as // Note: If a device hangs up, check that this conditional is passing correctly, as

View File

@ -1,4 +1,4 @@
use super::hal::time::MegaHertz; use stm32h7xx_hal::time::MegaHertz;
/// The ADC setup time is the number of seconds after the CSn line goes low before the serial clock /// The ADC setup time is the number of seconds after the CSn line goes low before the serial clock
/// may begin. This is used for performing the internal ADC conversion. /// may begin. This is used for performing the internal ADC conversion.
@ -17,13 +17,13 @@ pub const POUNDER_QSPI_FREQUENCY: MegaHertz = MegaHertz(40);
// Pounder Profile writes are always 16 bytes, with 2 cycles required per byte, coming out to a // Pounder Profile writes are always 16 bytes, with 2 cycles required per byte, coming out to a
// total of 32 QSPI clock cycles. The QSPI is configured for 40MHz, so this comes out to an offset // total of 32 QSPI clock cycles. The QSPI is configured for 40MHz, so this comes out to an offset
// of 800nS. We use 900ns to be safe. // of 800nS. We use 900ns to be safe.
pub const POUNDER_IO_UPDATE_DELAY: f32 = 900_e-9; pub const POUNDER_IO_UPDATE_DELAY: f32 = 900e-9;
/// The duration to assert IO_Update for the pounder DDS. /// The duration to assert IO_Update for the pounder DDS.
// IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile write. With pounder // IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile write. With pounder
// SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 500MHz), this corresponds to // SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 500MHz), this corresponds to
// 32ns. To accomodate rounding errors, we use 50ns instead. // 32ns. To accomodate rounding errors, we use 50ns instead.
pub const POUNDER_IO_UPDATE_DURATION: f32 = 50_e-9; pub const POUNDER_IO_UPDATE_DURATION: f32 = 50e-9;
/// The DDS reference clock frequency in MHz. /// The DDS reference clock frequency in MHz.
pub const DDS_REF_CLK: MegaHertz = MegaHertz(100); pub const DDS_REF_CLK: MegaHertz = MegaHertz(100);

View File

@ -24,7 +24,8 @@
///! ///!
///! This module only supports DI0 for timestamping due to trigger constraints on the DIx pins. If ///! This module only supports DI0 for timestamping due to trigger constraints on the DIx pins. If
///! timestamping is desired in DI1, a separate timer + capture channel will be necessary. ///! timestamping is desired in DI1, a separate timer + capture channel will be necessary.
use super::{hal, timers, ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE}; use super::{hal, timers};
use crate::{ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE};
/// Calculate the period of the digital input timestamp timer. /// Calculate the period of the digital input timestamp timer.
/// ///
@ -89,6 +90,7 @@ impl InputStamper {
} }
/// Start to capture timestamps on DI0. /// Start to capture timestamps on DI0.
#[allow(dead_code)]
pub fn start(&mut self) { pub fn start(&mut self) {
self.capture_channel.enable(); self.capture_channel.enable();
} }
@ -101,6 +103,7 @@ impl InputStamper {
/// ///
/// To prevent timestamp loss, the batch size and sampling rate must be adjusted such that at /// To prevent timestamp loss, the batch size and sampling rate must be adjusted such that at
/// most one timestamp will occur in each data processing cycle. /// most one timestamp will occur in each data processing cycle.
#[allow(dead_code)]
pub fn latest_timestamp(&mut self) -> Option<u32> { pub fn latest_timestamp(&mut self) -> Option<u32> {
self.capture_channel self.capture_channel
.latest_capture() .latest_capture()

View File

@ -2,7 +2,6 @@ use embedded_hal::blocking::i2c::WriteRead;
const I2C_ADDR: u8 = 0x50; const I2C_ADDR: u8 = 0x50;
#[allow(dead_code)]
pub fn read_eui48<T>(i2c: &mut T) -> Result<[u8; 6], T::Error> pub fn read_eui48<T>(i2c: &mut T) -> Result<[u8; 6], T::Error>
where where
T: WriteRead, T: WriteRead,

63
src/hardware/mod.rs Normal file
View File

@ -0,0 +1,63 @@
///! Module for all hardware-specific setup of Stabilizer
use stm32h7xx_hal as hal;
mod adc;
mod afe;
mod configuration;
mod dac;
mod design_parameters;
mod digital_input_stamper;
mod eeprom;
mod pounder;
mod timers;
pub use adc::{Adc0Input, Adc1Input};
pub use afe::Gain as AfeGain;
pub use dac::{Dac0Output, Dac1Output};
pub use pounder::DdsOutput;
// Type alias for the analog front-end (AFE) for ADC0.
pub type AFE0 = afe::ProgrammableGainAmplifier<
hal::gpio::gpiof::PF2<hal::gpio::Output<hal::gpio::PushPull>>,
hal::gpio::gpiof::PF5<hal::gpio::Output<hal::gpio::PushPull>>,
>;
// Type alias for the analog front-end (AFE) for ADC1.
pub type AFE1 = afe::ProgrammableGainAmplifier<
hal::gpio::gpiod::PD14<hal::gpio::Output<hal::gpio::PushPull>>,
hal::gpio::gpiod::PD15<hal::gpio::Output<hal::gpio::PushPull>>,
>;
// Type alias for the ethernet interface on Stabilizer.
pub type Ethernet = smoltcp::iface::EthernetInterface<
'static,
'static,
'static,
hal::ethernet::EthernetDMA<'static>,
>;
pub use configuration::{setup, PounderDevices, StabilizerDevices};
#[inline(never)]
#[panic_handler]
#[cfg(all(feature = "nightly", not(feature = "semihosting")))]
fn panic(_info: &core::panic::PanicInfo) -> ! {
let gpiod = unsafe { &*hal::stm32::GPIOD::ptr() };
gpiod.odr.modify(|_, w| w.odr6().high().odr12().high()); // FP_LED_1, FP_LED_3
#[cfg(feature = "nightly")]
core::intrinsics::abort();
#[cfg(not(feature = "nightly"))]
unsafe {
core::intrinsics::abort();
}
}
#[cortex_m_rt::exception]
fn HardFault(ef: &cortex_m_rt::ExceptionFrame) -> ! {
panic!("HardFault at {:#?}", ef);
}
#[cortex_m_rt::exception]
fn DefaultHandler(irqn: i16) {
panic!("Unhandled exception (IRQn = {})", irqn);
}

View File

@ -52,8 +52,7 @@
///! compile-time-known register update sequence needed for the application, the serialization ///! compile-time-known register update sequence needed for the application, the serialization
///! process can be done once and then register values can be written into a pre-computed serialized ///! process can be done once and then register values can be written into a pre-computed serialized
///! buffer to avoid the software overhead of much of the serialization process. ///! buffer to avoid the software overhead of much of the serialization process.
use super::QspiInterface; use super::{hrtimer::HighResTimerE, QspiInterface};
use crate::hrtimer::HighResTimerE;
use ad9959::{Channel, DdsConfig, ProfileSerializer}; use ad9959::{Channel, DdsConfig, ProfileSerializer};
use stm32h7xx_hal as hal; use stm32h7xx_hal as hal;
@ -90,6 +89,7 @@ impl DdsOutput {
} }
/// Get a builder for serializing a Pounder DDS profile. /// Get a builder for serializing a Pounder DDS profile.
#[allow(dead_code)]
pub fn builder(&mut self) -> ProfileBuilder { pub fn builder(&mut self) -> ProfileBuilder {
let builder = self.config.builder(); let builder = self.config.builder();
ProfileBuilder { ProfileBuilder {
@ -145,6 +145,7 @@ impl<'a> ProfileBuilder<'a> {
/// * `ftw` - If provided, indicates a frequency tuning word for the channels. /// * `ftw` - If provided, indicates a frequency tuning word for the channels.
/// * `pow` - If provided, indicates a phase offset word for the channels. /// * `pow` - If provided, indicates a phase offset word for the channels.
/// * `acr` - If provided, indicates the amplitude control register for the channels. /// * `acr` - If provided, indicates the amplitude control register for the channels.
#[allow(dead_code)]
pub fn update_channels( pub fn update_channels(
mut self, mut self,
channels: &[Channel], channels: &[Channel],
@ -157,6 +158,7 @@ impl<'a> ProfileBuilder<'a> {
} }
/// Write the profile to the DDS asynchronously. /// Write the profile to the DDS asynchronously.
#[allow(dead_code)]
pub fn write_profile(mut self) { pub fn write_profile(mut self) {
let profile = self.serializer.finalize(); let profile = self.serializer.finalize();
self.dds_stream.write_profile(profile); self.dds_stream.write_profile(profile);

View File

@ -1,8 +1,11 @@
///! The HRTimer (High Resolution Timer) is used to generate IO_Update pulses to the Pounder DDS. ///! The HRTimer (High Resolution Timer) is used to generate IO_Update pulses to the Pounder DDS.
use crate::hal; use stm32h7xx_hal::{
use hal::rcc::{rec, CoreClocks, ResetEnable}; self as hal,
rcc::{rec, CoreClocks, ResetEnable},
};
/// A HRTimer output channel. /// A HRTimer output channel.
#[allow(dead_code)]
pub enum Channel { pub enum Channel {
One, One,
Two, Two,

View File

@ -2,7 +2,10 @@ use serde::{Deserialize, Serialize};
mod attenuators; mod attenuators;
mod dds_output; mod dds_output;
pub mod hrtimer;
mod rf_power; mod rf_power;
#[cfg(feature = "pounder_v1_1")]
pub mod timestamp; pub mod timestamp;
pub use dds_output::DdsOutput; pub use dds_output::DdsOutput;
@ -27,13 +30,11 @@ const ATT_LE0_PIN: u8 = 8;
pub enum Error { pub enum Error {
Spi, Spi,
I2c, I2c,
Dds,
Qspi, Qspi,
Bounds, Bounds,
InvalidAddress, InvalidAddress,
InvalidChannel, InvalidChannel,
Adc, Adc,
Access,
} }
#[derive(Debug, Copy, Clone)] #[derive(Debug, Copy, Clone)]

View File

@ -26,7 +26,7 @@ use stm32h7xx_hal as hal;
use hal::dma::{dma::DmaConfig, PeripheralToMemory, Transfer}; use hal::dma::{dma::DmaConfig, PeripheralToMemory, Transfer};
use crate::{timers, SAMPLE_BUFFER_SIZE}; use crate::{hardware::timers, SAMPLE_BUFFER_SIZE};
// Three buffers are required for double buffered mode - 2 are owned by the DMA stream and 1 is the // Three buffers are required for double buffered mode - 2 are owned by the DMA stream and 1 is the
// working data provided to the application. These buffers must exist in a DMA-accessible memory // working data provided to the application. These buffers must exist in a DMA-accessible memory
@ -89,7 +89,7 @@ impl Timestamper {
input_capture.listen_dma(); input_capture.listen_dma();
// The data transfer is always a transfer of data from the peripheral to a RAM buffer. // The data transfer is always a transfer of data from the peripheral to a RAM buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> = let data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init( Transfer::init(
stream, stream,
input_capture, input_capture,
@ -100,8 +100,6 @@ impl Timestamper {
config, config,
); );
data_transfer.start(|capture_channel| capture_channel.enable());
Self { Self {
timer: timestamp_timer, timer: timestamp_timer,
transfer: data_transfer, transfer: data_transfer,
@ -112,6 +110,12 @@ impl Timestamper {
} }
} }
/// Start the DMA transfer for collecting timestamps.
pub fn start(&mut self) {
self.transfer
.start(|capture_channel| capture_channel.enable());
}
/// Update the period of the underlying timestamp timer. /// Update the period of the underlying timestamp timer.
pub fn update_period(&mut self, period: u16) { pub fn update_period(&mut self, period: u16) {
self.timer.set_period_ticks(period); self.timer.set_period_ticks(period);

View File

@ -32,6 +32,7 @@ pub enum TriggerSource {
} }
/// Prescalers for externally-supplied reference clocks. /// Prescalers for externally-supplied reference clocks.
#[allow(dead_code)]
pub enum Prescaler { pub enum Prescaler {
Div1 = 0b00, Div1 = 0b00,
Div2 = 0b01, Div2 = 0b01,
@ -40,6 +41,7 @@ pub enum Prescaler {
} }
/// Optional slave operation modes of a timer. /// Optional slave operation modes of a timer.
#[allow(dead_code)]
pub enum SlaveMode { pub enum SlaveMode {
Disabled = 0, Disabled = 0,
Trigger = 0b0110, Trigger = 0b0110,

File diff suppressed because it is too large Load Diff

View File

@ -7,7 +7,61 @@ use serde::{Deserialize, Serialize};
use serde_json_core::{de::from_slice, ser::to_string}; use serde_json_core::{de::from_slice, ser::to_string};
use super::iir; use super::iir;
use super::net; use smoltcp as net;
macro_rules! route_request {
($request:ident,
readable_attributes: [$($read_attribute:tt: $getter:tt),*],
modifiable_attributes: [$($write_attribute:tt: $TYPE:ty, $setter:tt),*]) => {
match $request.req {
server::AccessRequest::Read => {
match $request.attribute {
$(
$read_attribute => {
#[allow(clippy::redundant_closure_call)]
let value = match $getter() {
Ok(data) => data,
Err(_) => return server::Response::error($request.attribute,
"Failed to read attribute"),
};
let encoded_data: String<U256> = match serde_json_core::to_string(&value) {
Ok(data) => data,
Err(_) => return server::Response::error($request.attribute,
"Failed to encode attribute value"),
};
server::Response::success($request.attribute, &encoded_data)
},
)*
_ => server::Response::error($request.attribute, "Unknown attribute")
}
},
server::AccessRequest::Write => {
match $request.attribute {
$(
$write_attribute => {
let new_value = match serde_json_core::from_str::<$TYPE>(&$request.value) {
Ok(data) => data,
Err(_) => return server::Response::error($request.attribute,
"Failed to decode value"),
};
#[allow(clippy::redundant_closure_call)]
match $setter(new_value) {
Ok(_) => server::Response::success($request.attribute, &$request.value),
Err(_) => server::Response::error($request.attribute,
"Failed to set attribute"),
}
}
)*
_ => server::Response::error($request.attribute, "Unknown attribute")
}
}
}
}
}
#[derive(Deserialize, Serialize, Debug)] #[derive(Deserialize, Serialize, Debug)]
pub enum AccessRequest { pub enum AccessRequest {