Refactoring lockin binaries
This commit is contained in:
parent
ed34b69823
commit
19b606c385
|
@ -24,8 +24,7 @@ jobs:
|
|||
- run: >
|
||||
zip bin.zip
|
||||
target/*/release/dual-iir
|
||||
target/*/release/lockin-external
|
||||
target/*/release/lockin-internal
|
||||
target/*/release/lockin
|
||||
- id: create_release
|
||||
uses: actions/create-release@v1
|
||||
env:
|
||||
|
|
|
@ -29,9 +29,7 @@ to implement different use cases. Several applications are provides by default
|
|||
* anti-windup
|
||||
* derivative kick avoidance
|
||||
|
||||
### Lockin external
|
||||
|
||||
### Lockin internal
|
||||
### Lockin
|
||||
|
||||
## Minimal bootstrapping documentation
|
||||
|
||||
|
|
|
@ -1,143 +0,0 @@
|
|||
#![deny(warnings)]
|
||||
#![no_std]
|
||||
#![no_main]
|
||||
|
||||
use dsp::{Accu, Complex, ComplexExt, Lockin};
|
||||
use generic_array::typenum::U2;
|
||||
use hardware::{Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1};
|
||||
use stabilizer::{hardware, hardware::design_parameters};
|
||||
|
||||
// A constant sinusoid to send on the DAC output.
|
||||
// Full-scale gives a +/- 10V amplitude waveform. Scale it down to give +/- 1V.
|
||||
const ONE: i16 = (0.1 * u16::MAX as f32) as _;
|
||||
const SQRT2: i16 = (ONE as f32 * 0.707) as _;
|
||||
const DAC_SEQUENCE: [i16; design_parameters::SAMPLE_BUFFER_SIZE] =
|
||||
[ONE, SQRT2, 0, -SQRT2, -ONE, -SQRT2, 0, SQRT2];
|
||||
|
||||
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
|
||||
const APP: () = {
|
||||
struct Resources {
|
||||
afes: (AFE0, AFE1),
|
||||
adc: Adc1Input,
|
||||
dacs: (Dac0Output, Dac1Output),
|
||||
|
||||
lockin: Lockin<U2>,
|
||||
}
|
||||
|
||||
#[init]
|
||||
fn init(c: init::Context) -> init::LateResources {
|
||||
// Configure the microcontroller
|
||||
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
|
||||
|
||||
// Enable ADC/DAC events
|
||||
stabilizer.adcs.1.start();
|
||||
stabilizer.dacs.0.start();
|
||||
stabilizer.dacs.1.start();
|
||||
|
||||
// Start sampling ADCs.
|
||||
stabilizer.adc_dac_timer.start();
|
||||
|
||||
init::LateResources {
|
||||
lockin: Lockin::default(),
|
||||
afes: stabilizer.afes,
|
||||
adc: stabilizer.adcs.1,
|
||||
dacs: stabilizer.dacs,
|
||||
}
|
||||
}
|
||||
|
||||
/// Main DSP processing routine.
|
||||
///
|
||||
/// See `dual-iir` for general notes on processing time and timing.
|
||||
///
|
||||
/// This is an implementation of an internal-reference lockin on the ADC1 signal.
|
||||
/// The reference at f_sample/8 is output on DAC0 and the phase of the demodulated
|
||||
/// signal on DAC1.
|
||||
#[task(binds=DMA1_STR4, resources=[adc, dacs, lockin], priority=2)]
|
||||
fn process(c: process::Context) {
|
||||
let lockin = c.resources.lockin;
|
||||
let adc_samples = c.resources.adc.acquire_buffer();
|
||||
let dac_samples = [
|
||||
c.resources.dacs.0.acquire_buffer(),
|
||||
c.resources.dacs.1.acquire_buffer(),
|
||||
];
|
||||
|
||||
// Reference phase and frequency are known.
|
||||
let pll_phase = 0i32;
|
||||
let pll_frequency =
|
||||
1i32 << (32 - design_parameters::SAMPLE_BUFFER_SIZE_LOG2);
|
||||
|
||||
// Harmonic index of the LO: -1 to _de_modulate the fundamental (complex conjugate)
|
||||
let harmonic: i32 = -1;
|
||||
|
||||
// Demodulation LO phase offset
|
||||
let phase_offset: i32 = 1 << 30;
|
||||
|
||||
// Log2 lowpass time constant.
|
||||
let time_constant: u8 = 8;
|
||||
|
||||
let sample_frequency = (pll_frequency as i32).wrapping_mul(harmonic);
|
||||
let sample_phase =
|
||||
phase_offset.wrapping_add(pll_phase.wrapping_mul(harmonic));
|
||||
|
||||
let output: Complex<i32> = adc_samples
|
||||
.iter()
|
||||
// Zip in the LO phase.
|
||||
.zip(Accu::new(sample_phase, sample_frequency))
|
||||
// Convert to signed, MSB align the ADC sample, update the Lockin (demodulate, filter)
|
||||
.map(|(&sample, phase)| {
|
||||
let s = (sample as i16 as i32) << 16;
|
||||
lockin.update(s, phase, time_constant)
|
||||
})
|
||||
// Decimate
|
||||
.last()
|
||||
.unwrap()
|
||||
* 2; // Full scale assuming the 2f component is gone.
|
||||
|
||||
// Convert to DAC data.
|
||||
for (i, data) in DAC_SEQUENCE.iter().enumerate() {
|
||||
// DAC0 always generates a fixed sinusoidal output.
|
||||
dac_samples[0][i] = *data as u16 ^ 0x8000;
|
||||
dac_samples[1][i] = (output.arg() >> 16) as u16 ^ 0x8000;
|
||||
}
|
||||
}
|
||||
|
||||
#[idle(resources=[afes])]
|
||||
fn idle(_: idle::Context) -> ! {
|
||||
loop {
|
||||
cortex_m::asm::wfi();
|
||||
}
|
||||
}
|
||||
|
||||
#[task(binds = ETH, priority = 1)]
|
||||
fn eth(_: eth::Context) {
|
||||
unsafe { stm32h7xx_hal::ethernet::interrupt_handler() }
|
||||
}
|
||||
|
||||
#[task(binds = SPI2, priority = 3)]
|
||||
fn spi2(_: spi2::Context) {
|
||||
panic!("ADC0 input overrun");
|
||||
}
|
||||
|
||||
#[task(binds = SPI3, priority = 3)]
|
||||
fn spi3(_: spi3::Context) {
|
||||
panic!("ADC1 input overrun");
|
||||
}
|
||||
|
||||
#[task(binds = SPI4, priority = 3)]
|
||||
fn spi4(_: spi4::Context) {
|
||||
panic!("DAC0 output error");
|
||||
}
|
||||
|
||||
#[task(binds = SPI5, priority = 3)]
|
||||
fn spi5(_: spi5::Context) {
|
||||
panic!("DAC1 output error");
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
// hw interrupt handlers for RTIC to use for scheduling tasks
|
||||
// one per priority
|
||||
fn DCMI();
|
||||
fn JPEG();
|
||||
fn SDMMC();
|
||||
}
|
||||
};
|
|
@ -18,6 +18,13 @@ use stabilizer::hardware::{
|
|||
use miniconf::Miniconf;
|
||||
use stabilizer::net::{Action, MqttInterface};
|
||||
|
||||
// A constant sinusoid to send on the DAC output.
|
||||
// Full-scale gives a +/- 10.24V amplitude waveform. Scale it down to give +/- 1V.
|
||||
const ONE: i16 = ((1.0 / 10.24) * u16::MAX as f32) as _;
|
||||
const SQRT2: i16 = (ONE as f32 * 0.707) as _;
|
||||
const DAC_SEQUENCE: [i16; design_parameters::SAMPLE_BUFFER_SIZE] =
|
||||
[ONE, SQRT2, 0, -SQRT2, -ONE, -SQRT2, 0, SQRT2];
|
||||
|
||||
#[derive(Copy, Clone, Debug, Deserialize, Miniconf)]
|
||||
enum Conf {
|
||||
PowerPhase,
|
||||
|
@ -25,9 +32,16 @@ enum Conf {
|
|||
Quadrature,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, Miniconf, Deserialize, PartialEq)]
|
||||
enum LockinMode {
|
||||
Internal,
|
||||
External,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, Deserialize, Miniconf)]
|
||||
pub struct Settings {
|
||||
afe: [AfeGain; 2],
|
||||
lockin_mode: LockinMode,
|
||||
|
||||
pll_tc: [u8; 2],
|
||||
|
||||
|
@ -36,6 +50,7 @@ pub struct Settings {
|
|||
lockin_phase: i32,
|
||||
|
||||
output_conf: [Conf; 2],
|
||||
telemetry_period_secs: u16,
|
||||
}
|
||||
|
||||
impl Default for Settings {
|
||||
|
@ -43,6 +58,8 @@ impl Default for Settings {
|
|||
Self {
|
||||
afe: [AfeGain::G1; 2],
|
||||
|
||||
lockin_mode: LockinMode::External,
|
||||
|
||||
pll_tc: [21, 21], // frequency and phase settling time (log2 counter cycles)
|
||||
|
||||
lockin_tc: 6, // lockin lowpass time constant
|
||||
|
@ -50,6 +67,7 @@ impl Default for Settings {
|
|||
lockin_phase: 0, // Demodulation LO phase offset
|
||||
|
||||
output_conf: [Conf::Quadrature; 2],
|
||||
telemetry_period_secs: 10,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -145,21 +163,49 @@ const APP: () = {
|
|||
let lockin = c.resources.lockin;
|
||||
let settings = c.resources.settings;
|
||||
|
||||
let mut pll_frequency = 0;
|
||||
|
||||
let (sample_phase, sample_frequency) = match settings.lockin_mode {
|
||||
LockinMode::External => {
|
||||
let timestamp =
|
||||
c.resources.timestamper.latest_timestamp().unwrap_or(None); // Ignore data from timer capture overflows.
|
||||
let (pll_phase, pll_frequency) = c.resources.pll.update(
|
||||
let (pll_phase, frequency) = c.resources.pll.update(
|
||||
timestamp.map(|t| t as i32),
|
||||
settings.pll_tc[0],
|
||||
settings.pll_tc[1],
|
||||
);
|
||||
|
||||
pll_frequency = frequency;
|
||||
|
||||
let sample_frequency = ((pll_frequency
|
||||
>> design_parameters::SAMPLE_BUFFER_SIZE_LOG2)
|
||||
as i32)
|
||||
.wrapping_mul(settings.lockin_harmonic);
|
||||
let sample_phase = settings
|
||||
.lockin_phase
|
||||
.wrapping_add(pll_phase.wrapping_mul(settings.lockin_harmonic));
|
||||
let sample_phase = settings.lockin_phase.wrapping_add(
|
||||
pll_phase.wrapping_mul(settings.lockin_harmonic),
|
||||
);
|
||||
|
||||
(sample_phase, sample_frequency)
|
||||
}
|
||||
|
||||
LockinMode::Internal => {
|
||||
// Reference phase and frequency are known.
|
||||
let pll_phase = 0i32;
|
||||
let pll_frequency =
|
||||
1i32 << (32 - design_parameters::SAMPLE_BUFFER_SIZE_LOG2);
|
||||
|
||||
// Demodulation LO phase offset
|
||||
let phase_offset: i32 = 1 << 30;
|
||||
|
||||
let sample_frequency = (pll_frequency as i32)
|
||||
.wrapping_mul(settings.lockin_harmonic);
|
||||
let sample_phase = phase_offset.wrapping_add(
|
||||
pll_phase.wrapping_mul(settings.lockin_harmonic),
|
||||
);
|
||||
|
||||
(sample_phase, sample_frequency)
|
||||
}
|
||||
};
|
||||
|
||||
let output: Complex<i32> = adc_samples[0]
|
||||
.iter()
|
||||
|
@ -190,7 +236,13 @@ const APP: () = {
|
|||
|
||||
// Convert to DAC data.
|
||||
for i in 0..dac_samples[0].len() {
|
||||
// When operating in internal lockin mode, DAC0 is always used for generating the
|
||||
// reference signal.
|
||||
if settings.lockin_mode == LockinMode::Internal {
|
||||
dac_samples[0][i] = DAC_SEQUENCE[i] as u16 ^ 0x8000;
|
||||
} else {
|
||||
dac_samples[0][i] = (output[0] >> 16) as u16 ^ 0x8000;
|
||||
}
|
||||
dac_samples[1][i] = (output[1] >> 16) as u16 ^ 0x8000;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue