adc: macro

This commit is contained in:
Robert Jördens 2020-11-26 10:58:11 +01:00
parent b0153b8e78
commit 1906185286
2 changed files with 177 additions and 351 deletions

View File

@ -27,125 +27,65 @@ static mut SPI_START: [u16; 1] = [0x00];
// The following global buffers are used for the ADC sample DMA transfers. Two buffers are used for
// each transfer in a ping-pong buffer configuration (one is being acquired while the other is being
// processed). Note that the contents of AXI SRAM is uninitialized, so the buffer contents on
// startup are undefined.
// startup are undefined. The dimension are `ADC_BUF[adc_index][ping_pong_index][sample_index]`.
#[link_section = ".axisram.buffers"]
static mut ADC0_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
static mut ADC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 2]; 2] =
[[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
#[link_section = ".axisram.buffers"]
static mut ADC0_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut ADC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
#[link_section = ".axisram.buffers"]
static mut ADC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
/// SPI2 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI2 TX FIFO
/// whenever the tim2 update dma request occurs.
struct SPI2 {
_channel: sampling_timer::tim2::Channel1,
}
impl SPI2 {
pub fn new(_channel: sampling_timer::tim2::Channel1) -> Self {
macro_rules! adc_input {
($name:ident, $index:literal, $trigger_stream:ident, $data_stream:ident,
$spi:ident, $trigger_channel:ident, $dma_req:ident) => {
/// SPI is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI TX FIFO
/// whenever the tim2 update dma request occurs.
struct $spi {
_channel: sampling_timer::tim2::$trigger_channel,
}
impl $spi {
pub fn new(
_channel: sampling_timer::tim2::$trigger_channel,
) -> Self {
Self { _channel }
}
}
}
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
// may only be used if ownership of the timer2 channel 1 compare channel is assured, which is
// ensured by maintaining ownership of the channel.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
/// SPI2 is configured to operate using 16-bit transfer words.
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
// may only be used if ownership of the timer2 $trigger_channel compare channel is assured, which is
// ensured by maintaining ownership of the channel.
unsafe impl TargetAddress<MemoryToPeripheral> for $spi {
/// SPI is configured to operate using 16-bit transfer words.
type MemSize = u16;
/// SPI2 DMA requests are generated whenever TIM2 CH1 comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH1 as u8);
/// SPI DMA requests are generated whenever TIM2 CH1 comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8);
/// Whenever the DMA request occurs, it should write into SPI2's TX FIFO to start a DMA
/// Whenever the DMA request occurs, it should write into SPI's TX FIFO to start a DMA
/// transfer.
fn address(&self) -> u32 {
// Note(unsafe): It is assumed that SPI2 is owned by another DMA transfer and this DMA is
// Note(unsafe): It is assumed that SPI is owned by another DMA transfer and this DMA is
// only used for the transmit-half of DMA.
let regs = unsafe { &*hal::stm32::SPI2::ptr() };
let regs = unsafe { &*hal::stm32::$spi::ptr() };
&regs.txdr as *const _ as u32
}
}
/// SPI3 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI3 TX FIFO
/// whenever the tim2 update dma request occurs.
struct SPI3 {
_channel: sampling_timer::tim2::Channel2,
}
impl SPI3 {
pub fn new(_channel: sampling_timer::tim2::Channel2) -> Self {
Self { _channel }
}
}
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
// may only be used if ownership of the timer2 channel 2 compare channel is assured, which is
// ensured by maintaining ownership of the channel.
unsafe impl TargetAddress<MemoryToPeripheral> for SPI3 {
/// SPI3 is configured to operate using 16-bit transfer words.
type MemSize = u16;
/// SPI3 DMA requests are generated whenever TIM2 CH2 comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::TIM2_CH2 as u8);
/// Whenever the DMA request occurs, it should write into SPI3's TX FIFO to start a DMA
/// transfer.
fn address(&self) -> u32 {
// Note(unsafe): It is assumed that SPI3 is owned by another DMA transfer and this DMA is
// only used for the transmit-half of DMA.
let regs = unsafe { &*hal::stm32::SPI3::ptr() };
&regs.txdr as *const _ as u32
}
}
/// Represents both ADC input channels.
pub struct AdcInputs {
adc0: Adc0Input,
adc1: Adc1Input,
}
impl AdcInputs {
/// Construct the ADC inputs.
pub fn new(adc0: Adc0Input, adc1: Adc1Input) -> Self {
Self { adc0, adc1 }
}
/// Interrupt handler to handle when the sample collection DMA transfer completes.
///
/// # Returns
/// (adc0, adc1) where adcN is a reference to the collected ADC samples. Two array references
/// are returned - one for each ADC sample stream.
pub fn transfer_complete_handler(
&mut self,
) -> (&[u16; SAMPLE_BUFFER_SIZE], &[u16; SAMPLE_BUFFER_SIZE]) {
let adc0_buffer = self.adc0.transfer_complete_handler();
let adc1_buffer = self.adc1.transfer_complete_handler();
(adc0_buffer, adc1_buffer)
}
}
/// Represents data associated with ADC0.
pub struct Adc0Input {
/// Represents data associated with ADC0.
pub struct $name {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
transfer: Transfer<
hal::dma::dma::Stream1<hal::stm32::DMA1>,
hal::spi::Spi<hal::stm32::SPI2, hal::spi::Disabled, u16>,
hal::dma::dma::$data_stream<hal::stm32::DMA1>,
hal::spi::Spi<hal::stm32::$spi, hal::spi::Disabled, u16>,
PeripheralToMemory,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
_trigger_transfer: Transfer<
hal::dma::dma::Stream0<hal::stm32::DMA1>,
SPI2,
hal::dma::dma::$trigger_stream<hal::stm32::DMA1>,
$spi,
MemoryToPeripheral,
&'static mut [u16; 1],
>,
}
}
impl Adc0Input {
impl $name {
/// Construct the ADC0 input channel.
///
/// # Args
@ -155,10 +95,12 @@ impl Adc0Input {
/// * `data_stream` - The DMA stream used to read samples received over SPI into a data buffer.
/// * `_trigger_channel` - The ADC sampling timer output compare channel for read triggers.
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI2, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::Stream0<hal::stm32::DMA1>,
data_stream: hal::dma::dma::Stream1<hal::stm32::DMA1>,
trigger_channel: sampling_timer::tim2::Channel1,
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::$trigger_stream<
hal::stm32::DMA1,
>,
data_stream: hal::dma::dma::$data_stream<hal::stm32::DMA1>,
trigger_channel: sampling_timer::tim2::$trigger_channel,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
@ -173,10 +115,14 @@ impl Adc0Input {
.circular_buffer(true);
// Construct the trigger stream to write from memory to the peripheral.
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
Transfer::init(
let mut trigger_transfer: Transfer<
_,
_,
MemoryToPeripheral,
_,
> = Transfer::init(
trigger_stream,
SPI2::new(trigger_channel),
$spi::new(trigger_channel),
// Note(unsafe): Because this is a Memory->Peripheral transfer, this data is never
// actually modified. It technically only needs to be immutably borrowed, but the
// current HAL API only supports mutable borrows.
@ -187,8 +133,8 @@ impl Adc0Input {
// The data stream constantly reads from the SPI RX FIFO into a RAM buffer. The peripheral
// stalls reads of the SPI RX FIFO until data is available, so the DMA transfer completes
// after the requested number of samples have been collected. Note that only ADC1's data
// stream is used to trigger a transfer completion interrupt.
// after the requested number of samples have been collected. Note that only ADC1's (sic!)
// data stream is used to trigger a transfer completion interrupt.
let data_config = DmaConfig::default()
.memory_increment(true)
.priority(Priority::VeryHigh);
@ -206,9 +152,9 @@ impl Adc0Input {
Transfer::init(
data_stream,
spi,
// Note(unsafe): The ADC0_BUF0 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
unsafe { &mut ADC0_BUF0 },
// Note(unsafe): The ADC_BUF[$index][0] is "owned" by this peripheral.
// It shall not be used anywhere else in the module.
unsafe { &mut ADC_BUF[$index][0] },
None,
data_config,
);
@ -226,9 +172,9 @@ impl Adc0Input {
trigger_transfer.start(|_| {});
Self {
// Note(unsafe): The ADC0_BUF1 is "owned" by this peripheral. It shall not be used
// Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
next_buffer: unsafe { Some(&mut ADC0_BUF1) },
next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) },
transfer: data_transfer,
_trigger_transfer: trigger_transfer,
}
@ -238,7 +184,9 @@ impl Adc0Input {
///
/// # Returns
/// A reference to the underlying buffer that has been filled with ADC samples.
pub fn transfer_complete_handler(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
pub fn transfer_complete_handler(
&mut self,
) -> &[u16; SAMPLE_BUFFER_SIZE] {
let next_buffer = self.next_buffer.take().unwrap();
// Wait for the transfer to fully complete before continuing.
@ -254,131 +202,9 @@ impl Adc0Input {
self.next_buffer.replace(prev_buffer);
self.next_buffer.as_ref().unwrap()
}
}
};
}
/// Represents the data input stream from ADC1
pub struct Adc1Input {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
transfer: Transfer<
hal::dma::dma::Stream3<hal::stm32::DMA1>,
hal::spi::Spi<hal::stm32::SPI3, hal::spi::Disabled, u16>,
PeripheralToMemory,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
_trigger_transfer: Transfer<
hal::dma::dma::Stream2<hal::stm32::DMA1>,
SPI3,
MemoryToPeripheral,
&'static mut [u16; 1],
>,
}
impl Adc1Input {
/// Construct a new ADC1 input data stream.
///
/// # Args
/// * `spi` - The SPI interface connected to ADC1.
/// * `trigger_stream` - The DMA stream used to trigger ADC conversions on the SPI interface.
/// * `data_stream` - The DMA stream used to read ADC samples from the SPI RX FIFO.
/// * `trigger_channel` - The ADC sampling timer output compare channel for read triggers.
pub fn new(
spi: hal::spi::Spi<hal::stm32::SPI3, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::Stream2<hal::stm32::DMA1>,
data_stream: hal::dma::dma::Stream3<hal::stm32::DMA1>,
trigger_channel: sampling_timer::tim2::Channel2,
) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
// occurs.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(0);
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care
// contents). Thus, neither the memory or peripheral address ever change. This is run in
// circular mode to be completed at every DMA request.
let trigger_config = DmaConfig::default()
.priority(Priority::High)
.circular_buffer(true);
// Construct the trigger stream to write from memory to the peripheral.
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
Transfer::init(
trigger_stream,
SPI3::new(trigger_channel),
// Note(unsafe). This transaction is read-only and SPI_START is a dont-care value,
// so it is always safe to share.
unsafe { &mut SPI_START },
None,
trigger_config,
);
// The data stream constantly reads from the SPI RX FIFO into a RAM buffer. The peripheral
// stalls reads of the SPI RX FIFO until data is available, so the DMA transfer completes
// after the requested number of samples have been collected. Note that only ADC1's data
// stream is used to trigger a transfer completion interrupt.
let data_config = DmaConfig::default()
.memory_increment(true)
.transfer_complete_interrupt(true)
.priority(Priority::VeryHigh);
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
// indicates that samples were dropped due to excessive processing time in the main
// application (e.g. a second DMA transfer completes before the first was done with
// processing). This is used as a flow control indicator to guarantee that no ADC samples
// are lost.
let mut spi = spi.disable();
spi.listen(hal::spi::Event::Error);
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init(
data_stream,
spi,
// Note(unsafe): The ADC1_BUF0 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
unsafe { &mut ADC1_BUF0 },
None,
data_config,
);
data_transfer.start(|spi| {
// Allow the SPI FIFOs to operate using only DMA data channels.
spi.enable_dma_rx();
spi.enable_dma_tx();
// Enable SPI and start it in infinite transaction mode.
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
spi.inner().cr1.modify(|_, w| w.cstart().started());
});
trigger_transfer.start(|_| {});
Self {
// Note(unsafe): The ADC1_BUF1 is "owned" by this peripheral. It shall not be used
// anywhere else in the module.
next_buffer: unsafe { Some(&mut ADC1_BUF1) },
transfer: data_transfer,
_trigger_transfer: trigger_transfer,
}
}
/// Handle a transfer completion.
///
/// # Returns
/// A reference to the underlying buffer that has been filled with ADC samples.
pub fn transfer_complete_handler(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
let next_buffer = self.next_buffer.take().unwrap();
// Wait for the transfer to fully complete before continuing.
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
// no time-out checks here in the interest of execution speed.
while self.transfer.get_transfer_complete_flag() == false {}
// Start the next transfer.
self.transfer.clear_interrupts();
let (prev_buffer, _) =
self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer);
self.next_buffer.as_ref().unwrap()
}
}
adc_input!(Adc0Input, 0, Stream0, Stream1, SPI2, Channel1, TIM2_CH1);
adc_input!(Adc1Input, 1, Stream2, Stream3, SPI3, Channel2, TIM2_CH2);

View File

@ -69,7 +69,7 @@ mod pounder;
mod sampling_timer;
mod server;
use adc::{Adc0Input, Adc1Input, AdcInputs};
use adc::{Adc0Input, Adc1Input};
use dac::{Dac0Output, Dac1Output, DacOutputs};
use dsp::iir;
@ -188,7 +188,7 @@ const APP: () = {
afe0: AFE0,
afe1: AFE1,
adcs: AdcInputs,
adcs: (Adc0Input, Adc1Input),
dacs: DacOutputs,
eeprom_i2c: hal::i2c::I2c<hal::stm32::I2C2>,
@ -356,7 +356,7 @@ const APP: () = {
)
};
AdcInputs::new(adc0, adc1)
(adc0, adc1)
};
let dacs = {
@ -746,8 +746,8 @@ const APP: () = {
#[task(binds=DMA1_STR3, resources=[adcs, dacs, iir_state, iir_ch], priority=2)]
fn adc_update(c: adc_update::Context) {
let (adc0_samples, adc1_samples) =
c.resources.adcs.transfer_complete_handler();
let adc0_samples = c.resources.adcs.0.transfer_complete_handler();
let adc1_samples = c.resources.adcs.1.transfer_complete_handler();
let (dac0, dac1) = c.resources.dacs.prepare_data();