Merge branch 'rs/issue-219/adc-setup' into feature/io-docs

This commit is contained in:
Ryan Summers 2021-01-12 14:02:19 +01:00
commit 09ecd3291a
14 changed files with 757 additions and 223 deletions

View File

@ -17,7 +17,7 @@ jobs:
- uses: actions-rs/toolchain@v1 - uses: actions-rs/toolchain@v1
with: with:
profile: minimal profile: minimal
toolchain: nightly toolchain: stable
target: thumbv7em-none-eabihf target: thumbv7em-none-eabihf
override: true override: true
components: rustfmt, clippy components: rustfmt, clippy
@ -29,7 +29,6 @@ jobs:
- uses: actions-rs/clippy-check@v1 - uses: actions-rs/clippy-check@v1
continue-on-error: true continue-on-error: true
with: with:
toolchain: stable
token: ${{ secrets.GITHUB_TOKEN }} token: ${{ secrets.GITHUB_TOKEN }}
compile: compile:
@ -85,6 +84,12 @@ jobs:
target/*/release/stabilizer target/*/release/stabilizer
stabilizer-release.bin stabilizer-release.bin
- name: Build (Pounder v1.1)
uses: actions-rs/cargo@v1
with:
command: build
args: --features pounder_v1_1
test: test:
runs-on: ubuntu-latest runs-on: ubuntu-latest
strategy: strategy:

18
.github/workflows/hitl.yml vendored Normal file
View File

@ -0,0 +1,18 @@
name: HITL
on:
push:
branches: [ hitl ]
workflow_dispatch:
jobs:
hitl:
runs-on: ubuntu-latest
environment: hitl
steps:
- uses: peter-evans/repository-dispatch@v1
with:
token: ${{ secrets.DISPATCH_PAT }}
event-type: stabilizer
repository: quartiq/hitl
client-payload: '{"ref": "${{ github.ref }}", "sha": "${{ github.sha }}"}'

View File

@ -63,6 +63,7 @@ branch = "dma"
semihosting = ["panic-semihosting", "cortex-m-log/semihosting"] semihosting = ["panic-semihosting", "cortex-m-log/semihosting"]
bkpt = [ ] bkpt = [ ]
nightly = ["cortex-m/inline-asm", "dsp/nightly"] nightly = ["cortex-m/inline-asm", "dsp/nightly"]
pounder_v1_1 = [ ]
[profile.dev] [profile.dev]
codegen-units = 1 codegen-units = 1

View File

@ -1,4 +1,5 @@
[![QUARTIQ Matrix Chat](https://img.shields.io/matrix/quartiq:matrix.org)](https://matrix.to/#/#quartiq:matrix.org) [![QUARTIQ Matrix Chat](https://img.shields.io/matrix/quartiq:matrix.org)](https://matrix.to/#/#quartiq:matrix.org)
[![HITL (private)](https://github.com/quartiq/hitl/workflows/Stabilizer/badge.svg)](https://github.com/quartiq/hitl/actions?query=workflow%3AStabilizer)
# Stabilizer Firmware # Stabilizer Firmware

View File

@ -172,6 +172,17 @@ impl<I: Interface> Ad9959<I> {
// Set the clock frequency to configure the device as necessary. // Set the clock frequency to configure the device as necessary.
ad9959.configure_system_clock(clock_frequency, multiplier)?; ad9959.configure_system_clock(clock_frequency, multiplier)?;
// Latch the new clock configuration.
io_update.set_high().or(Err(Error::Pin))?;
// Delay for at least 1 SYNC_CLK period for the update to occur. The SYNC_CLK is guaranteed
// to be at least 250KHz (1/4 of 1MHz minimum REF_CLK). We use 5uS instead of 4uS to
// guarantee conformance with datasheet requirements.
delay.delay_us(5);
io_update.set_low().or(Err(Error::Pin))?;
Ok(ad9959) Ok(ad9959)
} }
@ -195,7 +206,7 @@ impl<I: Interface> Ad9959<I> {
/// ///
/// Returns: /// Returns:
/// The actual frequency configured for the internal system clock. /// The actual frequency configured for the internal system clock.
pub fn configure_system_clock( fn configure_system_clock(
&mut self, &mut self,
reference_clock_frequency: f32, reference_clock_frequency: f32,
multiplier: u8, multiplier: u8,

View File

@ -14,6 +14,9 @@ break DefaultHandler
break HardFault break HardFault
break rust_begin_unwind break rust_begin_unwind
source ../../PyCortexMDebug/cmdebug/svd_gdb.py
svd_load ~/Downloads/STM32H743x.svd
load load
# tbreak cortex_m_rt::reset_handler # tbreak cortex_m_rt::reset_handler
monitor reset halt monitor reset halt

View File

@ -12,16 +12,18 @@
///! the collection of multiple ADC samples without requiring processing by the CPU, which reduces ///! the collection of multiple ADC samples without requiring processing by the CPU, which reduces
///! overhead and provides the CPU with more time for processing-intensive tasks, like DSP. ///! overhead and provides the CPU with more time for processing-intensive tasks, like DSP.
///! ///!
///! The automation of sample collection utilizes two DMA streams, the SPI peripheral, and a timer ///! The automation of sample collection utilizes three DMA streams, the SPI peripheral, and two
///! compare channel for each ADC. The timer comparison channel is configured to generate a ///! timer compare channel for each ADC. One timer comparison channel is configured to generate a
///! comparison event every time the timer is equal to a specific value. Each comparison then ///! comparison event every time the timer is equal to a specific value. Each comparison then
///! generates a DMA transfer event to write into the SPI TX buffer. Although the SPI is a simplex, ///! generates a DMA transfer event to write into the SPI CR1 register to initiate the transfer.
///! RX-only interface, it is configured in full-duplex mode and the TX pin is left disconnected. ///! This allows the SPI interface to periodically read a single sample. The other timer comparison
///! This allows the SPI interface to periodically read a single word whenever a word is written to ///! channel is configured to generate a comparison event slightly before the first (~10 timer
///! the TX side. Thus, by running a continuous DMA transfer to periodically write a value into the ///! cycles). This channel triggers a separate DMA stream to clear the EOT flag within the SPI
///! TX FIFO, we can schedule the regular collection of ADC samples in the SPI RX buffer. ///! peripheral. The EOT flag must be cleared after each transfer or the SPI peripheral will not
///! properly complete the single conversion. Thus, by using two DMA streams and timer comparison
///! channels, the SPI can regularly acquire ADC samples.
///! ///!
///! In order to collect the acquired ADC samples into a RAM buffer, a second DMA transfer is ///! In order to collect the acquired ADC samples into a RAM buffer, a final DMA transfer is
///! configured to read from the SPI RX FIFO into RAM. The request for this transfer is connected to ///! configured to read from the SPI RX FIFO into RAM. The request for this transfer is connected to
///! the SPI RX data signal, so the SPI peripheral will request to move data into RAM whenever it is ///! the SPI RX data signal, so the SPI peripheral will request to move data into RAM whenever it is
///! available. When enough samples have been collected, a transfer-complete interrupt is generated ///! available. When enough samples have been collected, a transfer-complete interrupt is generated
@ -49,8 +51,8 @@
///! ///!
///! The ADCs collect a group of N samples, which is referred to as a batch. The size of the batch ///! The ADCs collect a group of N samples, which is referred to as a batch. The size of the batch
///! is configured by the user at compile-time to allow for a custom-tailored implementation. Larger ///! is configured by the user at compile-time to allow for a custom-tailored implementation. Larger
///! batch sizes generally provide for lower overhead and more processing time per sample, but come at the expense of ///! batch sizes generally provide for lower overhead and more processing time per sample, but come
///! increased input -> output latency. ///! at the expense of increased input -> output latency.
///! ///!
///! ///!
///! # Note ///! # Note
@ -75,11 +77,17 @@ use super::{
Priority, TargetAddress, Transfer, SAMPLE_BUFFER_SIZE, Priority, TargetAddress, Transfer, SAMPLE_BUFFER_SIZE,
}; };
// The following data is written by the timer ADC sample trigger into each of the SPI TXFIFOs. Note // The following data is written by the timer ADC sample trigger into the SPI CR1 to start the
// that because the SPI MOSI line is not connected, this data is dont-care. Data in AXI SRAM is not // transfer. Data in AXI SRAM is not initialized on boot, so the contents are random. This value is
// initialized on boot, so the contents are random. // initialized during setup.
#[link_section = ".axisram.buffers"] #[link_section = ".axisram.buffers"]
static mut SPI_START: [u16; 1] = [0x00]; static mut SPI_START: [u32; 1] = [0x00; 1];
// The following data is written by the timer flag clear trigger into the SPI IFCR register to clear
// the EOT flag. Data in AXI SRAM is not initialized on boot, so the contents are random. This
// value is initialized during setup.
#[link_section = ".axisram.buffers"]
static mut SPI_EOT_CLEAR: [u32; 1] = [0x00];
// The following global buffers are used for the ADC sample DMA transfers. Two buffers are used for // The following global buffers are used for the ADC sample DMA transfers. Two buffers are used for
// each transfer in a ping-pong buffer configuration (one is being acquired while the other is being // each transfer in a ping-pong buffer configuration (one is being acquired while the other is being
@ -90,36 +98,70 @@ static mut ADC_BUF: [[[u16; SAMPLE_BUFFER_SIZE]; 2]; 2] =
[[[0; SAMPLE_BUFFER_SIZE]; 2]; 2]; [[[0; SAMPLE_BUFFER_SIZE]; 2]; 2];
macro_rules! adc_input { macro_rules! adc_input {
($name:ident, $index:literal, $trigger_stream:ident, $data_stream:ident, ($name:ident, $index:literal, $trigger_stream:ident, $data_stream:ident, $clear_stream:ident,
$spi:ident, $trigger_channel:ident, $dma_req:ident) => { $spi:ident, $trigger_channel:ident, $dma_req:ident, $clear_channel:ident, $dma_clear_req:ident) => {
/// $spi is used as a type for indicating a DMA transfer into the SPI TX FIFO paste::paste! {
/// whenever the tim2 update dma request occurs. /// $spi-CR is used as a type for indicating a DMA transfer into the SPI control
struct $spi { /// register whenever the tim2 update dma request occurs.
struct [< $spi CR >] {
_channel: timers::tim2::$trigger_channel, _channel: timers::tim2::$trigger_channel,
} }
impl $spi { impl [< $spi CR >] {
pub fn new(_channel: timers::tim2::$trigger_channel) -> Self { pub fn new(_channel: timers::tim2::$trigger_channel) -> Self {
Self { _channel } Self { _channel }
} }
} }
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and // Note(unsafe): This structure is only safe to instantiate once. The DMA request is
// may only be used if ownership of the timer2 $trigger_channel compare channel is assured, which is // hard-coded and may only be used if ownership of the timer2 $trigger_channel compare
// ensured by maintaining ownership of the channel. // channel is assured, which is ensured by maintaining ownership of the channel.
unsafe impl TargetAddress<MemoryToPeripheral> for $spi { unsafe impl TargetAddress<MemoryToPeripheral> for [< $spi CR >] {
/// SPI is configured to operate using 16-bit transfer words.
type MemSize = u16; type MemSize = u32;
/// SPI DMA requests are generated whenever TIM2 CHx ($dma_req) comparison occurs. /// SPI DMA requests are generated whenever TIM2 CHx ($dma_req) comparison occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8); const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_req as u8);
/// Whenever the DMA request occurs, it should write into SPI's TX FIFO to start a DMA /// Whenever the DMA request occurs, it should write into SPI's CR1 to start the
/// transfer. /// transfer.
fn address(&self) -> usize { fn address(&self) -> usize {
// Note(unsafe): It is assumed that SPI is owned by another DMA transfer and this DMA is // Note(unsafe): It is assumed that SPI is owned by another DMA transfer. This
// only used for the transmit-half of DMA. // is only safe because we are writing to a configuration register.
let regs = unsafe { &*hal::stm32::$spi::ptr() }; let regs = unsafe { &*hal::stm32::$spi::ptr() };
&regs.txdr as *const _ as usize &regs.cr1 as *const _ as usize
}
}
/// $spi-IFCR is used as a type for indicating a DMA transfer into the SPI flag clear
/// register whenever the tim3 compare dma request occurs. The flag must be cleared
/// before the transfer starts.
struct [< $spi IFCR >] {
_channel: timers::tim3::$clear_channel,
}
impl [< $spi IFCR >] {
pub fn new(_channel: timers::tim3::$clear_channel) -> Self {
Self { _channel }
}
}
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is
// hard-coded and may only be used if ownership of the timer3 $clear_channel compare
// channel is assured, which is ensured by maintaining ownership of the channel.
unsafe impl TargetAddress<MemoryToPeripheral> for [< $spi IFCR >] {
type MemSize = u32;
/// SPI DMA requests are generated whenever TIM3 CHx ($dma_clear_req) comparison
/// occurs.
const REQUEST_LINE: Option<u8> = Some(DMAReq::$dma_clear_req as u8);
/// Whenever the DMA request occurs, it should write into SPI's IFCR to clear the
/// EOT flag to allow the next transmission.
fn address(&self) -> usize {
// Note(unsafe): It is assumed that SPI is owned by another DMA transfer and
// this DMA is only used for writing to the configuration registers.
let regs = unsafe { &*hal::stm32::$spi::ptr() };
&regs.ifcr as *const _ as usize
} }
} }
@ -134,9 +176,15 @@ macro_rules! adc_input {
>, >,
_trigger_transfer: Transfer< _trigger_transfer: Transfer<
hal::dma::dma::$trigger_stream<hal::stm32::DMA1>, hal::dma::dma::$trigger_stream<hal::stm32::DMA1>,
$spi, [< $spi CR >],
MemoryToPeripheral, MemoryToPeripheral,
&'static mut [u16; 1], &'static mut [u32; 1],
>,
_flag_clear_transfer: Transfer<
hal::dma::dma::$clear_stream<hal::stm32::DMA1>,
[< $spi IFCR >],
MemoryToPeripheral,
&'static mut [u32; 1],
>, >,
} }
@ -145,30 +193,76 @@ macro_rules! adc_input {
/// ///
/// # Args /// # Args
/// * `spi` - The SPI interface used to communicate with the ADC. /// * `spi` - The SPI interface used to communicate with the ADC.
/// * `trigger_stream` - The DMA stream used to trigger each ADC transfer by writing a word into /// * `trigger_stream` - The DMA stream used to trigger each ADC transfer by
/// the SPI TX FIFO. /// writing a word into the SPI TX FIFO.
/// * `data_stream` - The DMA stream used to read samples received over SPI into a data buffer. /// * `data_stream` - The DMA stream used to read samples received over SPI into a data buffer.
/// * `_trigger_channel` - The ADC sampling timer output compare channel for read triggers. /// * `clear_stream` - The DMA stream used to clear the EOT flag in the SPI peripheral.
/// * `trigger_channel` - The ADC sampling timer output compare channel for read triggers.
/// * `clear_channel` - The shadow sampling timer output compare channel used for
/// clearing the SPI EOT flag.
pub fn new( pub fn new(
spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Enabled, u16>, spi: hal::spi::Spi<hal::stm32::$spi, hal::spi::Enabled, u16>,
trigger_stream: hal::dma::dma::$trigger_stream< trigger_stream: hal::dma::dma::$trigger_stream<
hal::stm32::DMA1, hal::stm32::DMA1,
>, >,
data_stream: hal::dma::dma::$data_stream<hal::stm32::DMA1>, data_stream: hal::dma::dma::$data_stream<hal::stm32::DMA1>,
clear_stream: hal::dma::dma::$clear_stream<hal::stm32::DMA1>,
trigger_channel: timers::tim2::$trigger_channel, trigger_channel: timers::tim2::$trigger_channel,
clear_channel: timers::tim3::$clear_channel,
) -> Self { ) -> Self {
// Generate DMA events when an output compare of the timer hitting zero (timer roll over) // The flag clear DMA transfer always clears the EOT flag in the SPI
// occurs. // peripheral. It has the highest priority to ensure it is completed before the
trigger_channel.listen_dma(); // transfer trigger.
trigger_channel.to_output_compare(0); let clear_config = DmaConfig::default()
.priority(Priority::VeryHigh)
.circular_buffer(true);
// The trigger stream constantly writes to the TX FIFO using a static word (dont-care unsafe {
// contents). Thus, neither the memory or peripheral address ever change. This is run in SPI_EOT_CLEAR[0] = 1 << 3;
// circular mode to be completed at every DMA request. }
// Generate DMA events when the timer hits zero (roll-over). This must be before
// the trigger channel DMA occurs, as if the trigger occurs first, the
// transmission will not occur.
clear_channel.listen_dma();
clear_channel.to_output_compare(0);
let mut clear_transfer: Transfer<
_,
_,
MemoryToPeripheral,
_,
> = Transfer::init(
clear_stream,
[< $spi IFCR >]::new(clear_channel),
// Note(unsafe): Because this is a Memory->Peripheral transfer, this data is
// never actually modified. It technically only needs to be immutably
// borrowed, but the current HAL API only supports mutable borrows.
unsafe { &mut SPI_EOT_CLEAR },
None,
clear_config,
);
// Generate DMA events when an output compare of the timer hits the specified
// value.
trigger_channel.listen_dma();
trigger_channel.to_output_compare(2);
// The trigger stream constantly writes to the SPI CR1 using a static word
// (which is a static value to enable the SPI transfer). Thus, neither the
// memory or peripheral address ever change. This is run in circular mode to be
// completed at every DMA request.
let trigger_config = DmaConfig::default() let trigger_config = DmaConfig::default()
.priority(Priority::High) .priority(Priority::High)
.circular_buffer(true); .circular_buffer(true);
// Note(unsafe): This word is initialized once per ADC initialization to verify
// it is initialized properly.
unsafe {
// Write a binary code into the SPI control register to initiate a transfer.
SPI_START[0] = 0x201;
};
// Construct the trigger stream to write from memory to the peripheral. // Construct the trigger stream to write from memory to the peripheral.
let mut trigger_transfer: Transfer< let mut trigger_transfer: Transfer<
_, _,
@ -177,7 +271,7 @@ macro_rules! adc_input {
_, _,
> = Transfer::init( > = Transfer::init(
trigger_stream, trigger_stream,
$spi::new(trigger_channel), [< $spi CR >]::new(trigger_channel),
// Note(unsafe): Because this is a Memory->Peripheral transfer, this data is never // Note(unsafe): Because this is a Memory->Peripheral transfer, this data is never
// actually modified. It technically only needs to be immutably borrowed, but the // actually modified. It technically only needs to be immutably borrowed, but the
// current HAL API only supports mutable borrows. // current HAL API only supports mutable borrows.
@ -195,15 +289,16 @@ macro_rules! adc_input {
.transfer_complete_interrupt($index == 1) .transfer_complete_interrupt($index == 1)
.priority(Priority::VeryHigh); .priority(Priority::VeryHigh);
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This // A SPI peripheral error interrupt is used to determine if the RX FIFO
// indicates that samples were dropped due to excessive processing time in the main // overflows. This indicates that samples were dropped due to excessive
// application (e.g. a second DMA transfer completes before the first was done with // processing time in the main application (e.g. a second DMA transfer completes
// processing). This is used as a flow control indicator to guarantee that no ADC samples // before the first was done with processing). This is used as a flow control
// are lost. // indicator to guarantee that no ADC samples are lost.
let mut spi = spi.disable(); let mut spi = spi.disable();
spi.listen(hal::spi::Event::Error); spi.listen(hal::spi::Event::Error);
// The data transfer is always a transfer of data from the peripheral to a RAM buffer. // The data transfer is always a transfer of data from the peripheral to a RAM
// buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> = let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init( Transfer::init(
data_stream, data_stream,
@ -216,23 +311,25 @@ macro_rules! adc_input {
); );
data_transfer.start(|spi| { data_transfer.start(|spi| {
// Allow the SPI FIFOs to operate using only DMA data channels. // Allow the SPI RX FIFO to generate DMA transfer requests when data is
// available.
spi.enable_dma_rx(); spi.enable_dma_rx();
spi.enable_dma_tx();
// Enable SPI and start it in infinite transaction mode. // Each transaction is 1 word (16 bytes).
spi.inner().cr2.modify(|_, w| w.tsize().bits(1));
spi.inner().cr1.modify(|_, w| w.spe().set_bit()); spi.inner().cr1.modify(|_, w| w.spe().set_bit());
spi.inner().cr1.modify(|_, w| w.cstart().started());
}); });
clear_transfer.start(|_| {});
trigger_transfer.start(|_| {}); trigger_transfer.start(|_| {});
Self { Self {
// Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It shall not be used // Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It
// anywhere else in the module. // shall not be used anywhere else in the module.
next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) }, next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) },
transfer: data_transfer, transfer: data_transfer,
_trigger_transfer: trigger_transfer, _trigger_transfer: trigger_transfer,
_flag_clear_transfer: clear_transfer,
} }
} }
@ -241,9 +338,9 @@ macro_rules! adc_input {
/// # Returns /// # Returns
/// A reference to the underlying buffer that has been filled with ADC samples. /// A reference to the underlying buffer that has been filled with ADC samples.
pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] { pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
// Wait for the transfer to fully complete before continuing. // Wait for the transfer to fully complete before continuing. Note: If a device
// Note: If a device hangs up, check that this conditional is passing correctly, as there is // hangs up, check that this conditional is passing correctly, as there is no
// no time-out checks here in the interest of execution speed. // time-out checks here in the interest of execution speed.
while !self.transfer.get_transfer_complete_flag() {} while !self.transfer.get_transfer_complete_flag() {}
let next_buffer = self.next_buffer.take().unwrap(); let next_buffer = self.next_buffer.take().unwrap();
@ -253,13 +350,21 @@ macro_rules! adc_input {
let (prev_buffer, _, _) = let (prev_buffer, _, _) =
self.transfer.next_transfer(next_buffer).unwrap(); self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer); // .unwrap_none() https://github.com/rust-lang/rust/issues/62633 // .unwrap_none() https://github.com/rust-lang/rust/issues/62633
self.next_buffer.replace(prev_buffer);
self.next_buffer.as_ref().unwrap() self.next_buffer.as_ref().unwrap()
} }
} }
}
}; };
} }
adc_input!(Adc0Input, 0, Stream0, Stream1, SPI2, Channel1, TIM2_CH1); adc_input!(
adc_input!(Adc1Input, 1, Stream2, Stream3, SPI3, Channel2, TIM2_CH2); Adc0Input, 0, Stream0, Stream1, Stream2, SPI2, Channel1, TIM2_CH1,
Channel1, TIM3_CH1
);
adc_input!(
Adc1Input, 1, Stream3, Stream4, Stream5, SPI3, Channel2, TIM2_CH2,
Channel2, TIM3_CH2
);

View File

@ -200,5 +200,5 @@ macro_rules! dac_output {
}; };
} }
dac_output!(Dac0Output, 0, Stream4, SPI4, Channel3, TIM2_CH3); dac_output!(Dac0Output, 0, Stream6, SPI4, Channel3, TIM2_CH3);
dac_output!(Dac1Output, 1, Stream5, SPI5, Channel4, TIM2_CH4); dac_output!(Dac1Output, 1, Stream7, SPI5, Channel4, TIM2_CH4);

View File

@ -21,6 +21,21 @@ pub const POUNDER_IO_UPDATE_DELAY: f32 = 900_e-9;
/// The duration to assert IO_Update for the pounder DDS. /// The duration to assert IO_Update for the pounder DDS.
// IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile write. With pounder // IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile write. With pounder
// SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 400MHz), this corresponds to // SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 500MHz), this corresponds to
// 40ns. To accomodate rounding errors, we use 50ns instead. // 32ns. To accomodate rounding errors, we use 50ns instead.
pub const POUNDER_IO_UPDATE_DURATION: f32 = 50_e-9; pub const POUNDER_IO_UPDATE_DURATION: f32 = 50_e-9;
/// The DDS reference clock frequency in MHz.
pub const DDS_REF_CLK: MegaHertz = MegaHertz(100);
/// The multiplier used for the DDS reference clock PLL.
pub const DDS_MULTIPLIER: u8 = 5;
/// The DDS system clock frequency after the internal PLL multiplication.
#[allow(dead_code)]
pub const DDS_SYSTEM_CLK: MegaHertz =
MegaHertz(DDS_REF_CLK.0 * DDS_MULTIPLIER as u32);
/// The divider from the DDS system clock to the SYNC_CLK output (sync-clk is always 1/4 of sysclk).
#[allow(dead_code)]
pub const DDS_SYNC_CLK_DIV: u8 = 4;

View File

@ -80,7 +80,7 @@ impl InputStamper {
// Utilize the TIM5 CH4 as an input capture channel - use TI4 (the DI0 input trigger) as the // Utilize the TIM5 CH4 as an input capture channel - use TI4 (the DI0 input trigger) as the
// capture source. // capture source.
let input_capture = let input_capture =
timer_channel.into_input_capture(timers::tim5::CC4S_A::TI4); timer_channel.into_input_capture(timers::CaptureTrigger::Input24);
Self { Self {
capture_channel: input_capture, capture_channel: input_capture,

View File

@ -30,6 +30,9 @@ extern crate panic_halt;
#[macro_use] #[macro_use]
extern crate log; extern crate log;
#[allow(unused_imports)]
use core::convert::TryInto;
// use core::sync::atomic::{AtomicU32, AtomicBool, Ordering}; // use core::sync::atomic::{AtomicU32, AtomicBool, Ordering};
use cortex_m_rt::exception; use cortex_m_rt::exception;
use rtic::cyccnt::{Instant, U32Ext}; use rtic::cyccnt::{Instant, U32Ext};
@ -57,10 +60,10 @@ use heapless::{consts::*, String};
// The number of ticks in the ADC sampling timer. The timer runs at 100MHz, so the step size is // The number of ticks in the ADC sampling timer. The timer runs at 100MHz, so the step size is
// equal to 10ns per tick. // equal to 10ns per tick.
// Currently, the sample rate is equal to: Fsample = 100/256 MHz = 390.625 KHz // Currently, the sample rate is equal to: Fsample = 100/256 MHz = 390.625 KHz
const ADC_SAMPLE_TICKS: u32 = 256; const ADC_SAMPLE_TICKS: u16 = 256;
// The desired ADC sample processing buffer size. // The desired ADC sample processing buffer size.
const SAMPLE_BUFFER_SIZE: usize = 1; const SAMPLE_BUFFER_SIZE: usize = 8;
// The number of cascaded IIR biquads per channel. Select 1 or 2! // The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1; const IIR_CASCADE_LENGTH: usize = 1;
@ -220,6 +223,8 @@ const APP: () = {
pounder: Option<pounder::PounderDevices>, pounder: Option<pounder::PounderDevices>,
pounder_stamper: Option<pounder::timestamp::Timestamper>,
// Format: iir_state[ch][cascade-no][coeff] // Format: iir_state[ch][cascade-no][coeff]
#[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])] #[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])]
iir_state: [[iir::IIRState; IIR_CASCADE_LENGTH]; 2], iir_state: [[iir::IIRState; IIR_CASCADE_LENGTH]; 2],
@ -293,15 +298,49 @@ const APP: () = {
// Configure the timer to count at the designed tick rate. We will manually set the // Configure the timer to count at the designed tick rate. We will manually set the
// period below. // period below.
timer2.pause(); timer2.pause();
timer2.reset_counter();
timer2.set_tick_freq(design_parameters::TIMER_FREQUENCY); timer2.set_tick_freq(design_parameters::TIMER_FREQUENCY);
let mut sampling_timer = timers::SamplingTimer::new(timer2); let mut sampling_timer = timers::SamplingTimer::new(timer2);
sampling_timer.set_period_ticks(ADC_SAMPLE_TICKS - 1); sampling_timer.set_period_ticks((ADC_SAMPLE_TICKS - 1) as u32);
// The sampling timer is used as the master timer for the shadow-sampling timer. Thus,
// it generates a trigger whenever it is enabled.
sampling_timer sampling_timer
}; };
let mut shadow_sampling_timer = {
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
// dont-care.
let mut timer3 =
dp.TIM3.timer(1.khz(), ccdr.peripheral.TIM3, &ccdr.clocks);
// Configure the timer to count at the designed tick rate. We will manually set the
// period below.
timer3.pause();
timer3.reset_counter();
timer3.set_tick_freq(design_parameters::TIMER_FREQUENCY);
let mut shadow_sampling_timer =
timers::ShadowSamplingTimer::new(timer3);
shadow_sampling_timer.set_period_ticks(ADC_SAMPLE_TICKS - 1);
// The shadow sampling timer is a slave-mode timer to the sampling timer. It should
// always be in-sync - thus, we configure it to operate in slave mode using "Trigger
// mode".
// For TIM3, TIM2 can be made the internal trigger connection using ITR1. Thus, the
// SamplingTimer start now gates the start of the ShadowSamplingTimer.
shadow_sampling_timer.set_slave_mode(
timers::TriggerSource::Trigger1,
timers::SlaveMode::Trigger,
);
shadow_sampling_timer
};
let sampling_timer_channels = sampling_timer.channels(); let sampling_timer_channels = sampling_timer.channels();
let shadow_sampling_timer_channels = shadow_sampling_timer.channels();
let mut timestamp_timer = { let mut timestamp_timer = {
// The timer frequency is manually adjusted below, so the 1KHz setting here is a // The timer frequency is manually adjusted below, so the 1KHz setting here is a
@ -350,6 +389,7 @@ const APP: () = {
}) })
.manage_cs() .manage_cs()
.suspend_when_inactive() .suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Receiver)
.cs_delay(design_parameters::ADC_SETUP_TIME); .cs_delay(design_parameters::ADC_SETUP_TIME);
let spi: hal::spi::Spi<_, _, u16> = dp.SPI2.spi( let spi: hal::spi::Spi<_, _, u16> = dp.SPI2.spi(
@ -364,7 +404,9 @@ const APP: () = {
spi, spi,
dma_streams.0, dma_streams.0,
dma_streams.1, dma_streams.1,
dma_streams.2,
sampling_timer_channels.ch1, sampling_timer_channels.ch1,
shadow_sampling_timer_channels.ch1,
) )
}; };
@ -388,6 +430,7 @@ const APP: () = {
}) })
.manage_cs() .manage_cs()
.suspend_when_inactive() .suspend_when_inactive()
.communication_mode(hal::spi::CommunicationMode::Receiver)
.cs_delay(design_parameters::ADC_SETUP_TIME); .cs_delay(design_parameters::ADC_SETUP_TIME);
let spi: hal::spi::Spi<_, _, u16> = dp.SPI3.spi( let spi: hal::spi::Spi<_, _, u16> = dp.SPI3.spi(
@ -400,9 +443,11 @@ const APP: () = {
Adc1Input::new( Adc1Input::new(
spi, spi,
dma_streams.2,
dma_streams.3, dma_streams.3,
dma_streams.4,
dma_streams.5,
sampling_timer_channels.ch2, sampling_timer_channels.ch2,
shadow_sampling_timer_channels.ch2,
) )
}; };
@ -483,12 +528,12 @@ const APP: () = {
let dac0 = Dac0Output::new( let dac0 = Dac0Output::new(
dac0_spi, dac0_spi,
dma_streams.4, dma_streams.6,
sampling_timer_channels.ch3, sampling_timer_channels.ch3,
); );
let dac1 = Dac1Output::new( let dac1 = Dac1Output::new(
dac1_spi, dac1_spi,
dma_streams.5, dma_streams.7,
sampling_timer_channels.ch4, sampling_timer_channels.ch4,
); );
(dac0, dac1) (dac0, dac1)
@ -509,7 +554,7 @@ const APP: () = {
delay.delay_ms(2u8); delay.delay_ms(2u8);
let (pounder_devices, dds_output) = if pounder_pgood.is_high().unwrap() let (pounder_devices, dds_output) = if pounder_pgood.is_high().unwrap()
{ {
let mut ad9959 = { let ad9959 = {
let qspi_interface = { let qspi_interface = {
// Instantiate the QUADSPI pins and peripheral interface. // Instantiate the QUADSPI pins and peripheral interface.
let qspi_pins = { let qspi_pins = {
@ -553,17 +598,24 @@ const APP: () = {
pounder::QspiInterface::new(qspi).unwrap() pounder::QspiInterface::new(qspi).unwrap()
}; };
#[cfg(feature = "pounder_v1_1")]
let reset_pin = gpiog.pg6.into_push_pull_output();
#[cfg(not(feature = "pounder_v1_1"))]
let reset_pin = gpioa.pa0.into_push_pull_output(); let reset_pin = gpioa.pa0.into_push_pull_output();
let mut io_update = gpiog.pg7.into_push_pull_output(); let mut io_update = gpiog.pg7.into_push_pull_output();
let ref_clk: hal::time::Hertz =
design_parameters::DDS_REF_CLK.into();
let ad9959 = ad9959::Ad9959::new( let ad9959 = ad9959::Ad9959::new(
qspi_interface, qspi_interface,
reset_pin, reset_pin,
&mut io_update, &mut io_update,
&mut delay, &mut delay,
ad9959::Mode::FourBitSerial, ad9959::Mode::FourBitSerial,
100_000_000_f32, ref_clk.0 as f32,
5, design_parameters::DDS_MULTIPLIER,
) )
.unwrap(); .unwrap();
@ -642,7 +694,6 @@ const APP: () = {
let pounder_devices = pounder::PounderDevices::new( let pounder_devices = pounder::PounderDevices::new(
io_expander, io_expander,
&mut ad9959,
spi, spi,
adc1, adc1,
adc2, adc2,
@ -828,6 +879,54 @@ const APP: () = {
) )
}; };
#[cfg(feature = "pounder_v1_1")]
let pounder_stamper = {
let dma2_streams =
hal::dma::dma::StreamsTuple::new(dp.DMA2, ccdr.peripheral.DMA2);
let etr_pin = gpioa.pa0.into_alternate_af3();
// The frequency in the constructor is dont-care, as we will modify the period + clock
// source manually below.
let tim8 =
dp.TIM8.timer(1.khz(), ccdr.peripheral.TIM8, &ccdr.clocks);
let mut timestamp_timer = timers::PounderTimestampTimer::new(tim8);
// Pounder is configured to generate a 500MHz reference clock, so a 125MHz sync-clock is
// output. As a result, dividing the 125MHz sync-clk provides a 31.25MHz tick rate for
// the timestamp timer. 31.25MHz corresponds with a 32ns tick rate.
timestamp_timer.set_external_clock(timers::Prescaler::Div4);
timestamp_timer.start();
// We want the pounder timestamp timer to overflow once per batch.
let tick_ratio = {
let sync_clk_mhz: f32 = design_parameters::DDS_SYSTEM_CLK.0
as f32
/ design_parameters::DDS_SYNC_CLK_DIV as f32;
sync_clk_mhz / design_parameters::TIMER_FREQUENCY.0 as f32
};
let period = (tick_ratio
* ADC_SAMPLE_TICKS as f32
* SAMPLE_BUFFER_SIZE as f32) as u32
/ 4;
timestamp_timer.set_period_ticks((period - 1).try_into().unwrap());
let tim8_channels = timestamp_timer.channels();
let stamper = pounder::timestamp::Timestamper::new(
timestamp_timer,
dma2_streams.0,
tim8_channels.ch1,
&mut sampling_timer,
etr_pin,
);
Some(stamper)
};
#[cfg(not(feature = "pounder_v1_1"))]
let pounder_stamper = None;
// Start sampling ADCs. // Start sampling ADCs.
sampling_timer.start(); sampling_timer.start();
timestamp_timer.start(); timestamp_timer.start();
@ -841,6 +940,7 @@ const APP: () = {
input_stamper, input_stamper,
dds_output, dds_output,
pounder: pounder_devices, pounder: pounder_devices,
pounder_stamper,
eeprom_i2c, eeprom_i2c,
net_interface: network_interface, net_interface: network_interface,
@ -865,8 +965,13 @@ const APP: () = {
/// ///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement /// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met. /// the same time bounds, meeting one also means the other is also met.
#[task(binds=DMA1_STR3, resources=[adcs, dacs, iir_state, iir_ch, dds_output, input_stamper], priority=2)] #[task(binds=DMA1_STR4, resources=[pounder_stamper, adcs, dacs, iir_state, iir_ch, dds_output, input_stamper], priority=2)]
fn process(c: process::Context) { fn process(c: process::Context) {
if let Some(stamper) = c.resources.pounder_stamper {
let pounder_timestamps = stamper.acquire_buffer();
info!("{:?}", pounder_timestamps);
}
let adc_samples = [ let adc_samples = [
c.resources.adcs.0.acquire_buffer(), c.resources.adcs.0.acquire_buffer(),
c.resources.adcs.1.acquire_buffer(), c.resources.adcs.1.acquire_buffer(),

View File

@ -3,6 +3,7 @@ use serde::{Deserialize, Serialize};
mod attenuators; mod attenuators;
mod dds_output; mod dds_output;
mod rf_power; mod rf_power;
pub mod timestamp;
pub use dds_output::DdsOutput; pub use dds_output::DdsOutput;
@ -274,7 +275,6 @@ impl PounderDevices {
/// Construct and initialize pounder-specific hardware. /// Construct and initialize pounder-specific hardware.
/// ///
/// Args: /// Args:
/// * `ad9959` - The DDS driver for the pounder hardware.
/// * `attenuator_spi` - A SPI interface to control digital attenuators. /// * `attenuator_spi` - A SPI interface to control digital attenuators.
/// * `adc1` - The ADC1 peripheral for measuring power. /// * `adc1` - The ADC1 peripheral for measuring power.
/// * `adc2` - The ADC2 peripheral for measuring power. /// * `adc2` - The ADC2 peripheral for measuring power.
@ -282,7 +282,6 @@ impl PounderDevices {
/// * `adc2_in_p` - The input channel for the RF power measurement on IN1. /// * `adc2_in_p` - The input channel for the RF power measurement on IN1.
pub fn new( pub fn new(
mcp23017: mcp23017::MCP23017<hal::i2c::I2c<hal::stm32::I2C1>>, mcp23017: mcp23017::MCP23017<hal::i2c::I2c<hal::stm32::I2C1>>,
ad9959: &mut ad9959::Ad9959<QspiInterface>,
attenuator_spi: hal::spi::Spi<hal::stm32::SPI1, hal::spi::Enabled, u8>, attenuator_spi: hal::spi::Spi<hal::stm32::SPI1, hal::spi::Enabled, u8>,
adc1: hal::adc::Adc<hal::stm32::ADC1, hal::adc::Enabled>, adc1: hal::adc::Adc<hal::stm32::ADC1, hal::adc::Enabled>,
adc2: hal::adc::Adc<hal::stm32::ADC2, hal::adc::Enabled>, adc2: hal::adc::Adc<hal::stm32::ADC2, hal::adc::Enabled>,
@ -314,14 +313,10 @@ impl PounderDevices {
.write_gpio(mcp23017::Port::GPIOB, 1 << 5) .write_gpio(mcp23017::Port::GPIOB, 1 << 5)
.map_err(|_| Error::I2c)?; .map_err(|_| Error::I2c)?;
// Select the on-board clock with a 4x prescaler (400MHz).
devices devices
.mcp23017 .mcp23017
.digital_write(EXT_CLK_SEL_PIN, false) .digital_write(EXT_CLK_SEL_PIN, false)
.map_err(|_| Error::I2c)?; .map_err(|_| Error::I2c)?;
ad9959
.configure_system_clock(100_000_000f32, 4)
.map_err(|_| Error::Dds)?;
Ok(devices) Ok(devices)
} }

140
src/pounder/timestamp.rs Normal file
View File

@ -0,0 +1,140 @@
///! ADC sample timestamper using external Pounder reference clock.
///!
///! # Design
///!
///! The pounder timestamper utilizes the pounder SYNC_CLK output as a fast external reference clock
///! for recording a timestamp for each of the ADC samples.
///!
///! To accomplish this, a timer peripheral is configured to be driven by an external clock input.
///! Due to the limitations of clock frequencies allowed by the timer peripheral, the SYNC_CLK input
///! is divided by 4. This clock then clocks the timer peripheral in a free-running mode with an ARR
///! (max count register value) configured to overflow once per ADC sample batch.
///!
///! Once the timer is configured, an input capture is configured to record the timer count
///! register. The input capture is configured to utilize an internal trigger for the input capture.
///! The internal trigger is selected such that when a sample is generated on ADC0, the input
///! capture is simultaneously triggered. This results in the input capture triggering identically
///! to when the ADC samples the input.
///!
///! Once the input capture is properly configured, a DMA transfer is configured to collect all of
///! timestamps. The DMA transfer collects 1 timestamp for each ADC sample collected. In order to
///! avoid potentially losing a timestamp for a sample, the DMA transfer operates in double-buffer
///! mode. As soon as the DMA transfer completes, the hardware automatically swaps over to a second
///! buffer to continue capturing. This alleviates timing sensitivities of the DMA transfer
///! schedule.
use stm32h7xx_hal as hal;
use hal::dma::{dma::DmaConfig, PeripheralToMemory, Transfer};
use crate::{timers, SAMPLE_BUFFER_SIZE};
// Three buffers are required for double buffered mode - 2 are owned by the DMA stream and 1 is the
// working data provided to the application. These buffers must exist in a DMA-accessible memory
// region. Note that AXISRAM is not initialized on boot, so their initial contents are undefined.
#[link_section = ".axisram.buffers"]
static mut BUF: [[u16; SAMPLE_BUFFER_SIZE]; 3] = [[0; SAMPLE_BUFFER_SIZE]; 3];
/// Software unit to timestamp stabilizer ADC samples using an external pounder reference clock.
pub struct Timestamper {
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
timer: timers::PounderTimestampTimer,
transfer: Transfer<
hal::dma::dma::Stream0<hal::stm32::DMA2>,
timers::tim8::Channel1InputCapture,
PeripheralToMemory,
&'static mut [u16; SAMPLE_BUFFER_SIZE],
>,
}
impl Timestamper {
/// Construct the pounder sample timestamper.
///
/// # Note
/// The DMA is immediately configured after instantiation. It will not collect any samples
/// until the sample timer begins to cause input capture triggers.
///
/// # Args
/// * `timestamp_timer` - The timer peripheral used for capturing timestamps from.
/// * `stream` - The DMA stream to use for collecting timestamps.
/// * `capture_channel` - The input capture channel for collecting timestamps.
/// * `sampling_timer` - The stabilizer ADC sampling timer.
/// * `_clock_input` - The input pin for the external clock from Pounder.
///
/// # Returns
/// The new pounder timestamper in an operational state.
pub fn new(
mut timestamp_timer: timers::PounderTimestampTimer,
stream: hal::dma::dma::Stream0<hal::stm32::DMA2>,
capture_channel: timers::tim8::Channel1,
sampling_timer: &mut timers::SamplingTimer,
_clock_input: hal::gpio::gpioa::PA0<
hal::gpio::Alternate<hal::gpio::AF3>,
>,
) -> Self {
let config = DmaConfig::default()
.memory_increment(true)
.circular_buffer(true)
.double_buffer(true);
// The sampling timer should generate a trigger output when CH1 comparison occurs.
sampling_timer.generate_trigger(timers::TriggerGenerator::ComparePulse);
// The timestamp timer trigger input should use TIM2 (SamplingTimer)'s trigger, which is
// mapped to ITR1.
timestamp_timer.set_trigger_source(timers::TriggerSource::Trigger1);
// The capture channel should capture whenever the trigger input occurs.
let input_capture = capture_channel
.into_input_capture(timers::CaptureTrigger::TriggerInput);
input_capture.listen_dma();
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
Transfer::init(
stream,
input_capture,
// Note(unsafe): BUF[0] and BUF[1] are "owned" by this peripheral.
// They shall not be used anywhere else in the module.
unsafe { &mut BUF[0] },
unsafe { Some(&mut BUF[1]) },
config,
);
data_transfer.start(|capture_channel| capture_channel.enable());
Self {
timer: timestamp_timer,
transfer: data_transfer,
// Note(unsafe): BUF[2] is "owned" by this peripheral. It shall not be used anywhere
// else in the module.
next_buffer: unsafe { Some(&mut BUF[2]) },
}
}
/// Update the period of the underlying timestamp timer.
pub fn update_period(&mut self, period: u16) {
self.timer.set_period_ticks(period);
}
/// Obtain a buffer filled with timestamps.
///
/// # Returns
/// A reference to the underlying buffer that has been filled with timestamps.
pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
// Wait for the transfer to fully complete before continuing.
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
// no time-out checks here in the interest of execution speed.
while !self.transfer.get_transfer_complete_flag() {}
let next_buffer = self.next_buffer.take().unwrap();
// Start the next transfer.
let (prev_buffer, _, _) =
self.transfer.next_transfer(next_buffer).unwrap();
self.next_buffer.replace(prev_buffer); // .unwrap_none() https://github.com/rust-lang/rust/issues/62633
self.next_buffer.as_ref().unwrap()
}
}

View File

@ -1,69 +1,195 @@
///! The sampling timer is used for managing ADC sampling and external reference timestamping. ///! The sampling timer is used for managing ADC sampling and external reference timestamping.
use super::hal; use super::hal;
/// The source of an input capture trigger.
#[allow(dead_code)]
pub enum CaptureTrigger {
Input13 = 0b01,
Input24 = 0b10,
TriggerInput = 0b11,
}
/// The event that should generate an external trigger from the peripheral.
#[allow(dead_code)]
pub enum TriggerGenerator {
Reset = 0b000,
Enable = 0b001,
Update = 0b010,
ComparePulse = 0b011,
Ch1Compare = 0b100,
Ch2Compare = 0b101,
Ch3Compare = 0b110,
Ch4Compare = 0b111,
}
/// Selects the trigger source for the timer peripheral.
#[allow(dead_code)]
pub enum TriggerSource {
Trigger0 = 0,
Trigger1 = 0b01,
Trigger2 = 0b10,
Trigger3 = 0b11,
}
/// Prescalers for externally-supplied reference clocks.
pub enum Prescaler {
Div1 = 0b00,
Div2 = 0b01,
Div4 = 0b10,
Div8 = 0b11,
}
/// Optional slave operation modes of a timer.
pub enum SlaveMode {
Disabled = 0,
Trigger = 0b0110,
}
macro_rules! timer_channels { macro_rules! timer_channels {
($name:ident, $TY:ident, u32) => { ($name:ident, $TY:ident, $size:ty) => {
paste::paste! { paste::paste! {
/// The timer used for managing ADC sampling. /// The timer used for managing ADC sampling.
pub struct $name { pub struct $name {
timer: hal::timer::Timer<hal::stm32::[< $TY >]>, timer: hal::timer::Timer<hal::stm32::[< $TY >]>,
channels: Option<[< $TY:lower >]::Channels>, channels: Option<[< $TY:lower >]::Channels>,
update_event: Option<[< $TY:lower >]::UpdateEvent>,
} }
impl $name { impl $name {
/// Construct the sampling timer. /// Construct the sampling timer.
#[allow(dead_code)]
pub fn new(mut timer: hal::timer::Timer<hal::stm32::[< $TY>]>) -> Self { pub fn new(mut timer: hal::timer::Timer<hal::stm32::[< $TY>]>) -> Self {
timer.pause(); timer.pause();
Self { Self {
timer, timer,
// Note(unsafe): Once these channels are taken, we guarantee that we do not modify any // Note(unsafe): Once these channels are taken, we guarantee that we do not
// of the underlying timer channel registers, as ownership of the channels is now // modify any of the underlying timer channel registers, as ownership of the
// provided through the associated channel structures. We additionally guarantee this // channels is now provided through the associated channel structures. We
// can only be called once because there is only one Timer2 and this resource takes // additionally guarantee this can only be called once because there is only
// ownership of it once instantiated. // one Timer2 and this resource takes ownership of it once instantiated.
channels: unsafe { Some([< $TY:lower >]::Channels::new()) }, channels: unsafe { Some([< $TY:lower >]::Channels::new()) },
update_event: unsafe { Some([< $TY:lower >]::UpdateEvent::new()) },
} }
} }
/// Get the timer capture/compare channels. /// Get the timer capture/compare channels.
#[allow(dead_code)]
pub fn channels(&mut self) -> [< $TY:lower >]::Channels { pub fn channels(&mut self) -> [< $TY:lower >]::Channels {
self.channels.take().unwrap() self.channels.take().unwrap()
} }
/// Get the timer update event.
#[allow(dead_code)]
pub fn update_event(&mut self) -> [< $TY:lower >]::UpdateEvent {
self.update_event.take().unwrap()
}
/// Get the period of the timer. /// Get the period of the timer.
#[allow(dead_code)] #[allow(dead_code)]
pub fn get_period(&self) -> u32 { pub fn get_period(&self) -> $size {
let regs = unsafe { &*hal::stm32::$TY::ptr() }; let regs = unsafe { &*hal::stm32::$TY::ptr() };
regs.arr.read().arr().bits() regs.arr.read().arr().bits()
} }
/// Manually set the period of the timer. /// Manually set the period of the timer.
#[allow(dead_code)] #[allow(dead_code)]
pub fn set_period_ticks(&mut self, period: u32) { pub fn set_period_ticks(&mut self, period: $size) {
let regs = unsafe { &*hal::stm32::$TY::ptr() }; let regs = unsafe { &*hal::stm32::$TY::ptr() };
regs.arr.write(|w| w.arr().bits(period)); regs.arr.write(|w| w.arr().bits(period));
// Force the new period to take effect immediately.
self.timer.apply_freq();
}
/// Clock the timer from an external source.
///
/// # Note:
/// * Currently, only an external source applied to ETR is supported.
///
/// # Args
/// * `prescaler` - The prescaler to use for the external source.
#[allow(dead_code)]
pub fn set_external_clock(&mut self, prescaler: Prescaler) {
let regs = unsafe { &*hal::stm32::$TY::ptr() };
regs.smcr.modify(|_, w| w.etps().bits(prescaler as u8).ece().set_bit());
// Clear any other prescaler configuration.
regs.psc.write(|w| w.psc().bits(0));
} }
/// Start the timer. /// Start the timer.
pub fn start(mut self) { #[allow(dead_code)]
pub fn start(&mut self) {
// Force a refresh of the frequency settings. // Force a refresh of the frequency settings.
self.timer.apply_freq(); self.timer.apply_freq();
self.timer.reset_counter(); self.timer.reset_counter();
self.timer.resume(); self.timer.resume();
} }
/// Configure the timer peripheral to generate a trigger based on the provided
/// source.
#[allow(dead_code)]
pub fn generate_trigger(&mut self, source: TriggerGenerator) {
let regs = unsafe { &*hal::stm32::$TY::ptr() };
// Note(unsafe) The TriggerGenerator enumeration is specified such that this is
// always in range.
regs.cr2.modify(|_, w| w.mms().bits(source as u8));
}
/// Select a trigger source for the timer peripheral.
#[allow(dead_code)]
pub fn set_trigger_source(&mut self, source: TriggerSource) {
let regs = unsafe { &*hal::stm32::$TY::ptr() };
// Note(unsafe) The TriggerSource enumeration is specified such that this is
// always in range.
regs.smcr.modify(|_, w| unsafe { w.ts().bits(source as u8) } );
}
#[allow(dead_code)]
pub fn set_slave_mode(&mut self, source: TriggerSource, mode: SlaveMode) {
let regs = unsafe { &*hal::stm32::$TY::ptr() };
// Note(unsafe) The TriggerSource and SlaveMode enumerations are specified such
// that they are always in range.
regs.smcr.modify(|_, w| unsafe { w.sms().bits(mode as u8).ts().bits(source as u8) } );
}
} }
pub mod [< $TY:lower >] { pub mod [< $TY:lower >] {
pub use hal::stm32::tim2::ccmr1_input::{CC1S_A, CC2S_A};
pub use hal::stm32::tim2::ccmr2_input::{CC3S_A, CC4S_A};
use stm32h7xx_hal as hal; use stm32h7xx_hal as hal;
use hal::dma::{traits::TargetAddress, PeripheralToMemory, dma::DMAReq}; use hal::dma::{traits::TargetAddress, PeripheralToMemory, dma::DMAReq};
use hal::stm32::$TY; use hal::stm32::$TY;
pub struct UpdateEvent {}
impl UpdateEvent {
/// Create a new update event
///
/// Note(unsafe): This is only safe to call once.
#[allow(dead_code)]
pub unsafe fn new() -> Self {
Self {}
}
/// Enable DMA requests upon timer updates.
#[allow(dead_code)]
pub fn listen_dma(&self) {
// Note(unsafe): We perform only atomic operations on the timer registers.
let regs = unsafe { &*<$TY>::ptr() };
regs.dier.modify(|_, w| w.ude().set_bit());
}
/// Trigger a DMA request manually
#[allow(dead_code)]
pub fn trigger(&self) {
let regs = unsafe { &*<$TY>::ptr() };
regs.egr.write(|w| w.ug().set_bit());
}
}
/// The channels representing the timer. /// The channels representing the timer.
pub struct Channels { pub struct Channels {
pub ch1: Channel1, pub ch1: Channel1,
@ -76,6 +202,7 @@ macro_rules! timer_channels {
/// Construct a new set of channels. /// Construct a new set of channels.
/// ///
/// Note(unsafe): This is only safe to call once. /// Note(unsafe): This is only safe to call once.
#[allow(dead_code)]
pub unsafe fn new() -> Self { pub unsafe fn new() -> Self {
Self { Self {
ch1: Channel1::new(), ch1: Channel1::new(),
@ -86,15 +213,15 @@ macro_rules! timer_channels {
} }
} }
timer_channels!(1, $TY, ccmr1); timer_channels!(1, $TY, ccmr1, $size);
timer_channels!(2, $TY, ccmr1); timer_channels!(2, $TY, ccmr1, $size);
timer_channels!(3, $TY, ccmr2); timer_channels!(3, $TY, ccmr2, $size);
timer_channels!(4, $TY, ccmr2); timer_channels!(4, $TY, ccmr2, $size);
} }
} }
}; };
($index:expr, $TY:ty, $ccmrx:expr) => { ($index:expr, $TY:ty, $ccmrx:expr, $size:ty) => {
paste::paste! { paste::paste! {
/// A capture/compare channel of the timer. /// A capture/compare channel of the timer.
pub struct [< Channel $index >] {} pub struct [< Channel $index >] {}
@ -107,6 +234,7 @@ macro_rules! timer_channels {
/// ///
/// Note(unsafe): This function must only be called once. Once constructed, the /// Note(unsafe): This function must only be called once. Once constructed, the
/// constructee guarantees to never modify the timer channel. /// constructee guarantees to never modify the timer channel.
#[allow(dead_code)]
unsafe fn new() -> Self { unsafe fn new() -> Self {
Self {} Self {}
} }
@ -123,9 +251,10 @@ macro_rules! timer_channels {
/// # Args /// # Args
/// * `value` - The value to compare the sampling timer's counter against. /// * `value` - The value to compare the sampling timer's counter against.
#[allow(dead_code)] #[allow(dead_code)]
pub fn to_output_compare(&self, value: u32) { pub fn to_output_compare(&self, value: $size) {
let regs = unsafe { &*<$TY>::ptr() }; let regs = unsafe { &*<$TY>::ptr() };
assert!(value <= regs.arr.read().bits()); let arr = regs.arr.read().bits() as $size;
assert!(value <= arr);
regs.[< ccr $index >].write(|w| w.ccr().bits(value)); regs.[< ccr $index >].write(|w| w.ccr().bits(value));
regs.[< $ccmrx _output >]() regs.[< $ccmrx _output >]()
.modify(|_, w| unsafe { w.[< cc $index s >]().bits(0) }); .modify(|_, w| unsafe { w.[< cc $index s >]().bits(0) });
@ -136,9 +265,12 @@ macro_rules! timer_channels {
/// # Args /// # Args
/// * `input` - The input source for the input capture event. /// * `input` - The input source for the input capture event.
#[allow(dead_code)] #[allow(dead_code)]
pub fn into_input_capture(self, input: hal::stm32::tim2::[< $ccmrx _input >]::[< CC $index S_A >]) -> [< Channel $index InputCapture >]{ pub fn into_input_capture(self, input: super::CaptureTrigger) -> [< Channel $index InputCapture >]{
let regs = unsafe { &*<$TY>::ptr() }; let regs = unsafe { &*<$TY>::ptr() };
regs.[< $ccmrx _input >]().modify(|_, w| w.[< cc $index s>]().variant(input));
// Note(unsafe): The bit configuration is guaranteed to be valid by the
// CaptureTrigger enum definition.
regs.[< $ccmrx _input >]().modify(|_, w| unsafe { w.[< cc $index s>]().bits(input as u8) });
[< Channel $index InputCapture >] {} [< Channel $index InputCapture >] {}
} }
@ -147,7 +279,7 @@ macro_rules! timer_channels {
impl [< Channel $index InputCapture >] { impl [< Channel $index InputCapture >] {
/// Get the latest capture from the channel. /// Get the latest capture from the channel.
#[allow(dead_code)] #[allow(dead_code)]
pub fn latest_capture(&mut self) -> Result<Option<u32>, ()> { pub fn latest_capture(&mut self) -> Result<Option<$size>, ()> {
// Note(unsafe): This channel owns all access to the specific timer channel. // Note(unsafe): This channel owns all access to the specific timer channel.
// Only atomic operations on completed on the timer registers. // Only atomic operations on completed on the timer registers.
let regs = unsafe { &*<$TY>::ptr() }; let regs = unsafe { &*<$TY>::ptr() };
@ -204,7 +336,7 @@ macro_rules! timer_channels {
// is safe as it is only completed once per channel and each DMA request is allocated to // is safe as it is only completed once per channel and each DMA request is allocated to
// each channel as the owner. // each channel as the owner.
unsafe impl TargetAddress<PeripheralToMemory> for [< Channel $index InputCapture >] { unsafe impl TargetAddress<PeripheralToMemory> for [< Channel $index InputCapture >] {
type MemSize = u32; type MemSize = $size;
const REQUEST_LINE: Option<u8> = Some(DMAReq::[< $TY _CH $index >]as u8); const REQUEST_LINE: Option<u8> = Some(DMAReq::[< $TY _CH $index >]as u8);
@ -218,4 +350,7 @@ macro_rules! timer_channels {
} }
timer_channels!(SamplingTimer, TIM2, u32); timer_channels!(SamplingTimer, TIM2, u32);
timer_channels!(ShadowSamplingTimer, TIM3, u16);
timer_channels!(TimestampTimer, TIM5, u32); timer_channels!(TimestampTimer, TIM5, u32);
timer_channels!(PounderTimestampTimer, TIM8, u16);