Merge pull request #230 from vertigo-designs/feature/hardware-module
Refactoring to support multiple apps
This commit is contained in:
commit
058e474b78
|
@ -27,7 +27,6 @@ jobs:
|
|||
command: fmt
|
||||
args: --all -- --check
|
||||
- uses: actions-rs/clippy-check@v1
|
||||
continue-on-error: true
|
||||
with:
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
|
|
|
@ -72,9 +72,16 @@
|
|||
///! be used as a means to both detect and buffer ADC samples during the buffer swap-over. Because
|
||||
///! of this, double-buffered mode does not offer any advantages over single-buffered mode (unless
|
||||
///! double-buffered mode offers less overhead due to the DMA disable/enable procedure).
|
||||
use super::{
|
||||
hal, timers, DMAReq, DmaConfig, MemoryToPeripheral, PeripheralToMemory,
|
||||
Priority, TargetAddress, Transfer, SAMPLE_BUFFER_SIZE,
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
use crate::SAMPLE_BUFFER_SIZE;
|
||||
|
||||
use super::timers;
|
||||
use hal::dma::{
|
||||
config::Priority,
|
||||
dma::{DMAReq, DmaConfig},
|
||||
traits::TargetAddress,
|
||||
MemoryToPeripheral, PeripheralToMemory, Transfer,
|
||||
};
|
||||
|
||||
// The following data is written by the timer ADC sample trigger into the SPI CR1 to start the
|
||||
|
@ -174,13 +181,13 @@ macro_rules! adc_input {
|
|||
PeripheralToMemory,
|
||||
&'static mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
>,
|
||||
_trigger_transfer: Transfer<
|
||||
trigger_transfer: Transfer<
|
||||
hal::dma::dma::$trigger_stream<hal::stm32::DMA1>,
|
||||
[< $spi CR >],
|
||||
MemoryToPeripheral,
|
||||
&'static mut [u32; 1],
|
||||
>,
|
||||
_flag_clear_transfer: Transfer<
|
||||
clear_transfer: Transfer<
|
||||
hal::dma::dma::$clear_stream<hal::stm32::DMA1>,
|
||||
[< $spi IFCR >],
|
||||
MemoryToPeripheral,
|
||||
|
@ -227,7 +234,7 @@ macro_rules! adc_input {
|
|||
clear_channel.listen_dma();
|
||||
clear_channel.to_output_compare(0);
|
||||
|
||||
let mut clear_transfer: Transfer<
|
||||
let clear_transfer: Transfer<
|
||||
_,
|
||||
_,
|
||||
MemoryToPeripheral,
|
||||
|
@ -264,7 +271,7 @@ macro_rules! adc_input {
|
|||
};
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let mut trigger_transfer: Transfer<
|
||||
let trigger_transfer: Transfer<
|
||||
_,
|
||||
_,
|
||||
MemoryToPeripheral,
|
||||
|
@ -299,7 +306,7 @@ macro_rules! adc_input {
|
|||
|
||||
// The data transfer is always a transfer of data from the peripheral to a RAM
|
||||
// buffer.
|
||||
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
let data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
Transfer::init(
|
||||
data_stream,
|
||||
spi,
|
||||
|
@ -310,29 +317,30 @@ macro_rules! adc_input {
|
|||
data_config,
|
||||
);
|
||||
|
||||
data_transfer.start(|spi| {
|
||||
// Allow the SPI RX FIFO to generate DMA transfer requests when data is
|
||||
// available.
|
||||
spi.enable_dma_rx();
|
||||
|
||||
// Each transaction is 1 word (16 bytes).
|
||||
spi.inner().cr2.modify(|_, w| w.tsize().bits(1));
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
});
|
||||
|
||||
clear_transfer.start(|_| {});
|
||||
trigger_transfer.start(|_| {});
|
||||
|
||||
Self {
|
||||
// Note(unsafe): The ADC_BUF[$index][1] is "owned" by this peripheral. It
|
||||
// shall not be used anywhere else in the module.
|
||||
next_buffer: unsafe { Some(&mut ADC_BUF[$index][1]) },
|
||||
transfer: data_transfer,
|
||||
_trigger_transfer: trigger_transfer,
|
||||
_flag_clear_transfer: clear_transfer,
|
||||
trigger_transfer,
|
||||
clear_transfer,
|
||||
}
|
||||
}
|
||||
|
||||
/// Enable the ADC DMA transfer sequence.
|
||||
pub fn start(&mut self) {
|
||||
self.transfer.start(|spi| {
|
||||
spi.enable_dma_rx();
|
||||
|
||||
spi.inner().cr2.modify(|_, w| w.tsize().bits(1));
|
||||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
});
|
||||
|
||||
self.clear_transfer.start(|_| {});
|
||||
self.trigger_transfer.start(|_| {});
|
||||
|
||||
}
|
||||
|
||||
/// Obtain a buffer filled with ADC samples.
|
||||
///
|
||||
/// # Returns
|
|
@ -0,0 +1,822 @@
|
|||
///! Stabilizer hardware configuration
|
||||
///!
|
||||
///! This file contains all of the hardware-specific configuration of Stabilizer.
|
||||
use crate::ADC_SAMPLE_TICKS;
|
||||
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
use crate::SAMPLE_BUFFER_SIZE;
|
||||
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
use core::convert::TryInto;
|
||||
|
||||
use smoltcp::{iface::Routes, wire::Ipv4Address};
|
||||
|
||||
use stm32h7xx_hal::{
|
||||
self as hal,
|
||||
ethernet::{self, PHY},
|
||||
prelude::*,
|
||||
};
|
||||
|
||||
use embedded_hal::digital::v2::{InputPin, OutputPin};
|
||||
|
||||
use super::{
|
||||
adc, afe, dac, design_parameters, digital_input_stamper, eeprom, pounder,
|
||||
timers, DdsOutput, Ethernet, AFE0, AFE1,
|
||||
};
|
||||
|
||||
// Network storage definition for the ethernet interface.
|
||||
struct NetStorage {
|
||||
ip_addrs: [smoltcp::wire::IpCidr; 1],
|
||||
neighbor_cache:
|
||||
[Option<(smoltcp::wire::IpAddress, smoltcp::iface::Neighbor)>; 8],
|
||||
routes_storage: [Option<(smoltcp::wire::IpCidr, smoltcp::iface::Route)>; 1],
|
||||
}
|
||||
|
||||
/// The available networking devices on Stabilizer.
|
||||
pub struct NetworkDevices {
|
||||
pub interface: Ethernet,
|
||||
pub phy: ethernet::phy::LAN8742A<ethernet::EthernetMAC>,
|
||||
}
|
||||
|
||||
/// The available hardware interfaces on Stabilizer.
|
||||
pub struct StabilizerDevices {
|
||||
pub afes: (AFE0, AFE1),
|
||||
pub adcs: (adc::Adc0Input, adc::Adc1Input),
|
||||
pub dacs: (dac::Dac0Output, dac::Dac1Output),
|
||||
pub timestamper: digital_input_stamper::InputStamper,
|
||||
pub adc_dac_timer: timers::SamplingTimer,
|
||||
pub timestamp_timer: timers::TimestampTimer,
|
||||
pub net: NetworkDevices,
|
||||
}
|
||||
|
||||
/// The available Pounder-specific hardware interfaces.
|
||||
pub struct PounderDevices {
|
||||
pub pounder: pounder::PounderDevices,
|
||||
pub dds_output: DdsOutput,
|
||||
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
pub timestamper: pounder::timestamp::Timestamper,
|
||||
}
|
||||
|
||||
#[link_section = ".sram3.eth"]
|
||||
/// Static storage for the ethernet DMA descriptor ring.
|
||||
static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
|
||||
|
||||
/// Static, global-scope network storage for the ethernet interface.
|
||||
///
|
||||
/// This is a static singleton so that the network storage can be referenced from all contexts.
|
||||
static mut NET_STORE: NetStorage = NetStorage {
|
||||
// Placeholder for the real IP address, which is initialized at runtime.
|
||||
ip_addrs: [smoltcp::wire::IpCidr::Ipv6(
|
||||
smoltcp::wire::Ipv6Cidr::SOLICITED_NODE_PREFIX,
|
||||
)],
|
||||
neighbor_cache: [None; 8],
|
||||
routes_storage: [None; 1],
|
||||
};
|
||||
|
||||
/// Configure the stabilizer hardware for operation.
|
||||
///
|
||||
/// # Args
|
||||
/// * `core` - The RTIC core for configuring the cortex-M core of the device.
|
||||
/// * `device` - The microcontroller peripherals to be configured.
|
||||
///
|
||||
/// # Returns
|
||||
/// (stabilizer, pounder) where `stabilizer` is a `StabilizerDevices` structure containing all
|
||||
/// stabilizer hardware interfaces in a disabled state. `pounder` is an `Option` containing
|
||||
/// `Some(devices)` if pounder is detected, where `devices` is a `PounderDevices` structure
|
||||
/// containing all of the pounder hardware interfaces in a disabled state.
|
||||
pub fn setup(
|
||||
mut core: rtic::export::Peripherals,
|
||||
device: stm32h7xx_hal::stm32::Peripherals,
|
||||
) -> (StabilizerDevices, Option<PounderDevices>) {
|
||||
let pwr = device.PWR.constrain();
|
||||
let vos = pwr.freeze();
|
||||
|
||||
// Enable SRAM3 for the ethernet descriptor ring.
|
||||
device.RCC.ahb2enr.modify(|_, w| w.sram3en().set_bit());
|
||||
|
||||
// Clear reset flags.
|
||||
device.RCC.rsr.write(|w| w.rmvf().set_bit());
|
||||
|
||||
// Select the PLLs for SPI.
|
||||
device
|
||||
.RCC
|
||||
.d2ccip1r
|
||||
.modify(|_, w| w.spi123sel().pll2_p().spi45sel().pll2_q());
|
||||
|
||||
let rcc = device.RCC.constrain();
|
||||
let ccdr = rcc
|
||||
.use_hse(8.mhz())
|
||||
.sysclk(400.mhz())
|
||||
.hclk(200.mhz())
|
||||
.per_ck(100.mhz())
|
||||
.pll2_p_ck(100.mhz())
|
||||
.pll2_q_ck(100.mhz())
|
||||
.freeze(vos, &device.SYSCFG);
|
||||
|
||||
#[cfg(feature = "semihosting")]
|
||||
{
|
||||
use cortex_m_log::log::{init as init_log, Logger};
|
||||
use cortex_m_log::printer::semihosting::{hio::HStdout, InterruptOk};
|
||||
use log::LevelFilter;
|
||||
static mut LOGGER: Option<Logger<InterruptOk<HStdout>>> = None;
|
||||
let logger = Logger {
|
||||
inner: InterruptOk::<_>::stdout().unwrap(),
|
||||
level: LevelFilter::Info,
|
||||
};
|
||||
let logger = unsafe { LOGGER.get_or_insert(logger) };
|
||||
|
||||
init_log(logger).unwrap();
|
||||
}
|
||||
|
||||
let mut delay = hal::delay::Delay::new(core.SYST, ccdr.clocks);
|
||||
|
||||
let gpioa = device.GPIOA.split(ccdr.peripheral.GPIOA);
|
||||
let gpiob = device.GPIOB.split(ccdr.peripheral.GPIOB);
|
||||
let gpioc = device.GPIOC.split(ccdr.peripheral.GPIOC);
|
||||
let gpiod = device.GPIOD.split(ccdr.peripheral.GPIOD);
|
||||
let gpioe = device.GPIOE.split(ccdr.peripheral.GPIOE);
|
||||
let gpiof = device.GPIOF.split(ccdr.peripheral.GPIOF);
|
||||
let mut gpiog = device.GPIOG.split(ccdr.peripheral.GPIOG);
|
||||
|
||||
let dma_streams =
|
||||
hal::dma::dma::StreamsTuple::new(device.DMA1, ccdr.peripheral.DMA1);
|
||||
|
||||
// Configure timer 2 to trigger conversions for the ADC
|
||||
let mut sampling_timer = {
|
||||
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
|
||||
// dont-care.
|
||||
let mut timer2 =
|
||||
device
|
||||
.TIM2
|
||||
.timer(1.khz(), ccdr.peripheral.TIM2, &ccdr.clocks);
|
||||
|
||||
// Configure the timer to count at the designed tick rate. We will manually set the
|
||||
// period below.
|
||||
timer2.pause();
|
||||
timer2.reset_counter();
|
||||
timer2.set_tick_freq(design_parameters::TIMER_FREQUENCY);
|
||||
|
||||
let mut sampling_timer = timers::SamplingTimer::new(timer2);
|
||||
sampling_timer.set_period_ticks((ADC_SAMPLE_TICKS - 1) as u32);
|
||||
|
||||
// The sampling timer is used as the master timer for the shadow-sampling timer. Thus,
|
||||
// it generates a trigger whenever it is enabled.
|
||||
|
||||
sampling_timer
|
||||
};
|
||||
|
||||
let mut shadow_sampling_timer = {
|
||||
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
|
||||
// dont-care.
|
||||
let mut timer3 =
|
||||
device
|
||||
.TIM3
|
||||
.timer(1.khz(), ccdr.peripheral.TIM3, &ccdr.clocks);
|
||||
|
||||
// Configure the timer to count at the designed tick rate. We will manually set the
|
||||
// period below.
|
||||
timer3.pause();
|
||||
timer3.reset_counter();
|
||||
timer3.set_tick_freq(design_parameters::TIMER_FREQUENCY);
|
||||
|
||||
let mut shadow_sampling_timer =
|
||||
timers::ShadowSamplingTimer::new(timer3);
|
||||
shadow_sampling_timer.set_period_ticks(ADC_SAMPLE_TICKS - 1);
|
||||
|
||||
// The shadow sampling timer is a slave-mode timer to the sampling timer. It should
|
||||
// always be in-sync - thus, we configure it to operate in slave mode using "Trigger
|
||||
// mode".
|
||||
// For TIM3, TIM2 can be made the internal trigger connection using ITR1. Thus, the
|
||||
// SamplingTimer start now gates the start of the ShadowSamplingTimer.
|
||||
shadow_sampling_timer.set_slave_mode(
|
||||
timers::TriggerSource::Trigger1,
|
||||
timers::SlaveMode::Trigger,
|
||||
);
|
||||
|
||||
shadow_sampling_timer
|
||||
};
|
||||
|
||||
let sampling_timer_channels = sampling_timer.channels();
|
||||
let shadow_sampling_timer_channels = shadow_sampling_timer.channels();
|
||||
|
||||
let mut timestamp_timer = {
|
||||
// The timer frequency is manually adjusted below, so the 1KHz setting here is a
|
||||
// dont-care.
|
||||
let mut timer5 =
|
||||
device
|
||||
.TIM5
|
||||
.timer(1.khz(), ccdr.peripheral.TIM5, &ccdr.clocks);
|
||||
|
||||
// Configure the timer to count at the designed tick rate. We will manually set the
|
||||
// period below.
|
||||
timer5.pause();
|
||||
timer5.set_tick_freq(design_parameters::TIMER_FREQUENCY);
|
||||
|
||||
// The timestamp timer must run at exactly a multiple of the sample timer based on the
|
||||
// batch size. To accomodate this, we manually set the prescaler identical to the sample
|
||||
// timer, but use a period that is longer.
|
||||
let mut timer = timers::TimestampTimer::new(timer5);
|
||||
|
||||
let period = digital_input_stamper::calculate_timestamp_timer_period();
|
||||
timer.set_period_ticks(period);
|
||||
|
||||
timer
|
||||
};
|
||||
|
||||
let timestamp_timer_channels = timestamp_timer.channels();
|
||||
|
||||
// Configure the SPI interfaces to the ADCs and DACs.
|
||||
let adcs = {
|
||||
let adc0 = {
|
||||
let spi_miso = gpiob
|
||||
.pb14
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let spi_sck = gpiob
|
||||
.pb10
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _spi_nss = gpiob
|
||||
.pb9
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
let config = hal::spi::Config::new(hal::spi::Mode {
|
||||
polarity: hal::spi::Polarity::IdleHigh,
|
||||
phase: hal::spi::Phase::CaptureOnSecondTransition,
|
||||
})
|
||||
.manage_cs()
|
||||
.suspend_when_inactive()
|
||||
.communication_mode(hal::spi::CommunicationMode::Receiver)
|
||||
.cs_delay(design_parameters::ADC_SETUP_TIME);
|
||||
|
||||
let spi: hal::spi::Spi<_, _, u16> = device.SPI2.spi(
|
||||
(spi_sck, spi_miso, hal::spi::NoMosi),
|
||||
config,
|
||||
design_parameters::ADC_DAC_SCK_MAX,
|
||||
ccdr.peripheral.SPI2,
|
||||
&ccdr.clocks,
|
||||
);
|
||||
|
||||
adc::Adc0Input::new(
|
||||
spi,
|
||||
dma_streams.0,
|
||||
dma_streams.1,
|
||||
dma_streams.2,
|
||||
sampling_timer_channels.ch1,
|
||||
shadow_sampling_timer_channels.ch1,
|
||||
)
|
||||
};
|
||||
|
||||
let adc1 = {
|
||||
let spi_miso = gpiob
|
||||
.pb4
|
||||
.into_alternate_af6()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let spi_sck = gpioc
|
||||
.pc10
|
||||
.into_alternate_af6()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _spi_nss = gpioa
|
||||
.pa15
|
||||
.into_alternate_af6()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
let config = hal::spi::Config::new(hal::spi::Mode {
|
||||
polarity: hal::spi::Polarity::IdleHigh,
|
||||
phase: hal::spi::Phase::CaptureOnSecondTransition,
|
||||
})
|
||||
.manage_cs()
|
||||
.suspend_when_inactive()
|
||||
.communication_mode(hal::spi::CommunicationMode::Receiver)
|
||||
.cs_delay(design_parameters::ADC_SETUP_TIME);
|
||||
|
||||
let spi: hal::spi::Spi<_, _, u16> = device.SPI3.spi(
|
||||
(spi_sck, spi_miso, hal::spi::NoMosi),
|
||||
config,
|
||||
design_parameters::ADC_DAC_SCK_MAX,
|
||||
ccdr.peripheral.SPI3,
|
||||
&ccdr.clocks,
|
||||
);
|
||||
|
||||
adc::Adc1Input::new(
|
||||
spi,
|
||||
dma_streams.3,
|
||||
dma_streams.4,
|
||||
dma_streams.5,
|
||||
sampling_timer_channels.ch2,
|
||||
shadow_sampling_timer_channels.ch2,
|
||||
)
|
||||
};
|
||||
|
||||
(adc0, adc1)
|
||||
};
|
||||
|
||||
let dacs = {
|
||||
let _dac_clr_n = gpioe.pe12.into_push_pull_output().set_high().unwrap();
|
||||
let _dac0_ldac_n =
|
||||
gpioe.pe11.into_push_pull_output().set_low().unwrap();
|
||||
let _dac1_ldac_n =
|
||||
gpioe.pe15.into_push_pull_output().set_low().unwrap();
|
||||
|
||||
let dac0_spi = {
|
||||
let spi_miso = gpioe
|
||||
.pe5
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let spi_sck = gpioe
|
||||
.pe2
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _spi_nss = gpioe
|
||||
.pe4
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
let config = hal::spi::Config::new(hal::spi::Mode {
|
||||
polarity: hal::spi::Polarity::IdleHigh,
|
||||
phase: hal::spi::Phase::CaptureOnSecondTransition,
|
||||
})
|
||||
.manage_cs()
|
||||
.suspend_when_inactive()
|
||||
.communication_mode(hal::spi::CommunicationMode::Transmitter)
|
||||
.swap_mosi_miso();
|
||||
|
||||
device.SPI4.spi(
|
||||
(spi_sck, spi_miso, hal::spi::NoMosi),
|
||||
config,
|
||||
design_parameters::ADC_DAC_SCK_MAX,
|
||||
ccdr.peripheral.SPI4,
|
||||
&ccdr.clocks,
|
||||
)
|
||||
};
|
||||
|
||||
let dac1_spi = {
|
||||
let spi_miso = gpiof
|
||||
.pf8
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let spi_sck = gpiof
|
||||
.pf7
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _spi_nss = gpiof
|
||||
.pf6
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
let config = hal::spi::Config::new(hal::spi::Mode {
|
||||
polarity: hal::spi::Polarity::IdleHigh,
|
||||
phase: hal::spi::Phase::CaptureOnSecondTransition,
|
||||
})
|
||||
.manage_cs()
|
||||
.communication_mode(hal::spi::CommunicationMode::Transmitter)
|
||||
.suspend_when_inactive()
|
||||
.swap_mosi_miso();
|
||||
|
||||
device.SPI5.spi(
|
||||
(spi_sck, spi_miso, hal::spi::NoMosi),
|
||||
config,
|
||||
design_parameters::ADC_DAC_SCK_MAX,
|
||||
ccdr.peripheral.SPI5,
|
||||
&ccdr.clocks,
|
||||
)
|
||||
};
|
||||
|
||||
let dac0 = dac::Dac0Output::new(
|
||||
dac0_spi,
|
||||
dma_streams.6,
|
||||
sampling_timer_channels.ch3,
|
||||
);
|
||||
let dac1 = dac::Dac1Output::new(
|
||||
dac1_spi,
|
||||
dma_streams.7,
|
||||
sampling_timer_channels.ch4,
|
||||
);
|
||||
(dac0, dac1)
|
||||
};
|
||||
|
||||
let afes = {
|
||||
let afe0 = {
|
||||
let a0_pin = gpiof.pf2.into_push_pull_output();
|
||||
let a1_pin = gpiof.pf5.into_push_pull_output();
|
||||
afe::ProgrammableGainAmplifier::new(a0_pin, a1_pin)
|
||||
};
|
||||
|
||||
let afe1 = {
|
||||
let a0_pin = gpiod.pd14.into_push_pull_output();
|
||||
let a1_pin = gpiod.pd15.into_push_pull_output();
|
||||
afe::ProgrammableGainAmplifier::new(a0_pin, a1_pin)
|
||||
};
|
||||
|
||||
(afe0, afe1)
|
||||
};
|
||||
|
||||
let input_stamper = {
|
||||
let trigger = gpioa.pa3.into_alternate_af2();
|
||||
digital_input_stamper::InputStamper::new(
|
||||
trigger,
|
||||
timestamp_timer_channels.ch4,
|
||||
)
|
||||
};
|
||||
|
||||
let mut eeprom_i2c = {
|
||||
let sda = gpiof.pf0.into_alternate_af4().set_open_drain();
|
||||
let scl = gpiof.pf1.into_alternate_af4().set_open_drain();
|
||||
device.I2C2.i2c(
|
||||
(scl, sda),
|
||||
100.khz(),
|
||||
ccdr.peripheral.I2C2,
|
||||
&ccdr.clocks,
|
||||
)
|
||||
};
|
||||
|
||||
// Configure ethernet pins.
|
||||
{
|
||||
// Reset the PHY before configuring pins.
|
||||
let mut eth_phy_nrst = gpioe.pe3.into_push_pull_output();
|
||||
eth_phy_nrst.set_low().unwrap();
|
||||
delay.delay_us(200u8);
|
||||
eth_phy_nrst.set_high().unwrap();
|
||||
let _rmii_ref_clk = gpioa
|
||||
.pa1
|
||||
.into_alternate_af11()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _rmii_mdio = gpioa
|
||||
.pa2
|
||||
.into_alternate_af11()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _rmii_mdc = gpioc
|
||||
.pc1
|
||||
.into_alternate_af11()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _rmii_crs_dv = gpioa
|
||||
.pa7
|
||||
.into_alternate_af11()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _rmii_rxd0 = gpioc
|
||||
.pc4
|
||||
.into_alternate_af11()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _rmii_rxd1 = gpioc
|
||||
.pc5
|
||||
.into_alternate_af11()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _rmii_tx_en = gpiob
|
||||
.pb11
|
||||
.into_alternate_af11()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _rmii_txd0 = gpiob
|
||||
.pb12
|
||||
.into_alternate_af11()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let _rmii_txd1 = gpiog
|
||||
.pg14
|
||||
.into_alternate_af11()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
}
|
||||
|
||||
let mac_addr = match eeprom::read_eui48(&mut eeprom_i2c) {
|
||||
Err(_) => {
|
||||
info!("Could not read EEPROM, using default MAC address");
|
||||
smoltcp::wire::EthernetAddress([0x10, 0xE2, 0xD5, 0x00, 0x03, 0x00])
|
||||
}
|
||||
Ok(raw_mac) => smoltcp::wire::EthernetAddress(raw_mac),
|
||||
};
|
||||
|
||||
let network_devices = {
|
||||
// Configure the ethernet controller
|
||||
let (eth_dma, eth_mac) = unsafe {
|
||||
ethernet::new_unchecked(
|
||||
device.ETHERNET_MAC,
|
||||
device.ETHERNET_MTL,
|
||||
device.ETHERNET_DMA,
|
||||
&mut DES_RING,
|
||||
mac_addr,
|
||||
ccdr.peripheral.ETH1MAC,
|
||||
&ccdr.clocks,
|
||||
)
|
||||
};
|
||||
|
||||
// Reset and initialize the ethernet phy.
|
||||
let mut lan8742a =
|
||||
ethernet::phy::LAN8742A::new(eth_mac.set_phy_addr(0));
|
||||
lan8742a.phy_reset();
|
||||
lan8742a.phy_init();
|
||||
|
||||
unsafe { ethernet::enable_interrupt() };
|
||||
|
||||
let store = unsafe { &mut NET_STORE };
|
||||
|
||||
store.ip_addrs[0] = smoltcp::wire::IpCidr::new(
|
||||
smoltcp::wire::IpAddress::v4(10, 0, 16, 99),
|
||||
24,
|
||||
);
|
||||
|
||||
let default_v4_gw = Ipv4Address::new(10, 0, 16, 1);
|
||||
let mut routes = Routes::new(&mut store.routes_storage[..]);
|
||||
routes.add_default_ipv4_route(default_v4_gw).unwrap();
|
||||
|
||||
let neighbor_cache =
|
||||
smoltcp::iface::NeighborCache::new(&mut store.neighbor_cache[..]);
|
||||
|
||||
let interface = smoltcp::iface::EthernetInterfaceBuilder::new(eth_dma)
|
||||
.ethernet_addr(mac_addr)
|
||||
.neighbor_cache(neighbor_cache)
|
||||
.ip_addrs(&mut store.ip_addrs[..])
|
||||
.routes(routes)
|
||||
.finalize();
|
||||
|
||||
NetworkDevices {
|
||||
interface,
|
||||
phy: lan8742a,
|
||||
}
|
||||
};
|
||||
|
||||
let mut fp_led_0 = gpiod.pd5.into_push_pull_output();
|
||||
let mut fp_led_1 = gpiod.pd6.into_push_pull_output();
|
||||
let mut fp_led_2 = gpiog.pg4.into_push_pull_output();
|
||||
let mut fp_led_3 = gpiod.pd12.into_push_pull_output();
|
||||
|
||||
fp_led_0.set_low().unwrap();
|
||||
fp_led_1.set_low().unwrap();
|
||||
fp_led_2.set_low().unwrap();
|
||||
fp_led_3.set_low().unwrap();
|
||||
|
||||
// Measure the Pounder PGOOD output to detect if pounder is present on Stabilizer.
|
||||
let pounder_pgood = gpiob.pb13.into_pull_down_input();
|
||||
delay.delay_ms(2u8);
|
||||
let pounder = if pounder_pgood.is_high().unwrap() {
|
||||
let ad9959 = {
|
||||
let qspi_interface = {
|
||||
// Instantiate the QUADSPI pins and peripheral interface.
|
||||
let qspi_pins = {
|
||||
let _qspi_ncs = gpioc
|
||||
.pc11
|
||||
.into_alternate_af9()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
let clk = gpiob
|
||||
.pb2
|
||||
.into_alternate_af9()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let io0 = gpioe
|
||||
.pe7
|
||||
.into_alternate_af10()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let io1 = gpioe
|
||||
.pe8
|
||||
.into_alternate_af10()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let io2 = gpioe
|
||||
.pe9
|
||||
.into_alternate_af10()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let io3 = gpioe
|
||||
.pe10
|
||||
.into_alternate_af10()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
(clk, io0, io1, io2, io3)
|
||||
};
|
||||
|
||||
let qspi = hal::qspi::Qspi::bank2(
|
||||
device.QUADSPI,
|
||||
qspi_pins,
|
||||
design_parameters::POUNDER_QSPI_FREQUENCY,
|
||||
&ccdr.clocks,
|
||||
ccdr.peripheral.QSPI,
|
||||
);
|
||||
|
||||
pounder::QspiInterface::new(qspi).unwrap()
|
||||
};
|
||||
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
let reset_pin = gpiog.pg6.into_push_pull_output();
|
||||
#[cfg(not(feature = "pounder_v1_1"))]
|
||||
let reset_pin = gpioa.pa0.into_push_pull_output();
|
||||
|
||||
let mut io_update = gpiog.pg7.into_push_pull_output();
|
||||
|
||||
let ref_clk: hal::time::Hertz =
|
||||
design_parameters::DDS_REF_CLK.into();
|
||||
|
||||
let ad9959 = ad9959::Ad9959::new(
|
||||
qspi_interface,
|
||||
reset_pin,
|
||||
&mut io_update,
|
||||
&mut delay,
|
||||
ad9959::Mode::FourBitSerial,
|
||||
ref_clk.0 as f32,
|
||||
design_parameters::DDS_MULTIPLIER,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
// Return IO_Update
|
||||
gpiog.pg7 = io_update.into_analog();
|
||||
|
||||
ad9959
|
||||
};
|
||||
|
||||
let io_expander = {
|
||||
let sda = gpiob.pb7.into_alternate_af4().set_open_drain();
|
||||
let scl = gpiob.pb8.into_alternate_af4().set_open_drain();
|
||||
let i2c1 = device.I2C1.i2c(
|
||||
(scl, sda),
|
||||
100.khz(),
|
||||
ccdr.peripheral.I2C1,
|
||||
&ccdr.clocks,
|
||||
);
|
||||
mcp23017::MCP23017::default(i2c1).unwrap()
|
||||
};
|
||||
|
||||
let spi = {
|
||||
let spi_mosi = gpiod
|
||||
.pd7
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let spi_miso = gpioa
|
||||
.pa6
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
let spi_sck = gpiog
|
||||
.pg11
|
||||
.into_alternate_af5()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
let config = hal::spi::Config::new(hal::spi::Mode {
|
||||
polarity: hal::spi::Polarity::IdleHigh,
|
||||
phase: hal::spi::Phase::CaptureOnSecondTransition,
|
||||
});
|
||||
|
||||
// The maximum frequency of this SPI must be limited due to capacitance on the MISO
|
||||
// line causing a long RC decay.
|
||||
device.SPI1.spi(
|
||||
(spi_sck, spi_miso, spi_mosi),
|
||||
config,
|
||||
5.mhz(),
|
||||
ccdr.peripheral.SPI1,
|
||||
&ccdr.clocks,
|
||||
)
|
||||
};
|
||||
|
||||
let (adc1, adc2) = {
|
||||
let (mut adc1, mut adc2) = hal::adc::adc12(
|
||||
device.ADC1,
|
||||
device.ADC2,
|
||||
&mut delay,
|
||||
ccdr.peripheral.ADC12,
|
||||
&ccdr.clocks,
|
||||
);
|
||||
|
||||
let adc1 = {
|
||||
adc1.calibrate();
|
||||
adc1.enable()
|
||||
};
|
||||
|
||||
let adc2 = {
|
||||
adc2.calibrate();
|
||||
adc2.enable()
|
||||
};
|
||||
|
||||
(adc1, adc2)
|
||||
};
|
||||
|
||||
let adc1_in_p = gpiof.pf11.into_analog();
|
||||
let adc2_in_p = gpiof.pf14.into_analog();
|
||||
|
||||
let pounder_devices = pounder::PounderDevices::new(
|
||||
io_expander,
|
||||
spi,
|
||||
adc1,
|
||||
adc2,
|
||||
adc1_in_p,
|
||||
adc2_in_p,
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
let dds_output = {
|
||||
let io_update_trigger = {
|
||||
let _io_update = gpiog
|
||||
.pg7
|
||||
.into_alternate_af2()
|
||||
.set_speed(hal::gpio::Speed::VeryHigh);
|
||||
|
||||
// Configure the IO_Update signal for the DDS.
|
||||
let mut hrtimer = pounder::hrtimer::HighResTimerE::new(
|
||||
device.HRTIM_TIME,
|
||||
device.HRTIM_MASTER,
|
||||
device.HRTIM_COMMON,
|
||||
ccdr.clocks,
|
||||
ccdr.peripheral.HRTIM,
|
||||
);
|
||||
|
||||
// IO_Update occurs after a fixed delay from the QSPI write. Note that the timer
|
||||
// is triggered after the QSPI write, which can take approximately 120nS, so
|
||||
// there is additional margin.
|
||||
hrtimer.configure_single_shot(
|
||||
pounder::hrtimer::Channel::Two,
|
||||
design_parameters::POUNDER_IO_UPDATE_DURATION,
|
||||
design_parameters::POUNDER_IO_UPDATE_DELAY,
|
||||
);
|
||||
|
||||
// Ensure that we have enough time for an IO-update every sample.
|
||||
let sample_frequency = {
|
||||
let timer_frequency: hal::time::Hertz =
|
||||
design_parameters::TIMER_FREQUENCY.into();
|
||||
timer_frequency.0 as f32 / ADC_SAMPLE_TICKS as f32
|
||||
};
|
||||
|
||||
let sample_period = 1.0 / sample_frequency;
|
||||
assert!(
|
||||
sample_period > design_parameters::POUNDER_IO_UPDATE_DELAY
|
||||
);
|
||||
|
||||
hrtimer
|
||||
};
|
||||
|
||||
let (qspi, config) = ad9959.freeze();
|
||||
DdsOutput::new(qspi, io_update_trigger, config)
|
||||
};
|
||||
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
let pounder_stamper = {
|
||||
let dma2_streams = hal::dma::dma::StreamsTuple::new(
|
||||
device.DMA2,
|
||||
ccdr.peripheral.DMA2,
|
||||
);
|
||||
|
||||
let etr_pin = gpioa.pa0.into_alternate_af3();
|
||||
|
||||
// The frequency in the constructor is dont-care, as we will modify the period + clock
|
||||
// source manually below.
|
||||
let tim8 =
|
||||
device
|
||||
.TIM8
|
||||
.timer(1.khz(), ccdr.peripheral.TIM8, &ccdr.clocks);
|
||||
let mut timestamp_timer = timers::PounderTimestampTimer::new(tim8);
|
||||
|
||||
// Pounder is configured to generate a 500MHz reference clock, so a 125MHz sync-clock is
|
||||
// output. As a result, dividing the 125MHz sync-clk provides a 31.25MHz tick rate for
|
||||
// the timestamp timer. 31.25MHz corresponds with a 32ns tick rate.
|
||||
timestamp_timer.set_external_clock(timers::Prescaler::Div4);
|
||||
timestamp_timer.start();
|
||||
|
||||
// We want the pounder timestamp timer to overflow once per batch.
|
||||
let tick_ratio = {
|
||||
let sync_clk_mhz: f32 = design_parameters::DDS_SYSTEM_CLK.0
|
||||
as f32
|
||||
/ design_parameters::DDS_SYNC_CLK_DIV as f32;
|
||||
sync_clk_mhz / design_parameters::TIMER_FREQUENCY.0 as f32
|
||||
};
|
||||
|
||||
let period = (tick_ratio
|
||||
* ADC_SAMPLE_TICKS as f32
|
||||
* SAMPLE_BUFFER_SIZE as f32) as u32
|
||||
/ 4;
|
||||
timestamp_timer.set_period_ticks((period - 1).try_into().unwrap());
|
||||
let tim8_channels = timestamp_timer.channels();
|
||||
|
||||
pounder::timestamp::Timestamper::new(
|
||||
timestamp_timer,
|
||||
dma2_streams.0,
|
||||
tim8_channels.ch1,
|
||||
&mut sampling_timer,
|
||||
etr_pin,
|
||||
)
|
||||
};
|
||||
|
||||
Some(PounderDevices {
|
||||
pounder: pounder_devices,
|
||||
dds_output,
|
||||
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
timestamper: pounder_stamper,
|
||||
})
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let stabilizer = StabilizerDevices {
|
||||
afes,
|
||||
adcs,
|
||||
dacs,
|
||||
timestamper: input_stamper,
|
||||
net: network_devices,
|
||||
adc_dac_timer: sampling_timer,
|
||||
timestamp_timer,
|
||||
};
|
||||
|
||||
// info!("Version {} {}", build_info::PKG_VERSION, build_info::GIT_VERSION.unwrap());
|
||||
// info!("Built on {}", build_info::BUILT_TIME_UTC);
|
||||
// info!("{} {}", build_info::RUSTC_VERSION, build_info::TARGET);
|
||||
|
||||
// Enable the instruction cache.
|
||||
core.SCB.enable_icache();
|
||||
|
||||
// Utilize the cycle counter for RTIC scheduling.
|
||||
core.DWT.enable_cycle_counter();
|
||||
|
||||
(stabilizer, pounder)
|
||||
}
|
|
@ -50,9 +50,15 @@
|
|||
///! While double-buffered mode is used for DMA to avoid lost DAC-update events, there is no check
|
||||
///! for re-use of a previously provided DAC output buffer. It is assumed that the DMA request is
|
||||
///! served promptly after the transfer completes.
|
||||
use super::{
|
||||
hal, timers, DMAReq, DmaConfig, MemoryToPeripheral, TargetAddress,
|
||||
Transfer, SAMPLE_BUFFER_SIZE,
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
use crate::SAMPLE_BUFFER_SIZE;
|
||||
|
||||
use super::timers;
|
||||
use hal::dma::{
|
||||
dma::{DMAReq, DmaConfig},
|
||||
traits::TargetAddress,
|
||||
MemoryToPeripheral, Transfer,
|
||||
};
|
||||
|
||||
// The following global buffers are used for the DAC code DMA transfers. Two buffers are used for
|
||||
|
@ -158,7 +164,7 @@ macro_rules! dac_output {
|
|||
}
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let mut transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
Transfer::init(
|
||||
stream,
|
||||
$spi::new(trigger_channel, spi),
|
||||
|
@ -169,8 +175,6 @@ macro_rules! dac_output {
|
|||
trigger_config,
|
||||
);
|
||||
|
||||
transfer.start(|spi| spi.start_dma());
|
||||
|
||||
Self {
|
||||
transfer,
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
|
@ -178,6 +182,10 @@ macro_rules! dac_output {
|
|||
}
|
||||
}
|
||||
|
||||
pub fn start(&mut self) {
|
||||
self.transfer.start(|spi| spi.start_dma());
|
||||
}
|
||||
|
||||
/// Acquire the next output buffer to populate it with DAC codes.
|
||||
pub fn acquire_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
|
@ -1,4 +1,4 @@
|
|||
use super::hal::time::MegaHertz;
|
||||
use stm32h7xx_hal::time::MegaHertz;
|
||||
|
||||
/// The ADC setup time is the number of seconds after the CSn line goes low before the serial clock
|
||||
/// may begin. This is used for performing the internal ADC conversion.
|
||||
|
@ -17,13 +17,13 @@ pub const POUNDER_QSPI_FREQUENCY: MegaHertz = MegaHertz(40);
|
|||
// Pounder Profile writes are always 16 bytes, with 2 cycles required per byte, coming out to a
|
||||
// total of 32 QSPI clock cycles. The QSPI is configured for 40MHz, so this comes out to an offset
|
||||
// of 800nS. We use 900ns to be safe.
|
||||
pub const POUNDER_IO_UPDATE_DELAY: f32 = 900_e-9;
|
||||
pub const POUNDER_IO_UPDATE_DELAY: f32 = 900e-9;
|
||||
|
||||
/// The duration to assert IO_Update for the pounder DDS.
|
||||
// IO_Update should be latched for 4 SYNC_CLK cycles after the QSPI profile write. With pounder
|
||||
// SYNC_CLK running at 100MHz (1/4 of the pounder reference clock of 500MHz), this corresponds to
|
||||
// 32ns. To accomodate rounding errors, we use 50ns instead.
|
||||
pub const POUNDER_IO_UPDATE_DURATION: f32 = 50_e-9;
|
||||
pub const POUNDER_IO_UPDATE_DURATION: f32 = 50e-9;
|
||||
|
||||
/// The DDS reference clock frequency in MHz.
|
||||
pub const DDS_REF_CLK: MegaHertz = MegaHertz(100);
|
|
@ -24,7 +24,8 @@
|
|||
///!
|
||||
///! This module only supports DI0 for timestamping due to trigger constraints on the DIx pins. If
|
||||
///! timestamping is desired in DI1, a separate timer + capture channel will be necessary.
|
||||
use super::{hal, timers, ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE};
|
||||
use super::{hal, timers};
|
||||
use crate::{ADC_SAMPLE_TICKS, SAMPLE_BUFFER_SIZE};
|
||||
|
||||
/// Calculate the period of the digital input timestamp timer.
|
||||
///
|
||||
|
@ -89,6 +90,7 @@ impl InputStamper {
|
|||
}
|
||||
|
||||
/// Start to capture timestamps on DI0.
|
||||
#[allow(dead_code)]
|
||||
pub fn start(&mut self) {
|
||||
self.capture_channel.enable();
|
||||
}
|
||||
|
@ -101,6 +103,7 @@ impl InputStamper {
|
|||
///
|
||||
/// To prevent timestamp loss, the batch size and sampling rate must be adjusted such that at
|
||||
/// most one timestamp will occur in each data processing cycle.
|
||||
#[allow(dead_code)]
|
||||
pub fn latest_timestamp(&mut self) -> Option<u32> {
|
||||
self.capture_channel
|
||||
.latest_capture()
|
|
@ -2,7 +2,6 @@ use embedded_hal::blocking::i2c::WriteRead;
|
|||
|
||||
const I2C_ADDR: u8 = 0x50;
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn read_eui48<T>(i2c: &mut T) -> Result<[u8; 6], T::Error>
|
||||
where
|
||||
T: WriteRead,
|
|
@ -0,0 +1,69 @@
|
|||
///! Module for all hardware-specific setup of Stabilizer
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
#[cfg(feature = "semihosting")]
|
||||
use panic_semihosting as _;
|
||||
|
||||
#[cfg(not(any(feature = "nightly", feature = "semihosting")))]
|
||||
use panic_halt as _;
|
||||
|
||||
mod adc;
|
||||
mod afe;
|
||||
mod configuration;
|
||||
mod dac;
|
||||
mod design_parameters;
|
||||
mod digital_input_stamper;
|
||||
mod eeprom;
|
||||
mod pounder;
|
||||
mod timers;
|
||||
|
||||
pub use adc::{Adc0Input, Adc1Input};
|
||||
pub use afe::Gain as AfeGain;
|
||||
pub use dac::{Dac0Output, Dac1Output};
|
||||
pub use pounder::DdsOutput;
|
||||
|
||||
// Type alias for the analog front-end (AFE) for ADC0.
|
||||
pub type AFE0 = afe::ProgrammableGainAmplifier<
|
||||
hal::gpio::gpiof::PF2<hal::gpio::Output<hal::gpio::PushPull>>,
|
||||
hal::gpio::gpiof::PF5<hal::gpio::Output<hal::gpio::PushPull>>,
|
||||
>;
|
||||
|
||||
// Type alias for the analog front-end (AFE) for ADC1.
|
||||
pub type AFE1 = afe::ProgrammableGainAmplifier<
|
||||
hal::gpio::gpiod::PD14<hal::gpio::Output<hal::gpio::PushPull>>,
|
||||
hal::gpio::gpiod::PD15<hal::gpio::Output<hal::gpio::PushPull>>,
|
||||
>;
|
||||
|
||||
// Type alias for the ethernet interface on Stabilizer.
|
||||
pub type Ethernet = smoltcp::iface::EthernetInterface<
|
||||
'static,
|
||||
'static,
|
||||
'static,
|
||||
hal::ethernet::EthernetDMA<'static>,
|
||||
>;
|
||||
|
||||
pub use configuration::{setup, PounderDevices, StabilizerDevices};
|
||||
|
||||
#[inline(never)]
|
||||
#[panic_handler]
|
||||
#[cfg(all(feature = "nightly", not(feature = "semihosting")))]
|
||||
fn panic(_info: &core::panic::PanicInfo) -> ! {
|
||||
let gpiod = unsafe { &*hal::stm32::GPIOD::ptr() };
|
||||
gpiod.odr.modify(|_, w| w.odr6().high().odr12().high()); // FP_LED_1, FP_LED_3
|
||||
#[cfg(feature = "nightly")]
|
||||
core::intrinsics::abort();
|
||||
#[cfg(not(feature = "nightly"))]
|
||||
unsafe {
|
||||
core::intrinsics::abort();
|
||||
}
|
||||
}
|
||||
|
||||
#[cortex_m_rt::exception]
|
||||
fn HardFault(ef: &cortex_m_rt::ExceptionFrame) -> ! {
|
||||
panic!("HardFault at {:#?}", ef);
|
||||
}
|
||||
|
||||
#[cortex_m_rt::exception]
|
||||
fn DefaultHandler(irqn: i16) {
|
||||
panic!("Unhandled exception (IRQn = {})", irqn);
|
||||
}
|
|
@ -52,8 +52,7 @@
|
|||
///! compile-time-known register update sequence needed for the application, the serialization
|
||||
///! process can be done once and then register values can be written into a pre-computed serialized
|
||||
///! buffer to avoid the software overhead of much of the serialization process.
|
||||
use super::QspiInterface;
|
||||
use crate::hrtimer::HighResTimerE;
|
||||
use super::{hrtimer::HighResTimerE, QspiInterface};
|
||||
use ad9959::{Channel, DdsConfig, ProfileSerializer};
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
|
@ -90,6 +89,7 @@ impl DdsOutput {
|
|||
}
|
||||
|
||||
/// Get a builder for serializing a Pounder DDS profile.
|
||||
#[allow(dead_code)]
|
||||
pub fn builder(&mut self) -> ProfileBuilder {
|
||||
let builder = self.config.builder();
|
||||
ProfileBuilder {
|
||||
|
@ -145,6 +145,7 @@ impl<'a> ProfileBuilder<'a> {
|
|||
/// * `ftw` - If provided, indicates a frequency tuning word for the channels.
|
||||
/// * `pow` - If provided, indicates a phase offset word for the channels.
|
||||
/// * `acr` - If provided, indicates the amplitude control register for the channels.
|
||||
#[allow(dead_code)]
|
||||
pub fn update_channels(
|
||||
mut self,
|
||||
channels: &[Channel],
|
||||
|
@ -157,6 +158,7 @@ impl<'a> ProfileBuilder<'a> {
|
|||
}
|
||||
|
||||
/// Write the profile to the DDS asynchronously.
|
||||
#[allow(dead_code)]
|
||||
pub fn write_profile(mut self) {
|
||||
let profile = self.serializer.finalize();
|
||||
self.dds_stream.write_profile(profile);
|
|
@ -1,8 +1,11 @@
|
|||
///! The HRTimer (High Resolution Timer) is used to generate IO_Update pulses to the Pounder DDS.
|
||||
use crate::hal;
|
||||
use hal::rcc::{rec, CoreClocks, ResetEnable};
|
||||
use stm32h7xx_hal::{
|
||||
self as hal,
|
||||
rcc::{rec, CoreClocks, ResetEnable},
|
||||
};
|
||||
|
||||
/// A HRTimer output channel.
|
||||
#[allow(dead_code)]
|
||||
pub enum Channel {
|
||||
One,
|
||||
Two,
|
|
@ -2,7 +2,10 @@ use serde::{Deserialize, Serialize};
|
|||
|
||||
mod attenuators;
|
||||
mod dds_output;
|
||||
pub mod hrtimer;
|
||||
mod rf_power;
|
||||
|
||||
#[cfg(feature = "pounder_v1_1")]
|
||||
pub mod timestamp;
|
||||
|
||||
pub use dds_output::DdsOutput;
|
||||
|
@ -27,13 +30,11 @@ const ATT_LE0_PIN: u8 = 8;
|
|||
pub enum Error {
|
||||
Spi,
|
||||
I2c,
|
||||
Dds,
|
||||
Qspi,
|
||||
Bounds,
|
||||
InvalidAddress,
|
||||
InvalidChannel,
|
||||
Adc,
|
||||
Access,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
|
@ -26,7 +26,7 @@ use stm32h7xx_hal as hal;
|
|||
|
||||
use hal::dma::{dma::DmaConfig, PeripheralToMemory, Transfer};
|
||||
|
||||
use crate::{timers, SAMPLE_BUFFER_SIZE};
|
||||
use crate::{hardware::timers, SAMPLE_BUFFER_SIZE};
|
||||
|
||||
// Three buffers are required for double buffered mode - 2 are owned by the DMA stream and 1 is the
|
||||
// working data provided to the application. These buffers must exist in a DMA-accessible memory
|
||||
|
@ -89,7 +89,7 @@ impl Timestamper {
|
|||
input_capture.listen_dma();
|
||||
|
||||
// The data transfer is always a transfer of data from the peripheral to a RAM buffer.
|
||||
let mut data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
let data_transfer: Transfer<_, _, PeripheralToMemory, _> =
|
||||
Transfer::init(
|
||||
stream,
|
||||
input_capture,
|
||||
|
@ -100,8 +100,6 @@ impl Timestamper {
|
|||
config,
|
||||
);
|
||||
|
||||
data_transfer.start(|capture_channel| capture_channel.enable());
|
||||
|
||||
Self {
|
||||
timer: timestamp_timer,
|
||||
transfer: data_transfer,
|
||||
|
@ -112,7 +110,15 @@ impl Timestamper {
|
|||
}
|
||||
}
|
||||
|
||||
/// Start the DMA transfer for collecting timestamps.
|
||||
#[allow(dead_code)]
|
||||
pub fn start(&mut self) {
|
||||
self.transfer
|
||||
.start(|capture_channel| capture_channel.enable());
|
||||
}
|
||||
|
||||
/// Update the period of the underlying timestamp timer.
|
||||
#[allow(dead_code)]
|
||||
pub fn update_period(&mut self, period: u16) {
|
||||
self.timer.set_period_ticks(period);
|
||||
}
|
||||
|
@ -121,6 +127,7 @@ impl Timestamper {
|
|||
///
|
||||
/// # Returns
|
||||
/// A reference to the underlying buffer that has been filled with timestamps.
|
||||
#[allow(dead_code)]
|
||||
pub fn acquire_buffer(&mut self) -> &[u16; SAMPLE_BUFFER_SIZE] {
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
|
|
@ -32,6 +32,7 @@ pub enum TriggerSource {
|
|||
}
|
||||
|
||||
/// Prescalers for externally-supplied reference clocks.
|
||||
#[allow(dead_code)]
|
||||
pub enum Prescaler {
|
||||
Div1 = 0b00,
|
||||
Div2 = 0b01,
|
||||
|
@ -40,6 +41,7 @@ pub enum Prescaler {
|
|||
}
|
||||
|
||||
/// Optional slave operation modes of a timer.
|
||||
#[allow(dead_code)]
|
||||
pub enum SlaveMode {
|
||||
Disabled = 0,
|
||||
Trigger = 0b0110,
|
971
src/main.rs
971
src/main.rs
File diff suppressed because it is too large
Load Diff
|
@ -7,7 +7,60 @@ use serde::{Deserialize, Serialize};
|
|||
use serde_json_core::{de::from_slice, ser::to_string};
|
||||
|
||||
use super::iir;
|
||||
use super::net;
|
||||
use smoltcp as net;
|
||||
|
||||
macro_rules! route_request {
|
||||
($request:ident,
|
||||
readable_attributes: [$($read_attribute:tt: $getter:tt),*],
|
||||
modifiable_attributes: [$($write_attribute:tt: $TYPE:ty, $setter:tt),*]) => {
|
||||
match $request.req {
|
||||
server::AccessRequest::Read => {
|
||||
match $request.attribute {
|
||||
$(
|
||||
$read_attribute => {
|
||||
#[allow(clippy::redundant_closure_call)]
|
||||
let value = match $getter() {
|
||||
Ok(data) => data,
|
||||
Err(_) => return server::Response::error($request.attribute,
|
||||
"Failed to read attribute"),
|
||||
};
|
||||
|
||||
let encoded_data: String<U256> = match serde_json_core::to_string(&value) {
|
||||
Ok(data) => data,
|
||||
Err(_) => return server::Response::error($request.attribute,
|
||||
"Failed to encode attribute value"),
|
||||
};
|
||||
|
||||
server::Response::success($request.attribute, &encoded_data)
|
||||
},
|
||||
)*
|
||||
_ => server::Response::error($request.attribute, "Unknown attribute")
|
||||
}
|
||||
},
|
||||
server::AccessRequest::Write => {
|
||||
match $request.attribute {
|
||||
$(
|
||||
$write_attribute => {
|
||||
let new_value = match serde_json_core::from_str::<$TYPE>(&$request.value) {
|
||||
Ok(data) => data,
|
||||
Err(_) => return server::Response::error($request.attribute,
|
||||
"Failed to decode value"),
|
||||
};
|
||||
|
||||
#[allow(clippy::redundant_closure_call)]
|
||||
match $setter(new_value) {
|
||||
Ok(_) => server::Response::success($request.attribute, &$request.value),
|
||||
Err(_) => server::Response::error($request.attribute,
|
||||
"Failed to set attribute"),
|
||||
}
|
||||
}
|
||||
)*
|
||||
_ => server::Response::error($request.attribute, "Unknown attribute")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Deserialize, Serialize, Debug)]
|
||||
pub enum AccessRequest {
|
||||
|
|
Loading…
Reference in New Issue