Merge branch 'master' into feature/qspi-stream
This commit is contained in:
commit
01a169ca69
|
@ -17,7 +17,7 @@ jobs:
|
|||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
profile: minimal
|
||||
toolchain: stable
|
||||
toolchain: nightly
|
||||
override: true
|
||||
components: rustfmt
|
||||
- name: cargo fmt --check
|
||||
|
@ -33,15 +33,14 @@ jobs:
|
|||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
profile: minimal
|
||||
toolchain: stable
|
||||
toolchain: nightly
|
||||
target: thumbv7em-none-eabihf
|
||||
override: true
|
||||
components: clippy
|
||||
- name: cargo clippy
|
||||
uses: actions-rs/cargo@v1
|
||||
- uses: actions-rs/clippy-check@v1
|
||||
continue-on-error: true
|
||||
with:
|
||||
command: clippy
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
compile:
|
||||
runs-on: ubuntu-latest
|
||||
|
|
|
@ -185,6 +185,13 @@ dependencies = [
|
|||
"cortex-m",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "dsp"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"serde",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "embedded-dma"
|
||||
version = "0.1.2"
|
||||
|
@ -336,9 +343,9 @@ checksum = "de96540e0ebde571dc55c73d60ef407c653844e6f9a1e2fdbd40c07b9252d812"
|
|||
|
||||
[[package]]
|
||||
name = "panic-semihosting"
|
||||
version = "0.5.4"
|
||||
version = "0.5.6"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "aed16eb761d0ee9161dd1319cb38c8007813b20f9720a5a682b283e7b8cdfe58"
|
||||
checksum = "c3d55dedd501dfd02514646e0af4d7016ce36bc12ae177ef52056989966a1eec"
|
||||
dependencies = [
|
||||
"cortex-m",
|
||||
"cortex-m-semihosting",
|
||||
|
@ -346,9 +353,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "paste"
|
||||
version = "1.0.2"
|
||||
version = "1.0.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "ba7ae1a2180ed02ddfdb5ab70c70d596a26dd642e097bb6fe78b1bde8588ed97"
|
||||
checksum = "7151b083b0664ed58ed669fcdd92f01c3d2fdbf10af4931a301474950b52bfa9"
|
||||
|
||||
[[package]]
|
||||
name = "proc-macro2"
|
||||
|
@ -466,6 +473,7 @@ dependencies = [
|
|||
"cortex-m-log",
|
||||
"cortex-m-rt",
|
||||
"cortex-m-rtic",
|
||||
"dsp",
|
||||
"embedded-hal",
|
||||
"enum-iterator",
|
||||
"heapless",
|
||||
|
@ -474,6 +482,7 @@ dependencies = [
|
|||
"nb 1.0.0",
|
||||
"panic-halt",
|
||||
"panic-semihosting",
|
||||
"paste",
|
||||
"serde",
|
||||
"serde-json-core",
|
||||
"smoltcp",
|
||||
|
|
|
@ -40,6 +40,8 @@ embedded-hal = "0.2.4"
|
|||
nb = "1.0.0"
|
||||
asm-delay = "0.9.0"
|
||||
enum-iterator = "0.6.0"
|
||||
paste = "1"
|
||||
dsp = { path = "dsp" }
|
||||
|
||||
[dependencies.mcp23017]
|
||||
git = "https://github.com/mrd0ll4r/mcp23017.git"
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
![Continuous Integration](https://github.com/quartiq/stabilizer/workflows/Continuous%20Integration/badge.svg)
|
||||
[![QUARTIQ Matrix Chat](https://img.shields.io/matrix/quartiq:matrix.org)](https://matrix.to/#/#quartiq:matrix.org)
|
||||
|
||||
# Stabilizer Firmware
|
||||
|
||||
|
|
|
@ -117,46 +117,42 @@ impl<I: Interface> Ad9959<I> {
|
|||
communication_mode: desired_mode,
|
||||
};
|
||||
|
||||
// Reset the AD9959
|
||||
reset_pin.set_high().or_else(|_| Err(Error::Pin))?;
|
||||
io_update.set_low().or(Err(Error::Pin))?;
|
||||
|
||||
io_update.set_low().or_else(|_| Err(Error::Pin))?;
|
||||
// Reset the AD9959
|
||||
reset_pin.set_high().or(Err(Error::Pin))?;
|
||||
|
||||
io_update.set_low().or(Err(Error::Pin))?;
|
||||
|
||||
// Delay for a clock cycle to allow the device to reset.
|
||||
delay.delay_ms((1000.0 / clock_frequency as f32) as u8);
|
||||
|
||||
reset_pin.set_low().or_else(|_| Err(Error::Pin))?;
|
||||
reset_pin.set_low().or(Err(Error::Pin))?;
|
||||
|
||||
ad9959
|
||||
.interface
|
||||
.configure_mode(Mode::SingleBitTwoWire)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
.or(Err(Error::Interface))?;
|
||||
|
||||
// Program the interface configuration in the AD9959. Default to all channels enabled.
|
||||
let mut csr: [u8; 1] = [0xF0];
|
||||
csr[0].set_bits(1..3, desired_mode as u8);
|
||||
ad9959
|
||||
.interface
|
||||
.write(Register::CSR as u8, &csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
ad9959.write(Register::CSR, &csr)?;
|
||||
|
||||
// Latch the new interface configuration.
|
||||
io_update.set_high().or_else(|_| Err(Error::Pin))?;
|
||||
io_update.set_high().or(Err(Error::Pin))?;
|
||||
// Delay for a clock cycle to allow the device to reset.
|
||||
delay.delay_ms(2 * (1000.0 / clock_frequency as f32) as u8);
|
||||
io_update.set_low().or_else(|_| Err(Error::Pin))?;
|
||||
io_update.set_low().or(Err(Error::Pin))?;
|
||||
|
||||
ad9959
|
||||
.interface
|
||||
.configure_mode(desired_mode)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
.or(Err(Error::Interface))?;
|
||||
|
||||
// Read back the CSR to ensure it specifies the mode correctly.
|
||||
let mut updated_csr: [u8; 1] = [0];
|
||||
ad9959
|
||||
.interface
|
||||
.read(Register::CSR as u8, &mut updated_csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
ad9959.read(Register::CSR, &mut updated_csr)?;
|
||||
if updated_csr[0] != csr[0] {
|
||||
return Err(Error::Check);
|
||||
}
|
||||
|
@ -166,6 +162,18 @@ impl<I: Interface> Ad9959<I> {
|
|||
Ok(ad9959)
|
||||
}
|
||||
|
||||
fn read(&mut self, reg: Register, data: &mut [u8]) -> Result<(), Error> {
|
||||
self.interface
|
||||
.read(reg as u8, data)
|
||||
.or(Err(Error::Interface))
|
||||
}
|
||||
|
||||
fn write(&mut self, reg: Register, data: &[u8]) -> Result<(), Error> {
|
||||
self.interface
|
||||
.write(reg as u8, data)
|
||||
.or(Err(Error::Interface))
|
||||
}
|
||||
|
||||
/// Configure the internal system clock of the chip.
|
||||
///
|
||||
/// Arguments:
|
||||
|
@ -181,7 +189,7 @@ impl<I: Interface> Ad9959<I> {
|
|||
) -> Result<f32, Error> {
|
||||
self.reference_clock_frequency = reference_clock_frequency;
|
||||
|
||||
if multiplier != 1 && (multiplier > 20 || multiplier < 4) {
|
||||
if multiplier != 1 && !(4..=20).contains(&multiplier) {
|
||||
return Err(Error::Bounds);
|
||||
}
|
||||
|
||||
|
@ -193,17 +201,13 @@ impl<I: Interface> Ad9959<I> {
|
|||
|
||||
// TODO: Update / disable any enabled channels?
|
||||
let mut fr1: [u8; 3] = [0, 0, 0];
|
||||
self.interface
|
||||
.read(Register::FR1 as u8, &mut fr1)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.read(Register::FR1, &mut fr1)?;
|
||||
fr1[0].set_bits(2..=6, multiplier);
|
||||
|
||||
let vco_range = frequency > 255e6;
|
||||
fr1[0].set_bit(7, vco_range);
|
||||
|
||||
self.interface
|
||||
.write(Register::FR1 as u8, &fr1)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.write(Register::FR1, &fr1)?;
|
||||
self.system_clock_multiplier = multiplier;
|
||||
|
||||
Ok(self.system_clock_frequency())
|
||||
|
@ -217,9 +221,7 @@ impl<I: Interface> Ad9959<I> {
|
|||
/// Get the current reference clock multiplier.
|
||||
pub fn get_reference_clock_multiplier(&mut self) -> Result<u8, Error> {
|
||||
let mut fr1: [u8; 3] = [0, 0, 0];
|
||||
self.interface
|
||||
.read(Register::FR1 as u8, &mut fr1)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.read(Register::FR1, &mut fr1)?;
|
||||
|
||||
Ok(fr1[0].get_bits(2..=6) as u8)
|
||||
}
|
||||
|
@ -233,46 +235,34 @@ impl<I: Interface> Ad9959<I> {
|
|||
/// True if the self test succeeded. False otherwise.
|
||||
pub fn self_test(&mut self) -> Result<bool, Error> {
|
||||
let mut csr: [u8; 1] = [0];
|
||||
self.interface
|
||||
.read(Register::CSR as u8, &mut csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.read(Register::CSR, &mut csr)?;
|
||||
let old_csr = csr[0];
|
||||
|
||||
// Enable all channels.
|
||||
csr[0].set_bits(4..8, 0xF);
|
||||
self.interface
|
||||
.write(Register::CSR as u8, &csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.write(Register::CSR, &csr)?;
|
||||
|
||||
// Read back the enable.
|
||||
csr[0] = 0;
|
||||
self.interface
|
||||
.read(Register::CSR as u8, &mut csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.read(Register::CSR, &mut csr)?;
|
||||
if csr[0].get_bits(4..8) != 0xF {
|
||||
return Ok(false);
|
||||
}
|
||||
|
||||
// Clear all channel enables.
|
||||
csr[0].set_bits(4..8, 0x0);
|
||||
self.interface
|
||||
.write(Register::CSR as u8, &csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.write(Register::CSR, &csr)?;
|
||||
|
||||
// Read back the enable.
|
||||
csr[0] = 0xFF;
|
||||
self.interface
|
||||
.read(Register::CSR as u8, &mut csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.read(Register::CSR, &mut csr)?;
|
||||
if csr[0].get_bits(4..8) != 0 {
|
||||
return Ok(false);
|
||||
}
|
||||
|
||||
// Restore the CSR.
|
||||
csr[0] = old_csr;
|
||||
self.interface
|
||||
.write(Register::CSR as u8, &csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.write(Register::CSR, &csr)?;
|
||||
|
||||
Ok(true)
|
||||
}
|
||||
|
@ -305,9 +295,7 @@ impl<I: Interface> Ad9959<I> {
|
|||
.write(Register::CSR as u8, &[csr])
|
||||
.map_err(|_| Error::Interface)?;
|
||||
|
||||
self.interface
|
||||
.write(register as u8, &data)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.write(register, &data)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
@ -327,27 +315,18 @@ impl<I: Interface> Ad9959<I> {
|
|||
// Disable all other channels in the CSR so that we can read the configuration register of
|
||||
// only the desired channel.
|
||||
let mut csr: [u8; 1] = [0];
|
||||
self.interface
|
||||
.read(Register::CSR as u8, &mut csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.read(Register::CSR, &mut csr)?;
|
||||
|
||||
let mut new_csr = csr;
|
||||
new_csr[0].set_bits(4..8, 0);
|
||||
new_csr[0].set_bit(4 + channel as usize, true);
|
||||
|
||||
self.interface
|
||||
.write(Register::CSR as u8, &new_csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
|
||||
self.interface
|
||||
.read(register as u8, &mut data)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.write(Register::CSR, &new_csr)?;
|
||||
self.read(register, &mut data)?;
|
||||
|
||||
// Restore the previous CSR. Note that the re-enable of the channel happens immediately, so
|
||||
// the CSR update does not need to be latched.
|
||||
self.interface
|
||||
.write(Register::CSR as u8, &csr)
|
||||
.map_err(|_| Error::Interface)?;
|
||||
self.write(Register::CSR, &csr)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
@ -406,7 +385,7 @@ impl<I: Interface> Ad9959<I> {
|
|||
channel: Channel,
|
||||
amplitude: f32,
|
||||
) -> Result<f32, Error> {
|
||||
if amplitude < 0.0 || amplitude > 1.0 {
|
||||
if !(0.0..=1.0).contains(&litude) {
|
||||
return Err(Error::Bounds);
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,63 @@
|
|||
# This file is automatically @generated by Cargo.
|
||||
# It is not intended for manual editing.
|
||||
[[package]]
|
||||
name = "dsp"
|
||||
version = "0.1.0"
|
||||
dependencies = [
|
||||
"serde",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "proc-macro2"
|
||||
version = "1.0.24"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1e0704ee1a7e00d7bb417d0770ea303c1bccbabf0ef1667dae92b5967f5f8a71"
|
||||
dependencies = [
|
||||
"unicode-xid",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "quote"
|
||||
version = "1.0.7"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "aa563d17ecb180e500da1cfd2b028310ac758de548efdd203e18f283af693f37"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "serde"
|
||||
version = "1.0.117"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "b88fa983de7720629c9387e9f517353ed404164b1e482c970a90c1a4aaf7dc1a"
|
||||
dependencies = [
|
||||
"serde_derive",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "serde_derive"
|
||||
version = "1.0.117"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "cbd1ae72adb44aab48f325a02444a5fc079349a8d804c1fc922aed3f7454c74e"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "syn"
|
||||
version = "1.0.50"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "443b4178719c5a851e1bde36ce12da21d74a0e60b4d982ec3385a933c812f0f6"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"unicode-xid",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "unicode-xid"
|
||||
version = "0.2.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "f7fe0bb3479651439c9112f72b6c505038574c9fbb575ed1bf3b797fa39dd564"
|
|
@ -0,0 +1,8 @@
|
|||
[package]
|
||||
name = "dsp"
|
||||
version = "0.1.0"
|
||||
authors = ["Robert Jördens <rj@quartiq.de>"]
|
||||
edition = "2018"
|
||||
|
||||
[dependencies]
|
||||
serde = { version = "1.0", features = ["derive"], default-features = false }
|
|
@ -0,0 +1,176 @@
|
|||
use core::ops::{Add, Mul};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use core::f32;
|
||||
|
||||
// These are implemented here because core::f32 doesn't have them (yet).
|
||||
// They are naive and don't handle inf/nan.
|
||||
// `compiler-intrinsics`/llvm should have better (robust, universal, and
|
||||
// faster) implementations.
|
||||
|
||||
fn abs(x: f32) -> f32 {
|
||||
if x >= 0. {
|
||||
x
|
||||
} else {
|
||||
-x
|
||||
}
|
||||
}
|
||||
|
||||
fn copysign(x: f32, y: f32) -> f32 {
|
||||
if (x >= 0. && y >= 0.) || (x <= 0. && y <= 0.) {
|
||||
x
|
||||
} else {
|
||||
-x
|
||||
}
|
||||
}
|
||||
|
||||
fn max(x: f32, y: f32) -> f32 {
|
||||
if x > y {
|
||||
x
|
||||
} else {
|
||||
y
|
||||
}
|
||||
}
|
||||
|
||||
fn min(x: f32, y: f32) -> f32 {
|
||||
if x < y {
|
||||
x
|
||||
} else {
|
||||
y
|
||||
}
|
||||
}
|
||||
|
||||
// Multiply-accumulate vectors `x` and `a`.
|
||||
//
|
||||
// A.k.a. dot product.
|
||||
// Rust/LLVM optimize this nicely.
|
||||
fn macc<T>(y0: T, x: &[T], a: &[T]) -> T
|
||||
where
|
||||
T: Add<Output = T> + Mul<Output = T> + Copy,
|
||||
{
|
||||
x.iter()
|
||||
.zip(a)
|
||||
.map(|(&x, &a)| x * a)
|
||||
.fold(y0, |y, xa| y + xa)
|
||||
}
|
||||
|
||||
/// IIR state and coefficients type.
|
||||
///
|
||||
/// To represent the IIR state (input and output memory) during the filter update
|
||||
/// this contains the three inputs (x0, x1, x2) and the two outputs (y1, y2)
|
||||
/// concatenated.
|
||||
/// To represent the IIR coefficients, this contains the feed-forward
|
||||
/// coefficients (b0, b1, b2) followd by the feed-back coefficients (a1, a2),
|
||||
/// all normalized such that a0 = 1.
|
||||
pub type IIRState = [f32; 5];
|
||||
|
||||
/// IIR configuration.
|
||||
///
|
||||
/// Contains the coeeficients `ba`, the output offset `y_offset`, and the
|
||||
/// output limits `y_min` and `y_max`.
|
||||
///
|
||||
/// This implementation achieves several important properties:
|
||||
///
|
||||
/// * Its transfer function is universal in the sense that any biquadratic
|
||||
/// transfer function can be implemented (high-passes, gain limits, second
|
||||
/// order integrators with inherent anti-windup, notches etc) without code
|
||||
/// changes preserving all features.
|
||||
/// * It inherits a universal implementation of "integrator anti-windup", also
|
||||
/// and especially in the presence of set-point changes and in the presence
|
||||
/// of proportional or derivative gain without any back-off that would reduce
|
||||
/// steady-state output range.
|
||||
/// * It has universal derivative-kick (undesired, unlimited, and un-physical
|
||||
/// amplification of set-point changes by the derivative term) avoidance.
|
||||
/// * An offset at the input of an IIR filter (a.k.a. "set-point") is
|
||||
/// equivalent to an offset at the output. They are related by the
|
||||
/// overall (DC feed-forward) gain of the filter.
|
||||
/// * It stores only previous outputs and inputs. These have direct and
|
||||
/// invariant interpretation (independent of gains and offsets).
|
||||
/// Therefore it can trivially implement bump-less transfer.
|
||||
/// * Cascading multiple IIR filters allows stable and robust
|
||||
/// implementation of transfer functions beyond bequadratic terms.
|
||||
#[derive(Copy, Clone, Deserialize, Serialize)]
|
||||
pub struct IIR {
|
||||
pub ba: IIRState,
|
||||
pub y_offset: f32,
|
||||
pub y_min: f32,
|
||||
pub y_max: f32,
|
||||
}
|
||||
|
||||
impl IIR {
|
||||
/// Configures IIR filter coefficients for proportional-integral behavior
|
||||
/// with gain limit.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `kp` - Proportional gain. Also defines gain sign.
|
||||
/// * `ki` - Integral gain at Nyquist. Sign taken from `kp`.
|
||||
/// * `g` - Gain limit.
|
||||
pub fn set_pi(&mut self, kp: f32, ki: f32, g: f32) -> Result<(), &str> {
|
||||
let ki = copysign(ki, kp);
|
||||
let g = copysign(g, kp);
|
||||
let (a1, b0, b1) = if abs(ki) < f32::EPSILON {
|
||||
(0., kp, 0.)
|
||||
} else {
|
||||
let c = if abs(g) < f32::EPSILON {
|
||||
1.
|
||||
} else {
|
||||
1. / (1. + ki / g)
|
||||
};
|
||||
let a1 = 2. * c - 1.;
|
||||
let b0 = ki * c + kp;
|
||||
let b1 = ki * c - a1 * kp;
|
||||
if abs(b0 + b1) < f32::EPSILON {
|
||||
return Err("low integrator gain and/or gain limit");
|
||||
}
|
||||
(a1, b0, b1)
|
||||
};
|
||||
self.ba.copy_from_slice(&[b0, b1, 0., a1, 0.]);
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Compute the overall (DC feed-forward) gain.
|
||||
pub fn get_k(&self) -> f32 {
|
||||
self.ba[..3].iter().sum()
|
||||
}
|
||||
|
||||
/// Compute input-referred (`x`) offset from output (`y`) offset.
|
||||
pub fn get_x_offset(&self) -> Result<f32, &str> {
|
||||
let k = self.get_k();
|
||||
if abs(k) < f32::EPSILON {
|
||||
Err("k is zero")
|
||||
} else {
|
||||
Ok(self.y_offset / k)
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert input (`x`) offset to equivalent output (`y`) offset and apply.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `xo`: Input (`x`) offset.
|
||||
pub fn set_x_offset(&mut self, xo: f32) {
|
||||
self.y_offset = xo * self.get_k();
|
||||
}
|
||||
|
||||
/// Feed a new input value into the filter, update the filter state, and
|
||||
/// return the new output. Only the state `xy` is modified.
|
||||
///
|
||||
/// # Arguments
|
||||
/// * `xy` - Current filter state.
|
||||
/// * `x0` - New input.
|
||||
pub fn update(&self, xy: &mut IIRState, x0: f32) -> f32 {
|
||||
// `xy` contains x0 x1 y0 y1 y2
|
||||
// Increment time x1 x2 y1 y2 y3
|
||||
// Rotate y3 x1 x2 y1 y2
|
||||
xy.rotate_right(1);
|
||||
// Store x0 x0 x1 x2 y1 y2
|
||||
xy[0] = x0;
|
||||
// Compute y0 by multiply-accumulate
|
||||
let y0 = macc(self.y_offset, xy, &self.ba);
|
||||
// Limit y0
|
||||
let y0 = max(self.y_min, min(self.y_max, y0));
|
||||
// Store y0 x0 x1 y0 y1 y2
|
||||
xy[xy.len() / 2] = y0;
|
||||
y0
|
||||
}
|
||||
}
|
|
@ -0,0 +1,3 @@
|
|||
#![no_std]
|
||||
|
||||
pub mod iir;
|
2
memory.x
2
memory.x
|
@ -17,7 +17,7 @@ SECTIONS {
|
|||
*(.itcm .itcm.*);
|
||||
. = ALIGN(8);
|
||||
} > ITCM
|
||||
.axisram : ALIGN(8) {
|
||||
.axisram (NOLOAD) : ALIGN(8) {
|
||||
*(.axisram .axisram.*);
|
||||
. = ALIGN(8);
|
||||
} > AXISRAM
|
||||
|
|
65
src/adc.rs
65
src/adc.rs
|
@ -42,13 +42,18 @@ static mut ADC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
|||
|
||||
/// SPI2 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI2 TX FIFO
|
||||
/// whenever the tim2 update dma request occurs.
|
||||
struct SPI2 {}
|
||||
struct SPI2 {
|
||||
_channel: sampling_timer::tim2::Channel1,
|
||||
}
|
||||
impl SPI2 {
|
||||
pub fn new() -> Self {
|
||||
Self {}
|
||||
pub fn new(_channel: sampling_timer::tim2::Channel1) -> Self {
|
||||
Self { _channel }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
|
||||
// may only be used if ownership of the timer2 channel 1 compare channel is assured, which is
|
||||
// ensured by maintaining ownership of the channel.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
|
||||
/// SPI2 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
@ -59,6 +64,8 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
|
|||
/// Whenever the DMA request occurs, it should write into SPI2's TX FIFO to start a DMA
|
||||
/// transfer.
|
||||
fn address(&self) -> u32 {
|
||||
// Note(unsafe): It is assumed that SPI2 is owned by another DMA transfer and this DMA is
|
||||
// only used for the transmit-half of DMA.
|
||||
let regs = unsafe { &*hal::stm32::SPI2::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
}
|
||||
|
@ -66,13 +73,18 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI2 {
|
|||
|
||||
/// SPI3 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI3 TX FIFO
|
||||
/// whenever the tim2 update dma request occurs.
|
||||
struct SPI3 {}
|
||||
struct SPI3 {
|
||||
_channel: sampling_timer::tim2::Channel2,
|
||||
}
|
||||
impl SPI3 {
|
||||
pub fn new() -> Self {
|
||||
Self {}
|
||||
pub fn new(_channel: sampling_timer::tim2::Channel2) -> Self {
|
||||
Self { _channel }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This structure is only safe to instantiate once. The DMA request is hard-coded and
|
||||
// may only be used if ownership of the timer2 channel 2 compare channel is assured, which is
|
||||
// ensured by maintaining ownership of the channel.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI3 {
|
||||
/// SPI3 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
@ -83,6 +95,8 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI3 {
|
|||
/// Whenever the DMA request occurs, it should write into SPI3's TX FIFO to start a DMA
|
||||
/// transfer.
|
||||
fn address(&self) -> u32 {
|
||||
// Note(unsafe): It is assumed that SPI3 is owned by another DMA transfer and this DMA is
|
||||
// only used for the transmit-half of DMA.
|
||||
let regs = unsafe { &*hal::stm32::SPI3::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
}
|
||||
|
@ -144,7 +158,7 @@ impl Adc0Input {
|
|||
spi: hal::spi::Spi<hal::stm32::SPI2, hal::spi::Enabled, u16>,
|
||||
trigger_stream: hal::dma::dma::Stream0<hal::stm32::DMA1>,
|
||||
data_stream: hal::dma::dma::Stream1<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::Timer2Channel1,
|
||||
trigger_channel: sampling_timer::tim2::Channel1,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
|
@ -155,8 +169,6 @@ impl Adc0Input {
|
|||
// contents). Thus, neither the memory or peripheral address ever change. This is run in
|
||||
// circular mode to be completed at every DMA request.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(false)
|
||||
.peripheral_increment(false)
|
||||
.priority(Priority::High)
|
||||
.circular_buffer(true);
|
||||
|
||||
|
@ -164,7 +176,10 @@ impl Adc0Input {
|
|||
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
Transfer::init(
|
||||
trigger_stream,
|
||||
SPI2::new(),
|
||||
SPI2::new(trigger_channel),
|
||||
// Note(unsafe): Because this is a Memory->Peripheral transfer, this data is never
|
||||
// actually modified. It technically only needs to be immutably borrowed, but the
|
||||
// current HAL API only supports mutable borrows.
|
||||
unsafe { &mut SPI_START },
|
||||
None,
|
||||
trigger_config,
|
||||
|
@ -176,8 +191,7 @@ impl Adc0Input {
|
|||
// stream is used to trigger a transfer completion interrupt.
|
||||
let data_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.priority(Priority::VeryHigh)
|
||||
.peripheral_increment(false);
|
||||
.priority(Priority::VeryHigh);
|
||||
|
||||
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
|
||||
// indicates that samples were dropped due to excessive processing time in the main
|
||||
|
@ -192,6 +206,8 @@ impl Adc0Input {
|
|||
Transfer::init(
|
||||
data_stream,
|
||||
spi,
|
||||
// Note(unsafe): The ADC0_BUF0 is "owned" by this peripheral. It shall not be used
|
||||
// anywhere else in the module.
|
||||
unsafe { &mut ADC0_BUF0 },
|
||||
None,
|
||||
data_config,
|
||||
|
@ -210,6 +226,8 @@ impl Adc0Input {
|
|||
trigger_transfer.start(|_| {});
|
||||
|
||||
Self {
|
||||
// Note(unsafe): The ADC0_BUF1 is "owned" by this peripheral. It shall not be used
|
||||
// anywhere else in the module.
|
||||
next_buffer: unsafe { Some(&mut ADC0_BUF1) },
|
||||
transfer: data_transfer,
|
||||
_trigger_transfer: trigger_transfer,
|
||||
|
@ -224,7 +242,9 @@ impl Adc0Input {
|
|||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
|
||||
// no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
|
@ -265,7 +285,7 @@ impl Adc1Input {
|
|||
spi: hal::spi::Spi<hal::stm32::SPI3, hal::spi::Enabled, u16>,
|
||||
trigger_stream: hal::dma::dma::Stream2<hal::stm32::DMA1>,
|
||||
data_stream: hal::dma::dma::Stream3<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::Timer2Channel2,
|
||||
trigger_channel: sampling_timer::tim2::Channel2,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
|
@ -276,8 +296,6 @@ impl Adc1Input {
|
|||
// contents). Thus, neither the memory or peripheral address ever change. This is run in
|
||||
// circular mode to be completed at every DMA request.
|
||||
let trigger_config = DmaConfig::default()
|
||||
.memory_increment(false)
|
||||
.peripheral_increment(false)
|
||||
.priority(Priority::High)
|
||||
.circular_buffer(true);
|
||||
|
||||
|
@ -285,7 +303,9 @@ impl Adc1Input {
|
|||
let mut trigger_transfer: Transfer<_, _, MemoryToPeripheral, _> =
|
||||
Transfer::init(
|
||||
trigger_stream,
|
||||
SPI3::new(),
|
||||
SPI3::new(trigger_channel),
|
||||
// Note(unsafe). This transaction is read-only and SPI_START is a dont-care value,
|
||||
// so it is always safe to share.
|
||||
unsafe { &mut SPI_START },
|
||||
None,
|
||||
trigger_config,
|
||||
|
@ -298,8 +318,7 @@ impl Adc1Input {
|
|||
let data_config = DmaConfig::default()
|
||||
.memory_increment(true)
|
||||
.transfer_complete_interrupt(true)
|
||||
.priority(Priority::VeryHigh)
|
||||
.peripheral_increment(false);
|
||||
.priority(Priority::VeryHigh);
|
||||
|
||||
// A SPI peripheral error interrupt is used to determine if the RX FIFO overflows. This
|
||||
// indicates that samples were dropped due to excessive processing time in the main
|
||||
|
@ -314,6 +333,8 @@ impl Adc1Input {
|
|||
Transfer::init(
|
||||
data_stream,
|
||||
spi,
|
||||
// Note(unsafe): The ADC1_BUF0 is "owned" by this peripheral. It shall not be used
|
||||
// anywhere else in the module.
|
||||
unsafe { &mut ADC1_BUF0 },
|
||||
None,
|
||||
data_config,
|
||||
|
@ -332,6 +353,8 @@ impl Adc1Input {
|
|||
trigger_transfer.start(|_| {});
|
||||
|
||||
Self {
|
||||
// Note(unsafe): The ADC1_BUF1 is "owned" by this peripheral. It shall not be used
|
||||
// anywhere else in the module.
|
||||
next_buffer: unsafe { Some(&mut ADC1_BUF1) },
|
||||
transfer: data_transfer,
|
||||
_trigger_transfer: trigger_transfer,
|
||||
|
@ -346,7 +369,9 @@ impl Adc1Input {
|
|||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Wait for the transfer to fully complete before continuing.
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as there is
|
||||
// no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
|
||||
// Start the next transfer.
|
||||
self.transfer.clear_interrupts();
|
||||
|
|
151
src/dac.rs
151
src/dac.rs
|
@ -24,14 +24,24 @@ static mut DAC1_BUF0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
|||
#[link_section = ".axisram.buffers"]
|
||||
static mut DAC1_BUF1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
|
||||
/// SPI4 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI4 TX FIFO
|
||||
struct SPI4 {}
|
||||
/// SPI4 is used as a type for indicating a DMA transfer into the SPI4 TX FIFO
|
||||
struct SPI4 {
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
|
||||
_channel: sampling_timer::tim2::Channel3,
|
||||
}
|
||||
|
||||
impl SPI4 {
|
||||
pub fn new() -> Self {
|
||||
Self {}
|
||||
pub fn new(
|
||||
_channel: sampling_timer::tim2::Channel3,
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
|
||||
) -> Self {
|
||||
Self { _channel, spi }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
|
||||
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
|
||||
// sizes.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI4 {
|
||||
/// SPI2 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
@ -41,19 +51,28 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI4 {
|
|||
|
||||
/// Whenever the DMA request occurs, it should write into SPI4's TX FIFO.
|
||||
fn address(&self) -> u32 {
|
||||
let regs = unsafe { &*hal::stm32::SPI4::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
&self.spi.inner().txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// SPI5 is used as a ZST (zero-sized type) for indicating a DMA transfer into the SPI5 TX FIFO
|
||||
struct SPI5 {}
|
||||
struct SPI5 {
|
||||
_channel: sampling_timer::tim2::Channel4,
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
|
||||
}
|
||||
|
||||
impl SPI5 {
|
||||
pub fn new() -> Self {
|
||||
Self {}
|
||||
pub fn new(
|
||||
_channel: sampling_timer::tim2::Channel4,
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
|
||||
) -> Self {
|
||||
Self { _channel, spi }
|
||||
}
|
||||
}
|
||||
|
||||
// Note(unsafe): This is safe because the DMA request line is logically owned by this module.
|
||||
// Additionally, the SPI is owned by this structure and is known to be configured for u16 word
|
||||
// sizes.
|
||||
unsafe impl TargetAddress<MemoryToPeripheral> for SPI5 {
|
||||
/// SPI5 is configured to operate using 16-bit transfer words.
|
||||
type MemSize = u16;
|
||||
|
@ -63,8 +82,7 @@ unsafe impl TargetAddress<MemoryToPeripheral> for SPI5 {
|
|||
|
||||
/// Whenever the DMA request occurs, it should write into SPI5's TX FIFO
|
||||
fn address(&self) -> u32 {
|
||||
let regs = unsafe { &*hal::stm32::SPI5::ptr() };
|
||||
®s.txdr as *const _ as u32
|
||||
&self.spi.inner().txdr as *const _ as u32
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -80,25 +98,35 @@ impl DacOutputs {
|
|||
Self { dac0, dac1 }
|
||||
}
|
||||
|
||||
/// Borrow the next DAC output buffers to populate the DAC output codes in-place.
|
||||
///
|
||||
/// # Returns
|
||||
/// (dac0, dac1) where each value is a mutable reference to the output code array for DAC0 and
|
||||
/// DAC1 respectively.
|
||||
pub fn prepare_data(
|
||||
&mut self,
|
||||
) -> (
|
||||
&mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
&mut [u16; SAMPLE_BUFFER_SIZE],
|
||||
) {
|
||||
(self.dac0.prepare_buffer(), self.dac1.prepare_buffer())
|
||||
}
|
||||
|
||||
/// Enqueue the next DAC output codes for transmission.
|
||||
///
|
||||
/// # Args
|
||||
/// * `dac0_codes` - The output codes for DAC0 to enqueue.
|
||||
/// * `dac1_codes` - The output codes for DAC1 to enqueue.
|
||||
pub fn next_data(
|
||||
&mut self,
|
||||
dac0_codes: &[u16; SAMPLE_BUFFER_SIZE],
|
||||
dac1_codes: &[u16; SAMPLE_BUFFER_SIZE],
|
||||
) {
|
||||
self.dac0.next_data(dac0_codes);
|
||||
self.dac1.next_data(dac1_codes);
|
||||
/// # Note
|
||||
/// It is assumed that data was populated using `prepare_data()` before this function is
|
||||
/// called.
|
||||
pub fn commit_data(&mut self) {
|
||||
self.dac0.commit_buffer();
|
||||
self.dac1.commit_buffer();
|
||||
}
|
||||
}
|
||||
|
||||
/// Represents data associated with DAC0.
|
||||
pub struct Dac0Output {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
_spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Disabled, u16>,
|
||||
// Note: SPI TX functionality may not be used from this structure to ensure safety with DMA.
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream4<hal::stm32::DMA1>,
|
||||
SPI4,
|
||||
|
@ -118,7 +146,7 @@ impl Dac0Output {
|
|||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI4, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::Stream4<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::Timer2Channel3,
|
||||
trigger_channel: sampling_timer::tim2::Channel3,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
|
@ -130,15 +158,6 @@ impl Dac0Output {
|
|||
.memory_increment(true)
|
||||
.peripheral_increment(false);
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI4::new(),
|
||||
unsafe { &mut DAC0_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
// Listen for any potential SPI error signals, which may indicate that we are not generating
|
||||
// update codes.
|
||||
let mut spi = spi.disable();
|
||||
|
@ -151,30 +170,44 @@ impl Dac0Output {
|
|||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
// Construct the trigger stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI4::new(trigger_channel, spi),
|
||||
// Note(unsafe): This buffer is only used once and provided for the DMA transfer.
|
||||
unsafe { &mut DAC0_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
transfer,
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC0_BUF1) },
|
||||
_spi: spi,
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Schedule the next set of DAC update codes.
|
||||
/// Mutably borrow the next output buffer to populate it with DAC codes.
|
||||
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
self.next_buffer.as_mut().unwrap()
|
||||
}
|
||||
|
||||
/// Enqueue the next buffer for transmission to the DAC.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next samples to enqueue for transmission.
|
||||
pub fn next_data(&mut self, data: &[u16; SAMPLE_BUFFER_SIZE]) {
|
||||
/// * `data` - The next data to write to the DAC.
|
||||
pub fn commit_buffer(&mut self) {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Copy data into the next buffer
|
||||
next_buffer.copy_from_slice(data);
|
||||
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
|
@ -189,7 +222,6 @@ impl Dac0Output {
|
|||
/// Represents the data output stream from DAC1.
|
||||
pub struct Dac1Output {
|
||||
next_buffer: Option<&'static mut [u16; SAMPLE_BUFFER_SIZE]>,
|
||||
_spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Disabled, u16>,
|
||||
transfer: Transfer<
|
||||
hal::dma::dma::Stream5<hal::stm32::DMA1>,
|
||||
SPI5,
|
||||
|
@ -209,7 +241,7 @@ impl Dac1Output {
|
|||
pub fn new(
|
||||
spi: hal::spi::Spi<hal::stm32::SPI5, hal::spi::Enabled, u16>,
|
||||
stream: hal::dma::dma::Stream5<hal::stm32::DMA1>,
|
||||
trigger_channel: sampling_timer::Timer2Channel4,
|
||||
trigger_channel: sampling_timer::tim2::Channel4,
|
||||
) -> Self {
|
||||
// Generate DMA events when an output compare of the timer hitting zero (timer roll over)
|
||||
// occurs.
|
||||
|
@ -222,15 +254,6 @@ impl Dac1Output {
|
|||
.peripheral_increment(false)
|
||||
.circular_buffer(true);
|
||||
|
||||
// Construct the stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI5::new(),
|
||||
unsafe { &mut DAC1_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
// Listen for any SPI errors, as this may indicate that we are not generating updates on the
|
||||
// DAC.
|
||||
let mut spi = spi.disable();
|
||||
|
@ -243,30 +266,44 @@ impl Dac1Output {
|
|||
spi.inner().cr1.modify(|_, w| w.spe().set_bit());
|
||||
spi.inner().cr1.modify(|_, w| w.cstart().started());
|
||||
|
||||
// Construct the stream to write from memory to the peripheral.
|
||||
let transfer: Transfer<_, _, MemoryToPeripheral, _> = Transfer::init(
|
||||
stream,
|
||||
SPI5::new(trigger_channel, spi),
|
||||
// Note(unsafe): This buffer is only used once and provided to the transfer.
|
||||
unsafe { &mut DAC1_BUF0 },
|
||||
None,
|
||||
trigger_config,
|
||||
);
|
||||
|
||||
Self {
|
||||
// Note(unsafe): This buffer is only used once and provided for the next DMA transfer.
|
||||
next_buffer: unsafe { Some(&mut DAC1_BUF1) },
|
||||
transfer,
|
||||
_spi: spi,
|
||||
first_transfer: true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Mutably borrow the next output buffer to populate it with DAC codes.
|
||||
pub fn prepare_buffer(&mut self) -> &mut [u16; SAMPLE_BUFFER_SIZE] {
|
||||
self.next_buffer.as_mut().unwrap()
|
||||
}
|
||||
|
||||
/// Enqueue the next buffer for transmission to the DAC.
|
||||
///
|
||||
/// # Args
|
||||
/// * `data` - The next data to write to the DAC.
|
||||
pub fn next_data(&mut self, data: &[u16; SAMPLE_BUFFER_SIZE]) {
|
||||
pub fn commit_buffer(&mut self) {
|
||||
let next_buffer = self.next_buffer.take().unwrap();
|
||||
|
||||
// Copy data into the next buffer
|
||||
next_buffer.copy_from_slice(data);
|
||||
|
||||
// If the last transfer was not complete, we didn't write all our previous DAC codes.
|
||||
// Wait for all the DAC codes to get written as well.
|
||||
if self.first_transfer {
|
||||
self.first_transfer = false
|
||||
} else {
|
||||
while self.transfer.get_transfer_complete_flag() == false {}
|
||||
// Note: If a device hangs up, check that this conditional is passing correctly, as
|
||||
// there is no time-out checks here in the interest of execution speed.
|
||||
while !self.transfer.get_transfer_complete_flag() {}
|
||||
}
|
||||
|
||||
// Start the next transfer.
|
||||
|
|
|
@ -0,0 +1,6 @@
|
|||
/// The ADC setup time is the number of seconds after the CSn line goes low before the serial clock
|
||||
/// may begin. This is used for performing the internal ADC conversion.
|
||||
pub const ADC_SETUP_TIME: f32 = 220e-9;
|
||||
|
||||
/// The maximum DAC/ADC serial clock line frequency. This is a hardware limit.
|
||||
pub const ADC_DAC_SCK_MHZ_MAX: u32 = 50;
|
108
src/iir.rs
108
src/iir.rs
|
@ -1,108 +0,0 @@
|
|||
use core::ops::{Add, Mul};
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
use core::f32;
|
||||
|
||||
pub type IIRState = [f32; 5];
|
||||
|
||||
#[derive(Copy, Clone, Deserialize, Serialize)]
|
||||
pub struct IIR {
|
||||
pub ba: IIRState,
|
||||
pub y_offset: f32,
|
||||
pub y_min: f32,
|
||||
pub y_max: f32,
|
||||
}
|
||||
|
||||
fn abs(x: f32) -> f32 {
|
||||
if x >= 0. {
|
||||
x
|
||||
} else {
|
||||
-x
|
||||
}
|
||||
}
|
||||
|
||||
fn copysign(x: f32, y: f32) -> f32 {
|
||||
if (x >= 0. && y >= 0.) || (x <= 0. && y <= 0.) {
|
||||
x
|
||||
} else {
|
||||
-x
|
||||
}
|
||||
}
|
||||
|
||||
fn max(x: f32, y: f32) -> f32 {
|
||||
if x > y {
|
||||
x
|
||||
} else {
|
||||
y
|
||||
}
|
||||
}
|
||||
|
||||
fn min(x: f32, y: f32) -> f32 {
|
||||
if x < y {
|
||||
x
|
||||
} else {
|
||||
y
|
||||
}
|
||||
}
|
||||
|
||||
fn macc<T>(y0: T, x: &[T], a: &[T]) -> T
|
||||
where
|
||||
T: Add<Output = T> + Mul<Output = T> + Copy,
|
||||
{
|
||||
x.iter()
|
||||
.zip(a.iter())
|
||||
.map(|(&i, &j)| i * j)
|
||||
.fold(y0, |y, xa| y + xa)
|
||||
}
|
||||
|
||||
impl IIR {
|
||||
pub fn set_pi(&mut self, kp: f32, ki: f32, g: f32) -> Result<(), &str> {
|
||||
let ki = copysign(ki, kp);
|
||||
let g = copysign(g, kp);
|
||||
let (a1, b0, b1) = if abs(ki) < f32::EPSILON {
|
||||
(0., kp, 0.)
|
||||
} else {
|
||||
let c = if abs(g) < f32::EPSILON {
|
||||
1.
|
||||
} else {
|
||||
1. / (1. + ki / g)
|
||||
};
|
||||
let a1 = 2. * c - 1.;
|
||||
let b0 = ki * c + kp;
|
||||
let b1 = ki * c - a1 * kp;
|
||||
if abs(b0 + b1) < f32::EPSILON {
|
||||
return Err("low integrator gain and/or gain limit");
|
||||
}
|
||||
(a1, b0, b1)
|
||||
};
|
||||
self.ba[0] = b0;
|
||||
self.ba[1] = b1;
|
||||
self.ba[2] = 0.;
|
||||
self.ba[3] = a1;
|
||||
self.ba[4] = 0.;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn get_x_offset(&self) -> Result<f32, &str> {
|
||||
let b: f32 = self.ba[..3].iter().sum();
|
||||
if abs(b) < f32::EPSILON {
|
||||
Err("b is zero")
|
||||
} else {
|
||||
Ok(self.y_offset / b)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_x_offset(&mut self, xo: f32) {
|
||||
let b: f32 = self.ba[..3].iter().sum();
|
||||
self.y_offset = xo * b;
|
||||
}
|
||||
|
||||
pub fn update(&self, xy: &mut IIRState, x0: f32) -> f32 {
|
||||
xy.rotate_right(1);
|
||||
xy[0] = x0;
|
||||
let y0 = macc(self.y_offset, xy, &self.ba);
|
||||
let y0 = max(self.y_min, min(self.y_max, y0));
|
||||
xy[xy.len() / 2] = y0;
|
||||
y0
|
||||
}
|
||||
}
|
44
src/main.rs
44
src/main.rs
|
@ -63,9 +63,9 @@ static mut DES_RING: ethernet::DesRing = ethernet::DesRing::new();
|
|||
mod adc;
|
||||
mod afe;
|
||||
mod dac;
|
||||
mod design_parameters;
|
||||
mod eeprom;
|
||||
mod hrtimer;
|
||||
mod iir;
|
||||
mod pounder;
|
||||
mod sampling_timer;
|
||||
mod server;
|
||||
|
@ -73,6 +73,7 @@ mod server;
|
|||
use adc::{Adc0Input, Adc1Input, AdcInputs};
|
||||
use dac::{Dac0Output, Dac1Output, DacOutputs};
|
||||
use pounder::DdsOutput;
|
||||
use dsp::iir;
|
||||
|
||||
#[cfg(not(feature = "semihosting"))]
|
||||
fn init_log() {}
|
||||
|
@ -141,6 +142,7 @@ macro_rules! route_request {
|
|||
match $request.attribute {
|
||||
$(
|
||||
$read_attribute => {
|
||||
#[allow(clippy::redundant_closure_call)]
|
||||
let value = match $getter() {
|
||||
Ok(data) => data,
|
||||
Err(_) => return server::Response::error($request.attribute,
|
||||
|
@ -169,6 +171,7 @@ macro_rules! route_request {
|
|||
"Failed to decode value"),
|
||||
};
|
||||
|
||||
#[allow(clippy::redundant_closure_call)]
|
||||
match $setter(new_value) {
|
||||
Ok(_) => server::Response::success($request.attribute, &$request.value),
|
||||
Err(_) => server::Response::error($request.attribute,
|
||||
|
@ -303,12 +306,12 @@ const APP: () = {
|
|||
})
|
||||
.manage_cs()
|
||||
.suspend_when_inactive()
|
||||
.cs_delay(220e-9);
|
||||
.cs_delay(design_parameters::ADC_SETUP_TIME);
|
||||
|
||||
let spi: hal::spi::Spi<_, _, u16> = dp.SPI2.spi(
|
||||
(spi_sck, spi_miso, hal::spi::NoMosi),
|
||||
config,
|
||||
50.mhz(),
|
||||
design_parameters::ADC_DAC_SCK_MHZ_MAX.mhz(),
|
||||
ccdr.peripheral.SPI2,
|
||||
&ccdr.clocks,
|
||||
);
|
||||
|
@ -341,12 +344,12 @@ const APP: () = {
|
|||
})
|
||||
.manage_cs()
|
||||
.suspend_when_inactive()
|
||||
.cs_delay(220e-9);
|
||||
.cs_delay(design_parameters::ADC_SETUP_TIME);
|
||||
|
||||
let spi: hal::spi::Spi<_, _, u16> = dp.SPI3.spi(
|
||||
(spi_sck, spi_miso, hal::spi::NoMosi),
|
||||
config,
|
||||
50.mhz(),
|
||||
design_parameters::ADC_DAC_SCK_MHZ_MAX.mhz(),
|
||||
ccdr.peripheral.SPI3,
|
||||
&ccdr.clocks,
|
||||
);
|
||||
|
@ -396,7 +399,7 @@ const APP: () = {
|
|||
dp.SPI4.spi(
|
||||
(spi_sck, spi_miso, hal::spi::NoMosi),
|
||||
config,
|
||||
50.mhz(),
|
||||
design_parameters::ADC_DAC_SCK_MHZ_MAX.mhz(),
|
||||
ccdr.peripheral.SPI4,
|
||||
&ccdr.clocks,
|
||||
)
|
||||
|
@ -428,7 +431,7 @@ const APP: () = {
|
|||
dp.SPI5.spi(
|
||||
(spi_sck, spi_miso, hal::spi::NoMosi),
|
||||
config,
|
||||
50.mhz(),
|
||||
design_parameters::ADC_DAC_SCK_MHZ_MAX.mhz(),
|
||||
ccdr.peripheral.SPI5,
|
||||
&ccdr.clocks,
|
||||
)
|
||||
|
@ -721,7 +724,7 @@ const APP: () = {
|
|||
dp.ETHERNET_MTL,
|
||||
dp.ETHERNET_DMA,
|
||||
&mut DES_RING,
|
||||
mac_addr.clone(),
|
||||
mac_addr,
|
||||
ccdr.peripheral.ETH1MAC,
|
||||
&ccdr.clocks,
|
||||
)
|
||||
|
@ -773,8 +776,8 @@ const APP: () = {
|
|||
sampling_timer.start();
|
||||
|
||||
init::LateResources {
|
||||
afe0: afe0,
|
||||
afe1: afe1,
|
||||
afe0,
|
||||
afe1,
|
||||
|
||||
adcs,
|
||||
dacs,
|
||||
|
@ -793,8 +796,7 @@ const APP: () = {
|
|||
let (adc0_samples, adc1_samples) =
|
||||
c.resources.adcs.transfer_complete_handler();
|
||||
|
||||
let mut dac0: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
let mut dac1: [u16; SAMPLE_BUFFER_SIZE] = [0; SAMPLE_BUFFER_SIZE];
|
||||
let (dac0, dac1) = c.resources.dacs.prepare_data();
|
||||
|
||||
for (i, (adc0, adc1)) in
|
||||
adc0_samples.iter().zip(adc1_samples.iter()).enumerate()
|
||||
|
@ -825,7 +827,7 @@ const APP: () = {
|
|||
dds_output.write_profile(profile);
|
||||
}
|
||||
|
||||
c.resources.dacs.next_data(&dac0, &dac1);
|
||||
c.resources.dacs.commit_data();
|
||||
}
|
||||
|
||||
#[idle(resources=[net_interface, mac_addr, eth_mac, iir_state, iir_ch, afe0, afe1])]
|
||||
|
@ -916,10 +918,12 @@ const APP: () = {
|
|||
})
|
||||
}),
|
||||
"stabilizer/afe0/gain": afe::Gain, (|gain| {
|
||||
Ok::<(), ()>(c.resources.afe0.set_gain(gain))
|
||||
c.resources.afe0.set_gain(gain);
|
||||
Ok::<(), ()>(())
|
||||
}),
|
||||
"stabilizer/afe1/gain": afe::Gain, (|gain| {
|
||||
Ok::<(), ()>(c.resources.afe1.set_gain(gain))
|
||||
c.resources.afe1.set_gain(gain);
|
||||
Ok::<(), ()>(())
|
||||
})
|
||||
]
|
||||
)
|
||||
|
@ -931,7 +935,7 @@ const APP: () = {
|
|||
&mut sockets,
|
||||
net::time::Instant::from_millis(time as i64),
|
||||
) {
|
||||
Ok(changed) => changed == false,
|
||||
Ok(changed) => !changed,
|
||||
Err(net::Error::Unrecognized) => true,
|
||||
Err(e) => {
|
||||
info!("iface poll error: {:?}", e);
|
||||
|
@ -950,22 +954,22 @@ const APP: () = {
|
|||
unsafe { ethernet::interrupt_handler() }
|
||||
}
|
||||
|
||||
#[task(binds = SPI2, priority = 1)]
|
||||
#[task(binds = SPI2, priority = 3)]
|
||||
fn spi2(_: spi2::Context) {
|
||||
panic!("ADC0 input overrun");
|
||||
}
|
||||
|
||||
#[task(binds = SPI3, priority = 1)]
|
||||
#[task(binds = SPI3, priority = 3)]
|
||||
fn spi3(_: spi3::Context) {
|
||||
panic!("ADC0 input overrun");
|
||||
}
|
||||
|
||||
#[task(binds = SPI4, priority = 1)]
|
||||
#[task(binds = SPI4, priority = 3)]
|
||||
fn spi4(_: spi4::Context) {
|
||||
panic!("DAC0 output error");
|
||||
}
|
||||
|
||||
#[task(binds = SPI5, priority = 1)]
|
||||
#[task(binds = SPI5, priority = 3)]
|
||||
fn spi5(_: spi5::Context) {
|
||||
panic!("DAC1 output error");
|
||||
}
|
||||
|
|
|
@ -19,7 +19,7 @@ pub trait AttenuatorInterface {
|
|||
channel: Channel,
|
||||
attenuation: f32,
|
||||
) -> Result<f32, Error> {
|
||||
if attenuation > 31.5 || attenuation < 0.0 {
|
||||
if !(0.0..=31.5).contains(&attenuation) {
|
||||
return Err(Error::Bounds);
|
||||
}
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ const ATT_RST_N_PIN: u8 = 8 + 5;
|
|||
const ATT_LE3_PIN: u8 = 8 + 3;
|
||||
const ATT_LE2_PIN: u8 = 8 + 2;
|
||||
const ATT_LE1_PIN: u8 = 8 + 1;
|
||||
const ATT_LE0_PIN: u8 = 8 + 0;
|
||||
const ATT_LE0_PIN: u8 = 8;
|
||||
|
||||
#[derive(Debug, Copy, Clone)]
|
||||
pub enum Error {
|
||||
|
|
|
@ -1,12 +1,10 @@
|
|||
///! The sampling timer is used for managing ADC sampling and external reference timestamping.
|
||||
use super::hal;
|
||||
|
||||
pub use hal::stm32::tim2::ccmr2_input::CC4S_A;
|
||||
|
||||
/// The timer used for managing ADC sampling.
|
||||
pub struct SamplingTimer {
|
||||
timer: hal::timer::Timer<hal::stm32::TIM2>,
|
||||
channels: Option<TimerChannels>,
|
||||
channels: Option<tim2::Channels>,
|
||||
}
|
||||
|
||||
impl SamplingTimer {
|
||||
|
@ -16,12 +14,17 @@ impl SamplingTimer {
|
|||
|
||||
Self {
|
||||
timer,
|
||||
channels: Some(TimerChannels::new()),
|
||||
// Note(unsafe): Once these channels are taken, we guarantee that we do not modify any
|
||||
// of the underlying timer channel registers, as ownership of the channels is now
|
||||
// provided through the associated channel structures. We additionally guarantee this
|
||||
// can only be called once because there is only one Timer2 and this resource takes
|
||||
// ownership of it once instantiated.
|
||||
channels: unsafe { Some(tim2::Channels::new()) },
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the timer capture/compare channels.
|
||||
pub fn channels(&mut self) -> TimerChannels {
|
||||
pub fn channels(&mut self) -> tim2::Channels {
|
||||
self.channels.take().unwrap()
|
||||
}
|
||||
|
||||
|
@ -32,116 +35,85 @@ impl SamplingTimer {
|
|||
}
|
||||
}
|
||||
|
||||
/// The capture/compare channels for the sampling timer.
|
||||
///
|
||||
/// # Note
|
||||
/// This should not be instantiated directly.
|
||||
pub struct TimerChannels {
|
||||
pub ch1: Timer2Channel1,
|
||||
pub ch2: Timer2Channel2,
|
||||
pub ch3: Timer2Channel3,
|
||||
pub ch4: Timer2Channel4,
|
||||
macro_rules! timer_channel {
|
||||
($name:ident, $TY:ty, ($ccxde:expr, $ccrx:expr, $ccmrx_output:expr, $ccxs:expr)) => {
|
||||
pub struct $name {}
|
||||
|
||||
paste::paste! {
|
||||
impl $name {
|
||||
/// Construct a new timer channel.
|
||||
///
|
||||
/// Note(unsafe): This function must only be called once. Once constructed, the
|
||||
/// constructee guarantees to never modify the timer channel.
|
||||
unsafe fn new() -> Self {
|
||||
Self {}
|
||||
}
|
||||
|
||||
/// Allow CH4 to generate DMA requests.
|
||||
pub fn listen_dma(&self) {
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
regs.dier.modify(|_, w| w.[< $ccxde >]().set_bit());
|
||||
}
|
||||
|
||||
/// Operate CH2 as an output-compare.
|
||||
///
|
||||
/// # Args
|
||||
/// * `value` - The value to compare the sampling timer's counter against.
|
||||
pub fn to_output_compare(&self, value: u32) {
|
||||
let regs = unsafe { &*<$TY>::ptr() };
|
||||
assert!(value <= regs.arr.read().bits());
|
||||
regs.[< $ccrx >].write(|w| w.ccr().bits(value));
|
||||
regs.[< $ccmrx_output >]()
|
||||
.modify(|_, w| unsafe { w.[< $ccxs >]().bits(0) });
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl TimerChannels {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
ch1: Timer2Channel1 {},
|
||||
ch2: Timer2Channel2 {},
|
||||
ch3: Timer2Channel3 {},
|
||||
ch4: Timer2Channel4 {},
|
||||
pub mod tim2 {
|
||||
use stm32h7xx_hal as hal;
|
||||
|
||||
/// The channels representing the timer.
|
||||
pub struct Channels {
|
||||
pub ch1: Channel1,
|
||||
pub ch2: Channel2,
|
||||
pub ch3: Channel3,
|
||||
pub ch4: Channel4,
|
||||
}
|
||||
|
||||
impl Channels {
|
||||
/// Construct a new set of channels.
|
||||
///
|
||||
/// Note(unsafe): This is only safe to call once.
|
||||
pub unsafe fn new() -> Self {
|
||||
Self {
|
||||
ch1: Channel1::new(),
|
||||
ch2: Channel2::new(),
|
||||
ch3: Channel3::new(),
|
||||
ch4: Channel4::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Representation of CH1 of TIM2.
|
||||
pub struct Timer2Channel1 {}
|
||||
|
||||
impl Timer2Channel1 {
|
||||
/// Allow CH1 to generate DMA requests.
|
||||
pub fn listen_dma(&self) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
regs.dier.modify(|_, w| w.cc1de().set_bit());
|
||||
}
|
||||
|
||||
/// Operate CH1 as an output-compare.
|
||||
///
|
||||
/// # Args
|
||||
/// * `value` - The value to compare the sampling timer's counter against.
|
||||
pub fn to_output_compare(&self, value: u32) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
assert!(value <= regs.arr.read().bits());
|
||||
regs.ccr1.write(|w| w.ccr().bits(value));
|
||||
regs.ccmr1_output()
|
||||
.modify(|_, w| unsafe { w.cc1s().bits(0) });
|
||||
}
|
||||
}
|
||||
|
||||
/// Representation of CH2 of TIM2.
|
||||
pub struct Timer2Channel2 {}
|
||||
|
||||
impl Timer2Channel2 {
|
||||
/// Allow CH2 to generate DMA requests.
|
||||
pub fn listen_dma(&self) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
regs.dier.modify(|_, w| w.cc2de().set_bit());
|
||||
}
|
||||
|
||||
/// Operate CH2 as an output-compare.
|
||||
///
|
||||
/// # Args
|
||||
/// * `value` - The value to compare the sampling timer's counter against.
|
||||
pub fn to_output_compare(&self, value: u32) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
assert!(value <= regs.arr.read().bits());
|
||||
regs.ccr2.write(|w| w.ccr().bits(value));
|
||||
regs.ccmr1_output()
|
||||
.modify(|_, w| unsafe { w.cc2s().bits(0) });
|
||||
}
|
||||
}
|
||||
|
||||
/// Representation of CH3 of TIM2.
|
||||
pub struct Timer2Channel3 {}
|
||||
|
||||
impl Timer2Channel3 {
|
||||
/// Allow CH4 to generate DMA requests.
|
||||
pub fn listen_dma(&self) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
regs.dier.modify(|_, w| w.cc3de().set_bit());
|
||||
}
|
||||
|
||||
/// Operate CH2 as an output-compare.
|
||||
///
|
||||
/// # Args
|
||||
/// * `value` - The value to compare the sampling timer's counter against.
|
||||
pub fn to_output_compare(&self, value: u32) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
assert!(value <= regs.arr.read().bits());
|
||||
regs.ccr3.write(|w| w.ccr().bits(value));
|
||||
regs.ccmr2_output()
|
||||
.modify(|_, w| unsafe { w.cc3s().bits(0) });
|
||||
}
|
||||
}
|
||||
|
||||
/// Representation of CH4 of TIM2.
|
||||
pub struct Timer2Channel4 {}
|
||||
|
||||
impl Timer2Channel4 {
|
||||
/// Allow CH4 to generate DMA requests.
|
||||
pub fn listen_dma(&self) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
regs.dier.modify(|_, w| w.cc4de().set_bit());
|
||||
}
|
||||
|
||||
/// Operate CH2 as an output-compare.
|
||||
///
|
||||
/// # Args
|
||||
/// * `value` - The value to compare the sampling timer's counter against.
|
||||
pub fn to_output_compare(&self, value: u32) {
|
||||
let regs = unsafe { &*hal::stm32::TIM2::ptr() };
|
||||
assert!(value <= regs.arr.read().bits());
|
||||
regs.ccr4.write(|w| w.ccr().bits(value));
|
||||
regs.ccmr2_output()
|
||||
.modify(|_, w| unsafe { w.cc4s().bits(0) });
|
||||
}
|
||||
|
||||
timer_channel!(
|
||||
Channel1,
|
||||
hal::stm32::TIM2,
|
||||
(cc1de, ccr1, ccmr1_output, cc1s)
|
||||
);
|
||||
timer_channel!(
|
||||
Channel2,
|
||||
hal::stm32::TIM2,
|
||||
(cc2de, ccr2, ccmr1_output, cc1s)
|
||||
);
|
||||
timer_channel!(
|
||||
Channel3,
|
||||
hal::stm32::TIM2,
|
||||
(cc3de, ccr3, ccmr2_output, cc3s)
|
||||
);
|
||||
timer_channel!(
|
||||
Channel4,
|
||||
hal::stm32::TIM2,
|
||||
(cc4de, ccr4, ccmr2_output, cc4s)
|
||||
);
|
||||
}
|
||||
|
|
|
@ -89,7 +89,7 @@ impl Response {
|
|||
/// Args:
|
||||
/// * `attrbute` - The attribute of the success.
|
||||
/// * `value` - The value of the attribute.
|
||||
pub fn success<'a, 'b>(attribute: &'a str, value: &'b str) -> Self {
|
||||
pub fn success(attribute: &str, value: &str) -> Self {
|
||||
let mut res = Self {
|
||||
code: 200,
|
||||
attribute: String::from(attribute),
|
||||
|
@ -106,7 +106,7 @@ impl Response {
|
|||
/// Args:
|
||||
/// * `attrbute` - The attribute of the success.
|
||||
/// * `message` - The message denoting the error.
|
||||
pub fn error<'a, 'b>(attribute: &'a str, message: &'b str) -> Self {
|
||||
pub fn error(attribute: &str, message: &str) -> Self {
|
||||
let mut res = Self {
|
||||
code: 400,
|
||||
attribute: String::from(attribute),
|
||||
|
@ -123,7 +123,7 @@ impl Response {
|
|||
/// Args:
|
||||
/// * `attrbute` - The attribute of the success.
|
||||
/// * `message` - The message denoting the status.
|
||||
pub fn custom<'a>(code: i32, message: &'a str) -> Self {
|
||||
pub fn custom(code: i32, message: &str) -> Self {
|
||||
let mut res = Self {
|
||||
code,
|
||||
attribute: String::from(""),
|
||||
|
|
Loading…
Reference in New Issue