pounder_test/src/bin/dual-iir.rs

183 lines
5.9 KiB
Rust
Raw Normal View History

#![deny(warnings)]
#![no_std]
#![no_main]
#![cfg_attr(feature = "nightly", feature(core_intrinsics))]
2021-01-27 02:14:23 +08:00
use stm32h7xx_hal as hal;
use rtic::cyccnt::{Instant, U32Ext};
2021-01-27 02:14:23 +08:00
use stabilizer::hardware;
2021-01-28 01:15:35 +08:00
use miniconf::StringSet;
use serde::Deserialize;
use dsp::iir;
2021-01-27 02:14:23 +08:00
use hardware::{Adc0Input, Adc1Input, Dac0Output, Dac1Output, AFE0, AFE1, MqttAction};
const SCALE: f32 = ((1 << 15) - 1) as f32;
// The number of cascaded IIR biquads per channel. Select 1 or 2!
const IIR_CASCADE_LENGTH: usize = 1;
2021-01-28 01:15:35 +08:00
#[derive(Debug, Deserialize, StringSet)]
pub struct Settings {
test: u32,
iir: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
}
impl Settings {
pub fn new() -> Self {
Self {
test: 5,
iir: [[iir::IIR::default(); IIR_CASCADE_LENGTH]; 2],
}
}
}
#[rtic::app(device = stm32h7xx_hal::stm32, peripherals = true, monotonic = rtic::cyccnt::CYCCNT)]
const APP: () = {
struct Resources {
afes: (AFE0, AFE1),
adcs: (Adc0Input, Adc1Input),
dacs: (Dac0Output, Dac1Output),
mqtt_interface: hardware::MqttInterface<Settings>,
// Format: iir_state[ch][cascade-no][coeff]
#[init([[[0.; 5]; IIR_CASCADE_LENGTH]; 2])]
iir_state: [[iir::IIRState; IIR_CASCADE_LENGTH]; 2],
#[init([[iir::IIR { ba: [1., 0., 0., 0., 0.], y_offset: 0., y_min: -SCALE - 1., y_max: SCALE }; IIR_CASCADE_LENGTH]; 2])]
iir_ch: [[iir::IIR; IIR_CASCADE_LENGTH]; 2],
}
#[init]
fn init(c: init::Context) -> init::LateResources {
// Configure the microcontroller
let (mut stabilizer, _pounder) = hardware::setup(c.core, c.device);
// Enable ADC/DAC events
stabilizer.adcs.0.start();
stabilizer.adcs.1.start();
stabilizer.dacs.0.start();
stabilizer.dacs.1.start();
// Start sampling ADCs.
stabilizer.adc_dac_timer.start();
init::LateResources {
2021-01-28 01:15:35 +08:00
mqtt_interface: hardware::MqttInterface::new(stabilizer.net.stack, Settings::new()),
afes: stabilizer.afes,
adcs: stabilizer.adcs,
dacs: stabilizer.dacs,
}
}
/// Main DSP processing routine for Stabilizer.
///
/// # Note
/// Processing time for the DSP application code is bounded by the following constraints:
///
/// DSP application code starts after the ADC has generated a batch of samples and must be
/// completed by the time the next batch of ADC samples has been acquired (plus the FIFO buffer
/// time). If this constraint is not met, firmware will panic due to an ADC input overrun.
///
/// The DSP application code must also fill out the next DAC output buffer in time such that the
/// DAC can switch to it when it has completed the current buffer. If this constraint is not met
/// it's possible that old DAC codes will be generated on the output and the output samples will
/// be delayed by 1 batch.
///
/// Because the ADC and DAC operate at the same rate, these two constraints actually implement
/// the same time bounds, meeting one also means the other is also met.
#[task(binds=DMA1_STR4, resources=[adcs, dacs, iir_state, iir_ch], priority=2)]
fn process(c: process::Context) {
let adc_samples = [
c.resources.adcs.0.acquire_buffer(),
c.resources.adcs.1.acquire_buffer(),
];
let dac_samples = [
c.resources.dacs.0.acquire_buffer(),
c.resources.dacs.1.acquire_buffer(),
];
for channel in 0..adc_samples.len() {
for sample in 0..adc_samples[0].len() {
let x = f32::from(adc_samples[channel][sample] as i16);
let mut y = x;
for i in 0..c.resources.iir_state[channel].len() {
y = c.resources.iir_ch[channel][i]
.update(&mut c.resources.iir_state[channel][i], y);
}
// Note(unsafe): The filter limits ensure that the value is in range.
// The truncation introduces 1/2 LSB distortion.
let y = unsafe { y.to_int_unchecked::<i16>() };
// Convert to DAC code
dac_samples[channel][sample] = y as u16 ^ 0x8000;
}
}
}
#[idle(resources=[mqtt_interface], spawn=[settings_update])]
fn idle(mut c: idle::Context) -> ! {
let mut time = 0u32;
let mut next_ms = Instant::now();
// TODO: Replace with reference to CPU clock from CCDR.
next_ms += 400_000.cycles();
loop {
let tick = Instant::now() > next_ms;
if tick {
next_ms += 400_000.cycles();
time += 1;
}
match c.resources.mqtt_interface.lock(|interface| interface.update(time).unwrap()) {
2021-01-27 02:14:23 +08:00
MqttAction::Sleep => cortex_m::asm::wfi(),
MqttAction::Continue => {},
MqttAction::CommitSettings => c.spawn.settings_update().unwrap(),
}
}
}
#[task(priority = 1, resources=[mqtt_interface, afes, iir_ch])]
2021-01-28 01:15:35 +08:00
fn settings_update(mut c: settings_update::Context) {
2021-01-27 02:14:23 +08:00
let settings = c.resources.mqtt_interface.settings.borrow();
2021-01-28 01:15:35 +08:00
c.resources.iir_ch.lock(|iir| *iir = settings.iir);
}
#[task(binds = ETH, priority = 1)]
fn eth(_: eth::Context) {
unsafe { hal::ethernet::interrupt_handler() }
}
#[task(binds = SPI2, priority = 3)]
fn spi2(_: spi2::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI3, priority = 3)]
fn spi3(_: spi3::Context) {
panic!("ADC0 input overrun");
}
#[task(binds = SPI4, priority = 3)]
fn spi4(_: spi4::Context) {
panic!("DAC0 output error");
}
#[task(binds = SPI5, priority = 3)]
fn spi5(_: spi5::Context) {
panic!("DAC1 output error");
}
extern "C" {
// hw interrupt handlers for RTIC to use for scheduling tasks
// one per priority
fn DCMI();
fn JPEG();
fn SDMMC();
}
};