zynq-rs/libboard_zynq/src/sdio/mod.rs

450 lines
15 KiB
Rust
Raw Permalink Normal View History

2020-06-05 11:47:06 +08:00
pub mod sd_card;
mod adma;
mod cmd;
mod regs;
use super::clocks::Clocks;
use super::slcr;
use super::time::Milliseconds;
use embedded_hal::timer::CountDown;
use libregister::{RegisterR, RegisterRW, RegisterW};
2020-06-13 16:31:25 +08:00
use log::{trace, debug};
2020-06-05 11:47:06 +08:00
use nb;
/// Basic SDIO Struct with common low-level functions.
pub struct SDIO {
regs: &'static mut regs::RegisterBlock,
count_down: super::timer::global::CountDown,
input_clk_hz: u32,
card_type: CardType,
card_detect: bool,
}
#[derive(Debug)]
pub enum CmdTransferError {
CmdInhibited,
DatLineInhibited,
CmdTimeout,
Other(regs::interrupt_status::Read),
}
2020-06-15 15:00:54 +08:00
impl core::fmt::Display for CmdTransferError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
use CmdTransferError::*;
write!(f, "Command transfer error: ")?;
match self {
CmdInhibited => write!(f, "Command line inhibited."),
DatLineInhibited => write!(f, "Data line inhibited, possibly due to ongonging data transfer."),
CmdTimeout => write!(f, "Command timeout, check if the card is inserted properly."),
Other(x) => write!(f, "Unknown Error, interrupt status = 0x{:0X}", x.inner),
}
}
}
2020-06-05 11:47:06 +08:00
#[derive(PartialEq, Debug, Clone, Copy)]
pub enum CardType {
CardNone,
CardSd,
CardMmc,
}
impl SDIO {
/// Initialize SDIO0
/// card_detect means if we would use the card detect pin,
/// false to disable card detection (assume there is card inserted)
pub fn sdio0(card_detect: bool) -> Self {
// initialization according to ps7_init.c
slcr::RegisterBlock::unlocked(|slcr| {
slcr.mio_pin_40.write(
slcr::MioPin40::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_41.write(
slcr::MioPin41::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_42.write(
slcr::MioPin42::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_43.write(
slcr::MioPin43::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_44.write(
slcr::MioPin44::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
slcr.mio_pin_45.write(
slcr::MioPin45::zeroed()
.l3_sel(0b100)
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
// zc706 card detect pin
#[cfg(feature = "target_zc706")]
{
unsafe {
slcr.sd0_wp_cd_sel.write(0x000E000F);
}
slcr.mio_pin_14.write(
slcr::MioPin14::zeroed()
.io_type(slcr::IoBufferType::Lvcmos18)
.pullup(true)
.tri_enable(true),
);
}
// cora card detect pin
#[cfg(feature = "target_cora_z7_10")]
{
unsafe {
slcr.sd0_wp_cd_sel.write(47 << 16);
}
slcr.mio_pin_47.write(
slcr::MioPin47::zeroed()
.io_type(slcr::IoBufferType::Lvcmos18)
.speed(true),
);
}
slcr.sdio_rst_ctrl.reset_sdio0();
slcr.aper_clk_ctrl.enable_sdio0();
slcr.sdio_clk_ctrl.enable_sdio0();
});
let clocks = Clocks::get();
let mut self_ = SDIO {
regs: regs::RegisterBlock::sdio0(),
2020-06-16 17:31:37 +08:00
count_down: unsafe { super::timer::GlobalTimer::get() }.countdown(),
2020-06-05 11:47:06 +08:00
input_clk_hz: clocks.sdio_ref_clk(),
card_type: CardType::CardNone,
card_detect,
};
self_.init();
self_
}
/// Change clock frequency to the value less than or equal to the given value.
/// From XSdPs_Change_ClkFreq in xsdps_options.c. SPEC_V3 related code is removed as
/// our board would only be V1 or V2.
fn change_clk_freq(&mut self, freq: u32) {
2020-06-13 16:31:25 +08:00
debug!("Changing clock frequency to {}", freq);
2020-06-05 11:47:06 +08:00
self.regs
.clock_control
.modify(|_, w| w.sd_clk_en(false).internal_clk_en(false));
const XSDPS_CC_MAX_DIV_CNT: u32 = 256;
// calculate clock divisor
let mut div_cnt: u32 = 0x1;
let mut divisor = 0;
while div_cnt <= XSDPS_CC_MAX_DIV_CNT {
if (self.input_clk_hz / div_cnt) <= freq {
divisor = div_cnt / 2;
break;
}
div_cnt <<= 1;
}
if div_cnt > XSDPS_CC_MAX_DIV_CNT {
panic!("No valid divisor!");
}
// enable internal clock
self.regs
.clock_control
.modify(|_, w| w.sdclk_freq_divisor(divisor as u8).internal_clk_en(true));
while !self.regs.clock_control.read().internal_clk_stable() {}
// enable SD clock
self.regs.clock_control.modify(|_, w| w.sd_clk_en(true));
}
/// Initialization based on XSdPs_CfgInitialize function in xsdps.c
fn init(&mut self) {
// poweroff
self.regs
.control
.modify(|_, w| w.bus_voltage(regs::BusVoltage::V0).bus_power(false));
if self.regs.misc_reg.read().spec_ver() == regs::SpecificationVersion::V3 {
// The documentation said the field can only be V1 or V2,
// so the code is written for V1 and V2. V3 requires special handling
// which is currently not implemented.
// I hope that this would never trigger but it is safer to put a check here.
panic!("The code written is for V1 and V2");
}
// delay to poweroff card
self.delay(1);
// reset all
debug!("Reset SDIO!");
self.regs
.clock_control
.modify(|_, w| w.software_reset_all(true));
while self.regs.clock_control.read().software_reset_all() {}
// set power to 3.3V
self.regs
.control
.modify(|_, w| w.bus_voltage(regs::BusVoltage::V33).bus_power(true));
// set clock frequency
self.change_clk_freq(400_000);
// select voltage
let capabilities = self.regs.capabilities.read();
let voltage = if capabilities.voltage_3_3() {
regs::BusVoltage::V33
} else if capabilities.voltage_3_0() {
regs::BusVoltage::V30
} else if capabilities.voltage_1_8() {
regs::BusVoltage::V18
} else {
regs::BusVoltage::V0
};
self.regs.control.modify(|_, w| w.bus_voltage(voltage));
self.regs
.control
.modify(|_, w| w.dma_select(regs::DmaSelect::ADMA2_32));
// enable all interrupt status except card interrupt
self.regs.interrupt_status_en.write(
(regs::interrupt_status_en::Write { inner: 0xFFFFFFFF })
.card_interrupt_status_en(false),
);
// disable all interrupt signals
self.regs
.interrupt_signal_en
.write(regs::InterruptSignalEn::zeroed());
// set block size to 512 by default
self.regs
.block_size_block_count
.modify(|_, w| w.transfer_block_size(512));
}
/// Delay for SDIO operations, simple wrapper for nb.
pub fn delay(&mut self, ms: u64) {
self.count_down.start(Milliseconds(ms));
nb::block!(self.count_down.wait()).unwrap();
}
/// Send SD command. Basically `cmd_transfer_with_mode` with mode
/// `regs::TransferModeCommand::zeroed()`.
/// Return: Ok if success, Err(status) if failed.
fn cmd_transfer(
&mut self,
cmd: cmd::SdCmd,
arg: u32,
block_cnt: u16,
) -> Result<(), CmdTransferError> {
self.cmd_transfer_with_mode(cmd, arg, block_cnt, regs::TransferModeCommand::zeroed())
}
/// Send SD Command with additional transfer mode.
/// This function would block until response is ready.
/// Return: Ok if success, Err(status) if failed.
fn cmd_transfer_with_mode(
&mut self,
cmd: cmd::SdCmd,
arg: u32,
block_cnt: u16,
transfer_mode: regs::transfer_mode_command::Write,
) -> Result<(), CmdTransferError> {
2020-06-13 16:31:25 +08:00
trace!("Send Cmd {:?}", cmd);
2020-06-05 11:47:06 +08:00
let state = self.regs.present_state.read();
if state.command_inhibit_cmd() {
return Err(CmdTransferError::CmdInhibited);
}
self.regs
.block_size_block_count
.modify(|_, w| w.blocks_count(block_cnt));
self.regs
.clock_control
.modify(|_, w| w.timeout_counter_value(0xE));
unsafe {
self.regs.argument.write(arg);
}
self.regs
.interrupt_status_en
.write(regs::interrupt_status_en::Write { inner: 0xFFFFFFFF });
let is_sd_card = self.card_type == CardType::CardSd;
// Check DAT Line
if cmd != cmd::SdCmd::CMD21 && cmd != cmd::SdCmd::CMD19 {
if self.regs.present_state.read().command_inhibit_dat()
&& cmd::require_dat(cmd, is_sd_card)
{
return Err(CmdTransferError::DatLineInhibited);
}
}
// Set the command registers.
self.regs
.transfer_mode_command
.write(cmd::set_cmd_reg(cmd, is_sd_card, transfer_mode));
// polling for response
loop {
let status = self.regs.interrupt_status.read();
if cmd == cmd::SdCmd::CMD21 || cmd == cmd::SdCmd::CMD19 {
if status.buffer_read_ready() {
self.regs
.interrupt_status
.modify(|_, w| w.buffer_read_ready());
break;
}
}
if status.command_complete() {
break;
}
self.check_error(&status)?;
}
// wait for command complete
while !self.regs.interrupt_status.read().command_complete() {}
self.regs
.interrupt_status
.modify(|_, w| w.command_complete());
Ok(())
}
/// Check if card is inserted.
pub fn is_card_inserted(&self) -> bool {
!self.card_detect || self.regs.present_state.read().card_inserted()
}
/// Switch voltage from 3.3V to 1.8V.
fn switch_voltage(&mut self) -> Result<(), CmdTransferError> {
use cmd::SdCmd::*;
// send switch voltage command
self.cmd_transfer(CMD11, 0, 0)?;
// wait for the lines to go low
let mut state = self.regs.present_state.read();
while state.cmd_line_level()
|| state.dat0_level()
|| state.dat1_level()
|| state.dat2_level()
|| state.dat3_level()
{
state = self.regs.present_state.read();
}
// stop the clock
self.regs
.clock_control
.modify(|_, w| w.sd_clk_en(false).internal_clk_en(false));
// enabling 1.8v in controller
self.regs
.control
.modify(|_, w| w.bus_voltage(regs::BusVoltage::V18));
// wait minimum 5ms
self.delay(5);
if self.regs.control.read().bus_voltage() != regs::BusVoltage::V18 {
// I should not wrap the error of this function into another type later.
// actually this is not correct.
return Err(CmdTransferError::CmdTimeout);
}
// wait for internal clock to stabilize
self.regs
.clock_control
.modify(|_, w| w.internal_clk_en(true));
while !self.regs.clock_control.read().internal_clk_stable() {}
// enable SD clock
self.regs.clock_control.modify(|_, w| w.sd_clk_en(true));
// wait for 1ms
self.delay(1);
// wait for CMD and DATA line to go high
state = self.regs.present_state.read();
while !state.cmd_line_level()
|| !state.dat0_level()
|| !state.dat1_level()
|| !state.dat2_level()
|| !state.dat3_level()
{
state = self.regs.present_state.read();
}
Ok(())
}
/// Detect inserted card type, and set the corresponding field.
/// Return Ok(CardType) on success, Err(CmdTransferError) when failed to identify.
pub fn identify_card(&mut self) -> Result<CardType, CmdTransferError> {
use cmd::{args::*, SdCmd::*};
// actually the delay for this one is unclear in the xilinx code.
self.delay(10);
self.cmd_transfer(CMD0, 0, 0)?;
self.card_type = match self.cmd_transfer(CMD1, ACMD41_HCS | CMD1_HIGH_VOL, 0) {
Ok(()) => CardType::CardMmc,
Err(_) => CardType::CardSd,
};
// clear all status
self.regs
.interrupt_status
.write(regs::interrupt_status::Write { inner: 0xF3FFFFFF });
self.regs
.clock_control
.modify(|_, w| w.software_reset_cmd(true));
// wait for reset completion
while self.regs.clock_control.read().software_reset_cmd() {}
Ok(self.card_type)
}
/// Modify transfer block size.
fn set_block_size(&mut self, block_size: u16) -> Result<(), CmdTransferError> {
use cmd::SdCmd::*;
let state = self.regs.present_state.read();
if state.command_inhibit_cmd()
|| state.command_inhibit_dat()
|| state.write_transfer_active()
|| state.read_transfer_active()
{
return Err(CmdTransferError::CmdInhibited);
}
debug!("Set block size to {}", block_size);
// send block write command
self.cmd_transfer(CMD16, block_size as u32, 0)?;
// set block size
self.regs
.block_size_block_count
.modify(|_, w| w.transfer_block_size(block_size));
Ok(())
}
/// Check if error occured, and reset the error status.
/// Return Err(CmdTransferError) if error occured, Ok(()) otherwise.
fn check_error(
&mut self,
status: &regs::interrupt_status::Read,
) -> Result<(), CmdTransferError> {
if status.error_interrupt() {
let err_status = if status.inner & 0xFFFE0000 == 0 {
CmdTransferError::CmdTimeout
} else {
CmdTransferError::Other(regs::interrupt_status::Read {
inner: status.inner,
})
};
// reset all error status
self.regs
.interrupt_status
.write(regs::interrupt_status::Write { inner: 0xF3FF0000 });
return Err(err_status);
}
Ok(())
}
}