datasheets/4410-4412.tex

1001 lines
43 KiB
TeX
Raw Normal View History

2024-11-15 00:58:32 +08:00
\input{preamble.tex}
2024-10-23 02:34:00 +08:00
\graphicspath{{images/4410-4412}{images}}
2021-11-30 14:17:02 +08:00
\title{4410/4412 DDS Urukul}
2021-11-30 14:17:02 +08:00
\author{M-Labs Limited}
2025-01-30 03:21:01 +08:00
\date{January 2025}
\revision{Revision 3}
2021-11-30 14:17:02 +08:00
\companylogo{\includegraphics[height=0.73in]{artiq_sinara.pdf}}
\begin{document}
\maketitle
\section{Features}
2025-01-30 02:22:50 +08:00
\begin{itemize}
\item{4-channel 1GS/s DDS}
\item{Output frequency from \textless 1 to \textgreater 400 MHz}
\item{Sub-Hz frequency resolution}
\item{Controlled phase steps}
\item{Accurate output amplitude control}
\end{itemize}
2021-11-30 14:17:02 +08:00
\section{Applications}
2025-01-30 02:22:50 +08:00
\begin{itemize}
\item{Dynamic low-noise RF source}
\item{Driving RF electrodes in ion traps}
\item{Driving acousto-optic modulators}
\item{Form a laser intensity servo with 5108 Sampler}
\end{itemize}
2021-11-30 14:17:02 +08:00
\section{General Description}
2025-01-30 02:50:30 +08:00
The 4410/4412 DDS Urukul card is a 4hp EEM module, part of the ARTIQ/Sinara family. It adds frequency generation capabilities to carrier cards such as 1124 Kasli and 1125 Kasli-SoC. It can also be combined with 5018 ADC Sampler to form the ARTIQ SU-Servo configuration.
2025-01-30 02:22:50 +08:00
It provides 4 channels of DDS (direct digital synthesis) at 1GS/s. Output frequencies from \textless 1 to \textgreater 400 MHz are supported. The nominal maximum output power of each channel is 10dBm. Each channel can be attenuated from 0 to -31.5 dB by a digital attenuator. RF switches (1ns temporal resolution) on each channel provide 70 dB isolation.
2021-11-30 14:17:02 +08:00
2025-01-30 02:50:30 +08:00
4410 DDS Urukul features AD9910 chips, while 4412 DDS Urukul features AD9912 chips. AD9912 is capable of higher frequency precision ($\sim$8 \textmu Hz) than the AD9910 ($\sim$0.25 Hz). The ARTIQ SU-Servo configuration is only available for AD9910.
2021-11-30 14:17:02 +08:00
% Switch to next column
\vfill\break
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
\begin{scope}[]
% Node to pin-point the locations of SMA symbols
\draw[color=white, text=black] (-0.1, 0) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (ext_clk) {};
\draw[color=white, text=black] (-0.1, -0.35) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (mmcx) {};
\draw[color=white, text=black] (-0.1, -1.75) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf0) {};
\draw[color=white, text=black] (-0.1, -2.45) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf1) {};
\draw[color=white, text=black] (-0.1, -3.15) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf2) {};
\draw[color=white, text=black] (-0.1, -3.85) node[twoportshape, circuitikz/bipoles/twoport/width=1.2, scale=0.4 ] (rf3) {};
% Labels for female EXT_CLK, MMCX, RF {0, 1, 2, 3}
\node [label=left:\tiny{EXT CLK}] at (0.35, 0) {};
\node [label=left:\tiny{MMCX}] at (0.35, -0.35) {};
\node [label=left:\tiny{RF 0}] at (0.35, -1.75) {};
\node [label=left:\tiny{RF 1}] at (0.35, -2.45) {};
\node [label=left:\tiny{RF 2}] at (0.35, -3.15) {};
\node [label=left:\tiny{RF 3}] at (0.35, -3.85) {};
% draw female EXT_CLK, MMCX, RF {0, 1, 2, 3}
\begin{scope}[scale=0.07 , rotate=-90, xshift=0cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=5cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=25cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
\begin{scope}[scale=0.07 , rotate=-90, xshift=35cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
2024-11-15 00:58:32 +08:00
\end{scope}
2021-11-30 14:17:02 +08:00
\begin{scope}[scale=0.07 , rotate=-90, xshift=45cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
2024-11-15 00:58:32 +08:00
\end{scope}
2021-11-30 14:17:02 +08:00
\begin{scope}[scale=0.07 , rotate=-90, xshift=55cm, yshift=2cm]
\draw (0,0.65) -- (0,3);
\clip (-1.5,0) rectangle (1.5,1.5);
\draw (0,0) circle(1.5);
\clip (-0.8,0) rectangle (0.8,0.8);
\draw (0,0) circle(0.8);
\end{scope}
% Draw the internal oscillator
\draw (0.02, -0.8) node[twoportshape, t={OSC}, circuitikz/bipoles/twoport/width=0.8, scale=0.4] (xo) {};
% Draw the clock buffers as selector
% \tikzset{demux/.style={muxdemux, muxdemux def={Lh=6, Rh=6, NL=3, NT=1, NB=0, NR=1, w=2.5}, no input leads, scale=0.4}};
% \draw (1.55, -0.35) node[demux]{\rotatebox[origin=c]{-90}{CLK BUFFERS}};
\draw (1.45, -0.35) node[twoportshape, t={CLK Buffers}, circuitikz/bipoles/twoport/width=2.2, scale=0.4, rotate=-90] (clk_buf) {};
% Connect CLK_IN to DDS clock buffers
\draw [-latexslim] (ext_clk.east) -- ++(1,0);
\draw [-latexslim] (mmcx.east) -- ++(1,0);
\draw [-latexslim] (xo.east) -- ++(1,0);
% Connect CPLD clk_sel to DDS clock buffers
\draw [-latexslim] (clk_buf.east) -- ++(0,-0.42);
% Signal path: From control signals / clock of DDS to output of the RF switches
\draw (1.35, -1.75) node[twoportshape, t={DDS Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.4] (sig0) {};
\draw (1.35, -2.45) node[twoportshape, t={DDS Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.4] (sig1) {};
\draw (1.35, -3.15) node[twoportshape, t={DDS Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.4] (sig2) {};
\draw (1.35, -3.85) node[twoportshape, t={DDS Signal Path}, circuitikz/bipoles/twoport/width=2, scale=0.4] (sig3) {};
2021-11-30 14:17:02 +08:00
% Extra node to expand the dotted area eastward
\draw[color=white, text=black] (2.1, -3.85) node[twoportshape, circuitikz/bipoles/twoport/width=0.4, scale=0.4 ] (sig3_east) {};
2021-11-30 14:17:02 +08:00
% Connect RF to DDS block
\draw [latexslim-] (rf0.east) -- (sig0.west);
\draw [latexslim-] (rf1.east) -- (sig1.west);
\draw [latexslim-] (rf2.east) -- (sig2.west);
\draw [latexslim-] (rf3.east) -- (sig3.west);
2021-11-30 14:17:02 +08:00
% DDS signal path dotted area
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(rf3)(sig0)(sig3_east.east)] (abs_dds) {};
\node[fill=white, rotate=-90, scale=0.7] at (abs_dds.west) {DDS Channels};
% CPLD
\draw (3.8, -0.35) node[twoportshape, t={CPLD}, circuitikz/bipoles/twoport/width=1.1, scale=0.8, rotate=-90] (cpld) {};
% Synthronization clock buffer for DDS block
2024-10-23 21:50:25 +08:00
\draw (3.5, -2.5) node[twoportshape, t=\fourcm{Sync}{Buffer}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (sync_buf) {};
2021-11-30 14:17:02 +08:00
% Connect CPLD to:
% DDS clock buffer
\draw [latexslim-] (clk_buf.north) -- (cpld.south);
% DDS signal path
\draw [latexslim-latexslim] (3.4, -0.7) -- ++ (-1.5, 0) -- ++ (0,-0.72);
% Draw to intersection point, then complete the connection to sync buffer
\draw [-] (4.2, -0.7) -- (4.55, -0.7) -- (4.55, -2.5);
\draw [-latexslim] (4.55, -2.5) -- (sync_buf.east);
% Connect sync buffer to DDS block
\draw [-latexslim] (sig0.east) -- (3.35, -1.75) -- ++ (0, -0.5);
\draw [-latexslim] (sync_buf.south) -- ++ (0, -0.3) -- ++ (-1.05, 0);
2021-11-30 14:17:02 +08:00
% LVDS Transceivers
2024-10-23 21:50:25 +08:00
\draw (6, 0) node[twoportshape, t=\fourcm{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds0) {};
\draw (6, -0.7) node[twoportshape, t=\fourcm{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds1) {};
\draw (6, -2.5) node[twoportshape, t=\fourcm{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds2) {};
\draw (6, -3.2) node[twoportshape, t=\fourcm{LVDS}{Transceiever}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (lvds3) {};
2021-11-30 14:17:02 +08:00
% Connect CPLD to transceivers
\draw [latexslim-latexslim] (lvds0.west) -- ++ (-1.13, 0);
\draw [latexslim-latexslim] (lvds1.west) -- ++ (-0.35, 0) -- ++ (0, 0.6) -- ++ (-0.78, 0);
\draw [latexslim-latexslim] (lvds2.west) -- ++ (-0.45, 0) -- ++ (0, 2.3) -- ++ (-0.68, 0);
\draw [latexslim-latexslim] (lvds3.west) -- ++ (-0.55, 0) -- ++ (0, 2.9) -- ++ (-0.58, 0);
% EEPROMs
\draw (6, -1.4) node[twoportshape, t={EEPROM}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (eeprom0) {};
\draw (6, -3.9) node[twoportshape, t={EEPROM}, circuitikz/bipoles/twoport/width=1.8, scale=0.5] (eeprom1) {};
% Repeaters for DDS0 sync clock & DDS sync output from sync buffer
\draw (3.5, -3.85) node[twoportshape, t={Repeaters}, circuitikz/bipoles/twoport/width=1.2, scale=0.5] (rep) {};
2021-11-30 14:17:02 +08:00
% Connect DDS0 to repeaters
\draw [-latexslim] (sig0.east) -- ++ (0.3, 0) -- ++ (0, -1.55) -- (3.35, -3.3) -- ++ (0, -0.3);
2021-11-30 14:17:02 +08:00
% Connect sync_buf to repeaters
\draw [-latexslim] (sync_buf.south) -- ++ (0, -0.3) -- ++ (0.15, 0) -- ++ (0, -0.55);
% EEMs
\draw (8, -0.9) node[twoportshape, t={EEM Port 0}, circuitikz/bipoles/twoport/width=3.2, scale=0.5, rotate=-90] (eem0) {};
\draw (8, -3.4) node[twoportshape, t={EEM Port 1}, circuitikz/bipoles/twoport/width=3.2, scale=0.5, rotate=-90] (eem1) {};
% Connect LVDS and EEM
\draw [latexslim-latexslim] (lvds0.east) -- (7.75, 0);
\draw [latexslim-latexslim] (lvds1.east) -- (7.75, -0.7);
\draw [latexslim-latexslim] (lvds2.east) -- (7.75, -2.5);
\draw [latexslim-latexslim] (lvds3.east) -- (7.75, -3.2);
% Connect EEPROM to EEM
\draw [latexslim-latexslim] (eeprom0.east) -- (7.75, -1.4);
\draw [latexslim-latexslim] (eeprom1.east) -- (7.75, -3.9);
% Connect EEM0 to sync_buf
\draw [latexslim-] (3.65, -2.25) -- (3.65, -1.85) -- (7.75, -1.85);
2021-11-30 14:17:02 +08:00
% Connect repeaters output to EEM1
\draw [-latexslim] (rep.south) -- (3.5, -4.35) -- (7.75, -4.35);
% Synchronization ICs encased in another dotted area
\node[draw, dotted, thick, rounded corners, inner xsep=0.7em, inner ysep=0.4em, fit=(rep.south west)(sync_buf.north east)] (sync_path) {};
\node[fill=white, rotate=-90, scale=0.5] at (sync_path.east) {AD9910 Only};
2021-11-30 14:17:02 +08:00
\end{scope}
\end{circuitikz}
}
\caption{Simplified Block Diagram}
\end{figure}
\begin{figure}[h]
\centering
\scalebox{0.88}{
\begin{circuitikz}[european, scale=0.95, every label/.append style={align=center}]
\begin{scope}[]
% RF switches {0, 1, 2, 3} for SMA {0, 1, 2, 3}
\draw (1.4, 0) node[twoportshape, t={RF Switch}, circuitikz/bipoles/twoport/width=1.5, scale=0.6] (sw) {};
% Amplifiers {0, 1, 2, 3} for RF switches {0, 1, 2, 3}
\draw (3, 0) node[buffer, circuitikz/bipoles/twoport/width=1.2, scale=-0.5] (amp) {};
% Attenuators {0, 1, 2, 3} for amplifiers {0, 1, 2, 3}
2024-10-23 21:50:25 +08:00
\draw (4.6, 0) node[twoportshape, t=\fourcm{Digital}{Attenuator}, circuitikz/bipoles/twoport/width=2, scale=0.6, rotate=-90] (att) {};
2021-11-30 14:17:02 +08:00
% DDS {0, 1, 2, 3} for attenuators {0, 1, 2, 3}
\draw (6.6, 0) node[twoportshape, t={DDS}, circuitikz/bipoles/twoport/width=1.2, scale=0.7] (dds) {};
% Connect main signal path
\draw [-latexslim] (dds.west) -- (att.north);
\draw [-latexslim] (att.south) -- (amp.west);
\draw [-latexslim] (amp.east) -- (sw.east);
% Connect abstract DDS clock input
\node [label=above:\tiny{CLK Buffers}] at (8, -0.2) {};
\draw [latexslim-] (dds.east) -- (8, 0);
% Insert CPLD signal to relevant components
\node [label=above:\tiny{CPLD}] at (8, 1.1) {};
\draw [-] (1.4, 1.3) -- (8, 1.3);
\draw [-latexslim] (1.4, 1.3) -- (sw.north);
\draw [-latexslim] (4.6, 1.3) -- (att.west);
\draw [-latexslim] (6.6, 1.3) -- (dds.north);
% Connect sync_buf signal to DDS
\draw [latexslim-] (6.9, -1.35) -- (6.9, -0.35);
\draw [-latexslim] (6.3, -1.35) -- (6.3, -0.35);
\node [label=below:\tiny{Sync Buffer /}] at (6.6, -1.15) {};
\node [label=below:\tiny{Repeaters}] at (6.6, -1.4) {};
\node [label={[rotate=-90]above:\tiny{DDS 0}}] at (6.8, -0.9) {};
\node [label={[rotate=-90]above:\tiny{Only}}] at (6.55, -0.9) {};
\end{scope}
\end{circuitikz}
}
\caption{Simplified DDS Signal Path}
\end{figure}
\begin{figure}[hbt!]
2021-11-30 14:17:02 +08:00
\centering
\includegraphics[height=2.2in]{Urukul_FP.jpg}
2022-01-06 17:29:38 +08:00
\includegraphics[height=2.2in]{photo4410.jpg}
2024-11-15 00:58:32 +08:00
\caption{Urukul card and front panel}
2021-11-30 14:17:02 +08:00
\end{figure}
% For wide tables, a single column layout is better. It can be switched
% page-by-page.
\onecolumn
2024-11-15 00:58:32 +08:00
\sourcesection{4410/4412 DDS Urukul}{https://github.com/sinara-hw/Urukul/}
2021-11-30 14:17:02 +08:00
\section{Electrical Specifications}
2024-11-15 00:58:32 +08:00
Specifications of parameters are based on the datasheets of the DDS IC
(AD9910\footnote{\label{ad9910}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/AD9910.pdf}},
AD9912\footnote{\label{ad9912}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/AD9912.pdf}}),
2024-11-15 01:58:22 +08:00
clock buffer IC (Si53312\footnote{\label{clock_buffer}\url{https://www.skyworksinc.com/-/media/SkyWorks/SL/documents/public/data-sheets/Si5331x_datasheet.pdf}}),
2024-11-15 00:58:32 +08:00
digital attenuator IC (HMC542BLP4E\footnote{\label{attenuator}\url{https://www.analog.com/media/en/technical-documentation/data-sheets/hmc542b.pdf}}), Sinara project information\footnote{\label{urukul_wiki}\url{https://github.com/sinara-hw/Urukul/wiki\#details-specification-and-typical-performance-data}}
and corresponding test results\footnote{\label{sinara354}\url{https://github.com/sinara-hw/sinara/issues/354\#issuecomment-352859041}}.
2021-12-01 12:05:20 +08:00
\begin{table}[h]
\centering
2021-12-01 12:05:20 +08:00
\begin{threeparttable}
2021-12-01 16:13:44 +08:00
\caption{Recommended Operating Conditions}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
2021-12-01 12:05:20 +08:00
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
2021-12-01 12:05:20 +08:00
\textbf{Unit} & \textbf{Conditions} \\
\hline
Clock input & & & & &\\
\hspace{3mm} Input frequency\repeatfootnote{ad9910}\textsuperscript{,}\repeatfootnote{ad9912} & 10 & & 1000 & MHz & PLL disabled \\
& 3.2 & & 60 & MHz & AD9910, PLL enabled, no clock division \\
& 12.8 & & 240 & MHz & AD9910, PLL enabled, 4x clock division \\
& 11 & & 200 & MHz & AD9912, PLL enabled, no clock division \\
& 44 & & 800 & MHz & AD9912, PLL enabled, 4x clock division \\
\hspace{3mm} Nominal input power\repeatfootnote{clock_buffer} & & 10 & & dBm & \\
2021-12-01 16:13:44 +08:00
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[h]
\centering
2021-12-01 16:13:44 +08:00
\begin{threeparttable}
\caption{RF Output Specifications}
\begin{tabularx}{0.9\textwidth}{l | c c c | c | X}
2021-12-01 16:13:44 +08:00
\thickhline
\textbf{Parameter} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
2021-12-01 16:13:44 +08:00
\textbf{Unit} & \textbf{Conditions} \\
\hline
Low frequency power\repeatfootnote{sinara354} & & & -20 & dBm & 100 kHz output \\
& & & 10 & dBm & 1 MHz output \\
2021-12-01 16:13:44 +08:00
\hline
Frequency\repeatfootnote{urukul_wiki} & 1 & & 400 & MHz & \\
2021-12-01 12:05:20 +08:00
\hline
Digital attenuation\repeatfootnote{attenuator} & -31.5 & & 0 & dB & \\
2021-12-01 12:05:20 +08:00
\hline
Resolution & & & & & \\
\hspace{3mm} Frequency\repeatfootnote{ad9910}\textsuperscript{,}\repeatfootnote{urukul_wiki} & & 0.25 & & Hz & AD9910 \\
& & 8 & & $\mu$Hz & AD9912 \\
2024-11-15 00:58:32 +08:00
\hspace{3mm} Phase offset\repeatfootnote{ad9910}\textsuperscript{,}\repeatfootnote{ad9912} & & 16/14 & & bits & AD9910/AD9912 respectively \\
\hspace{3mm} Digital amplitude\repeatfootnote{ad9910} & & 14 & & bits & AD9910 \\
2024-11-15 00:58:32 +08:00
\hspace{3mm} DAC full scale current\repeatfootnote{ad9910}\textsuperscript{,}\repeatfootnote{ad9912} & & 8/10 & & bits & AD9910/AD9912 respectively \\
\hspace{3mm} Temporal (I/O Update)\repeatfootnote{urukul_wiki} & & 4 & & ns & \\
\hspace{3mm} Digital attenuation\repeatfootnote{attenuator} & & 0.5 & & dB & \\
2021-12-01 16:13:44 +08:00
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
2024-11-15 00:58:32 +08:00
The tabulated performance characteristics are produced using the following setup unless otherwise noted:
\begin{itemize}
2024-11-15 00:58:32 +08:00
\item 100 MHz input clock into SMA, 10 dBm
\item Input clock divided by 4
\item PLL with x40 multiplier
\item Output frequency at 80 MHz or 81 MHz
\end{itemize}
2021-12-01 16:13:44 +08:00
\begin{table}[h]
\begin{threeparttable}
\caption{Electrical Characteristics}
\begin{tabularx}{\textwidth}{l | c | c c c | c | X}
\thickhline
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
2024-11-15 00:58:32 +08:00
Digital attenuator glitch duration\repeatfootnote{sinara354} & $t_s$ & & 100 & & ns & \\
2021-12-01 12:05:20 +08:00
\hline
RF switch\repeatfootnote{sinara354} & & & & & &\\
2021-12-01 12:05:20 +08:00
\hspace{3mm} Rise to 90\% & $t_{on}$ & & 100 & & ns & \\
\hspace{3mm} Isolation & & & 70 & & dB & \\
2021-12-01 12:05:20 +08:00
\hspace{3mm} Turn-on chirp & $\gamma$ & & & 0.1 & deg/s & Excluding the first $\mu$s\\
\hline
Crosstalk\repeatfootnote{sinara354} & & & -84 & & dB & Victim RF switch opened \\
2021-12-02 09:56:47 +08:00
& & & -110 & & dB & Victim RF switch closed \\
2021-12-01 12:05:20 +08:00
\hline
Cross-channel-intermodulation\repeatfootnote{sinara354} & & & -90 & & dB & \\
2021-12-01 12:05:20 +08:00
\hline
Phase noise\repeatfootnote{sinara354} & $\mathcal{L}(f)$ & & -85 & & dBc/Hz & 0.1 Hz \\
2021-12-01 12:05:20 +08:00
& & & -95 & & dBc/Hz & 1 Hz \\
& & & -107 & & dBc/Hz & 10 Hz \\
& & & -116 & & dBc/Hz & 100 Hz \\
& & & -126 & & dBc/Hz & 1 kHz \\
& & & -133 & & dBc/Hz & 10 kHz \\
& & & -135 & & dBc/Hz & 100 kHz \\
& & & -128 & & dBc/Hz & 1 MHz \\
& & & -149 & & dBc/Hz & 10 MHz \\
\hline
Second-order harmonics\repeatfootnote{sinara354} & & & -40 & & dB & 6 dBm output \\
& & & -34 & & dB & 10.5 dBm output \\
\hline
Third-order harmonics\repeatfootnote{sinara354} & & & -54 & & dB & 6 dBm output \\
& & & -28 & & dB & 10.5 dBm output \\
\hline
Power consumption (AD9910)\repeatfootnote{urukul_wiki} & $P$ & & 7 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
Power consumption (AD9912)\repeatfootnote{urukul_wiki} & $P$ & & 6.5 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
2021-12-01 12:05:20 +08:00
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
2021-11-30 14:17:02 +08:00
2021-12-01 16:13:44 +08:00
\newpage
2024-11-15 00:58:32 +08:00
Harmonic content of the DDS signals from 4410 DDS Urukul is tabulated below\footnote{\label{urukul29}\url{https://github.com/sinara-hw/Urukul/issues/29}}. An external 125 MHz clock signal was supplied.
\newcommand{\ts}{\textsuperscript}
\newcolumntype{Y}{>{\centering\arraybackslash}X}
\begin{table}[h]
\begin{threeparttable}
\caption{Harmonic content with 0.0 dB digital attenuation}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Frequency (MHz)}} &
\multicolumn{9}{c|}{\textbf{Output power (dBm) of the n\ts{th}-order harmonic}}\\
\cline{2-10} & 1\ts{st} & 2\ts{nd} & 3\ts{rd} & 4\ts{th} & 5\ts{th} & 6\ts{th} &
7\ts{th} & 8\ts{th} & 9\ts{th} \\
\hline
0.1 & -21.14 & -59.03 & -54.93 & -93.07 & -73.38 & -94.07 & -84.78 & -91.77 & -96.61 \\
\hline
0.5 & 4.51 & -15.45 & -11.61 & -25.02 & -24.35 & -51.70 & -35.14 & -34.46 & -37.85 \\
\hline
1 & 7.67 & -16.80 & -12.32 & -18.27 & -29.25 & -30.87 & -34.51 & -39.28 & -39.84 \\
\hline
10 & 10.67 & -12.69 & -13.94 & -26.12 & -27.76 & -36.11 & -55.32 & -43.85 & -42.65 \\
\hline
20 & 10.86 & -24.90 & -13.65 & -22.87 & -28.67 & -47.68 & -35.85 & -35.45 & -38.48 \\
\hline
50 & 10.74 & -14.18 & -15.01 & -27.57 & -29.01 & -38.05 & -51.52 & -44.53 & -42.71 \\
\hline
100 & 9.70 & -33.59 & -16.72 & -34.36 & -26.81 & -40.14 & -41.07 & -43.88 & -56.89 \\
\hline
200 & 8.97 & -22.22 & -16.23 & -24.89 & -30.49 & -37.97 & -37.79 & -38.80 & -40.14 \\
\hline
300 & 8.27 & -19.17 & -19.51 & -29.80 & -34.75 & -38.90 & -51.92 & -53.38 & -57.95 \\
\hline
400 & 7.68 & -17.82 & -21.60 & -33.04 & -37.80 & -50.37 & -57.45 & -59.80 & -64.68 \\
\hline
500 & -1.80 & -41.57 & -51.71 & -72.36 & -89.35 & -91.63 & -93.15 & -84.54 & -107.57 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[hbt!]
\begin{threeparttable}
\caption{Harmonic content with 10.0 dB digital attenuation}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Frequency (MHz)}} &
\multicolumn{9}{c|}{\textbf{Output power (dBm) of the n\ts{th}-order harmonic}}\\
\cline{2-10} & 1\ts{st} & 2\ts{nd} & 3\ts{rd} & 4\ts{th} & 5\ts{th} & 6\ts{th} &
7\ts{th} & 8\ts{th} & 9\ts{th} \\
\hline
0.1 & -27.06 & -81.35 & -62.09 & -97.37 & -84.11 & -103.78 & -91.37 & -100.48 & -104.22 \\
\hline
0.5 & -3.2 & -37.82 & -52.21 & -66.76 & -77.86 & -85.92 & -86.37 & -97.59 & -120.76 \\
\hline
1 & -0.43 & -34.47 & -47.80 & -75.28 & -86.45 & -101.91 & -93.22 & -96.14 & -106.71 \\
\hline
10 & 1.95 & -31.04 & -28.23 & -51.76 & -57.29 & -76.26 & -78.15 & -83.85 & -80.20 \\
\hline
20 & 2.10 & -33.05 & -28.30 & -54.50 & -52.31 & -72.39 & -70.96 & -82.98 & -82.58 \\
\hline
50 & 1.89 & -33.24 & -28.50 & -52.67 & -48.35 & -74.77 & -77.26 & -79.33 & -73.58 \\
\hline
100 & 0.80 & -38.51 & -63.22 & -61.73 & -71.97 & -97.45 & -97.67 & -107.40 & -93.03 \\
\hline
200 & 0.05 & -38.25 & -42.16 & -63.01 & -84.55 & -82.66 & -108.85 & -116.62 & -99.45 \\
\hline
300 & -0.51 & -35.91 & -48.83 & -82.43 & -100.53 & -111.79 & -118.62 & -120.05 & -97.72 \\
\hline
400 & -1.20 & -38.37 & -49.77 & -89.45 & -74.66 & -108.12 & -116.75 & -114.08 & -102.29 \\
\hline
500 & -11.20 & -61.47 & -77.59 & -74.73 & -100.23 & -93.12 & -99.83 & -86.71 & -112.63 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
\begin{table}[h]
\begin{threeparttable}
\caption{Harmonic content with 20.0 dB digital attenuation}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Frequency (MHz)}} &
\multicolumn{9}{c|}{\textbf{Output power (dBm) of the n\ts{th}-order harmonic}}\\
\cline{2-10} & 1\ts{st} & 2\ts{nd} & 3\ts{rd} & 4\ts{th} & 5\ts{th} & 6\ts{th} &
7\ts{th} & 8\ts{th} & 9\ts{th} \\
\hline
0.1 & -31.06 & -82.29 & -68.34 & -109.04 & -92.48 & -111.23 & -99.94 & -109.85 & -112.36 \\
\hline
0.5 & -11.99 & -56.69 & -71.73 & -95.76 & -101.86 & -114.37 & -102.81 & -106.94 & -116.72 \\
\hline
1 & -9.94 & -54.54 & -56.49 & -89.12 & -105.94 & -110.93 & -102.79 & -107.01 & -117.29 \\
\hline
10 & -7.89 & -50.19 & -57.35 & -91.36 & -97.88 & -107.95 & -103.53 & -96.04 & -108.26 \\
\hline
20 & -7.79 & -52.72 & -58.03 & -90.75 & -99.82 & -102.07 & -101.55 & -104.73 & -103.31 \\
\hline
50 & -7.96 & -52.36 & -59.26 & -84.44 & -87.55 & -86.88 & -97.76 & -92.61 & -83.19 \\
\hline
100 & -9.04 & -57.40 & -61.76 & -78.50 & -91.80 & -117.64 & -107.40 & -112.64 & -102.07 \\
\hline
200 & -9.73 & -57.39 & -72.31 & -72.66 & -93.26 & -95.95 & -125.22 & -122.35 & -130.24 \\
\hline
300 & -10.27 & -58.65 & -74.60 & -109.24 & -107.74 & -115.75 & -125.36 & -124.54 & -98.86 \\
\hline
400 & -10.94 & -59.62 & -79.36 & -98.48 & -74.72 & -111.95 & -119.18 & -114.63 & -104.34 \\
\hline
500 & -21.00 & -78.52 & -99.07 & -74.91 & -99.55 & -92.91 & -103.02 & -87.33 & -114.87 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\begin{table}[hbt!]
\begin{threeparttable}
\caption{Harmonic content with 31.5 dB digital attenuation}
\begin{tabularx}{\textwidth}{| c | Y | Y | Y | Y | Y | Y | Y | Y | Y |}
\thickhline
\multirow{2}{*}{\textbf{Frequency (MHz)}} &
\multicolumn{9}{c|}{\textbf{Output power (dBm) of the n\ts{th}-order harmonic}}\\
\cline{2-10} & 1\ts{st} & 2\ts{nd} & 3\ts{rd} & 4\ts{th} & 5\ts{th} & 6\ts{th} &
7\ts{th} & 8\ts{th} & 9\ts{th} \\
\hline
0.1 & -37.89 & -85.04 & -77.41 & -122.04 & -114.29 & -115.58 & -110.65 & -120.06 & -123.70 \\
\hline
0.5 & -22.38 & -71.24 & -89.84 & -107.81 & -108.76 & -127.83 & -114.12 & -118.34 & -127.07 \\
\hline
1 & -21.01 & -72.10 & -90.08 & -111.97 & -111.30 & -127.43 & -114.38 & -118.07 & -128.06 \\
\hline
10 & -19.22 & -72.13 & -90.74 & -110.14 & -105.28 & -114.04 & -113.51 & -94.85 & -116.15 \\
\hline
20 & -19.28 & -75.95 & -94.72 & -91.71 & -107.55 & -112.85 & -112.24 & -116.33 & -114.02 \\
\hline
50 & -19.27 & -74.93 & -92.21 & -95.77 & -101.06 & -97.92 & -108.30 & -103.60 & -93.96 \\
\hline
100 & -20.27 & -79.05 & -87.48 & -89.73 & -104.00 & -117.98 & -112.12 & -110.51 & -105.80 \\
\hline
200 & -21.19 & -78.33 & -106.81 & -82.70 & -92.31 & -109.93 & -133.86 & -120.94 & -102.95 \\
\hline
300 & -21.58 & -80.96 & -112.44 & -110.40 & -108.11 & -115.68 & -122.51 & -125.25 & -99.63 \\
\hline
400 & -22.44 & -82.73 & -105.55 & -98.03 & -74.84 & -113.93 & -119.41 & -114.93 & -104.55 \\
\hline
500 & -31.73 & -93.37 & -99.74 & -75.03 & -99.27 & -92.84 & -104.14 & -87.46 & -116.22 \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
\newpage
2021-12-24 16:36:58 +08:00
2025-01-30 02:50:30 +08:00
The RMS voltage of a 4410 DDS Urukul channel at different amplitude scale factors is measured below. The DDS channel is directly connected to an oscilloscope with a 50\textOmega$\sim$termination. The reported values are obtained from the oscilloscope.
2022-06-23 16:58:16 +08:00
\begin{multicols}{2}
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[
xlabel={AD9910 Amplitude Scale Factor},
ylabel={DDS RMS Voltage ($V_{rms}$)},
xmin=0, xmax=1,
ymin=0, ymax=1,
xtick={0, 0.2, 0.4, 0.6, 0.8, 1},
ytick={0, 0.2, 0.4, 0.6, 0.8, 1},
legend pos=north west,
ymajorgrids=true,
grid style=dashed,
]
\addplot[
color=black,
mark=square,
samples=11
] coordinates {
(0.0, 0) (0.1, 0.087924) (0.2, 0.176157) (0.3, 0.262437) (0.4, 0.345833) (0.5, 0.429203)
(0.6, 0.512235) (0.7, 0.59130) (0.8, 0.66877) (0.9, 0.73344) (1.0, 0.78761)
};
2024-11-15 00:58:32 +08:00
2022-06-23 16:58:16 +08:00
\addplot[
color=blue,
mark=square,
samples=11
] coordinates {
(0.0, 0) (0.1, 0.089807) (0.2, 0.179723) (0.3, 0.268852) (0.4, 0.354310) (0.5, 0.441055)
(0.6, 0.526386) (0.7, 0.61233) (0.8, 0.69044) (0.9, 0.75856) (1.0, 0.81703)
};
2024-11-15 00:58:32 +08:00
2022-06-23 16:58:16 +08:00
\addplot[
color=green,
mark=square,
samples=11
] coordinates {
(0.0, 0) (0.1, 0.093101) (0.2, 0.186762) (0.3, 0.277704) (0.4, 0.369172) (0.5, 0.459391)
(0.6, 0.548191) (0.7, 0.63607) (0.8, 0.71469) (0.9, 0.78221) (1.0, 0.84139)
};
\addplot[
color=red,
mark=square,
samples=11
] coordinates {
(0, 0) (0.1, 0.092502) (0.2, 0.184728) (0.3, 0.276224) (0.4, 0.366914) (0.5, 0.457255)
(0.6, 0.544924) (0.7, 0.62991) (0.8, 0.70582) (0.9, 0.77104) (1.0, 0.82737)
};
\legend{200 MHz, 100 MHz, 50 MHz, 10 MHz}
2024-11-15 00:58:32 +08:00
2022-06-23 16:58:16 +08:00
\end{axis}
\end{tikzpicture}
\caption{RMS voltage, 0dB attenuation}
\end{figure}
\columnbreak
2022-06-23 16:58:16 +08:00
\begin{figure}[H]
\begin{tikzpicture}
\begin{axis}[
xlabel={AD9910 Amplitude Scale Factor},
ylabel={DDS RMS Voltage ($mV_{rms}$)},
xmin=0, xmax=1,
ymin=0, ymax=200,
xtick={0, 0.2, 0.4, 0.6, 0.8, 1},
ytick={0, 40, 80, 120, 160, 200},
legend pos=north west,
ymajorgrids=true,
grid style=dashed,
]
2024-11-15 00:58:32 +08:00
2022-06-23 16:58:16 +08:00
\addplot[
color=black,
mark=square,
samples=11
] coordinates {
(0, 0) (0.1, 16.1805) (0.2, 32.1530) (0.3, 48.2039) (0.4, 64.172) (0.5, 80.452)
(0.6, 96.405) (0.7, 112.427) (0.8, 128.776) (0.9, 144.967) (1.0, 161.148)
};
\addplot[
color=blue,
mark=square,
samples=11
] coordinates {
(0, 0) (0.1, 16.6691) (0.2, 33.3762) (0.3, 49.8844) (0.4, 67.055) (0.5, 83.652)
(0.6, 99.970) (0.7, 116.906) (0.8, 133.368) (0.9, 150.839) (1.0, 167.033)
};
\addplot[
color=green,
mark=square,
samples=11
] coordinates {
(0, 0) (0.1, 17.0562) (0.2, 34.0713) (0.3, 51.0456) (0.4, 68.241) (0.5, 85.241)
(0.6, 102.328) (0.7, 119.279) (0.8, 136.584) (0.9, 153.737) (1.0, 170.829)
};
\addplot[
color=red,
mark=square,
samples=11
] coordinates {
(0, 0) (0.1, 16.8030) (0.2, 33.6407) (0.3, 50.4039) (0.4, 67.348) (0.5, 84.127)
(0.6, 100.852) (0.7, 117.618) (0.8, 134.415) (0.9, 151.267) (1.0, 168.160)
};
\legend{200 MHz, 100 MHz, 50 MHz, 10 MHz}
2024-11-15 00:58:32 +08:00
2022-06-23 16:58:16 +08:00
\end{axis}
\end{tikzpicture}
\caption{RMS voltage, 15dB attenuation}
\end{figure}
\end{multicols}
2022-07-25 17:01:03 +08:00
The ideal RMS voltage is described by the linear function $V_\mathrm{rms,ideal}(\mathrm{ASF})=\frac{V_\mathrm{rms}(0.1)}{0.1}*\mathrm{ASF}$.
The measured RMS voltage divided by the full scale ideal RMS voltage (i.e. $V_\mathrm{rms,ideal}(1)$) is shown below.
2022-06-23 16:58:16 +08:00
\begin{figure}[H]
\centering
2022-06-23 16:58:16 +08:00
\begin{tikzpicture}
\begin{axis}[
xlabel={AD9910 Amplitude Scale Factor},
ylabel={Scaled RMS Voltage},
2022-06-23 16:58:16 +08:00
xmin=0, xmax=1,
ymin=0, ymax=1.1,
2022-06-23 16:58:16 +08:00
xtick={0, 0.2, 0.4, 0.6, 0.8, 1},
ytick={0, 0.2, 0.4, 0.6, 0.8, 1},
legend pos=north west,
ymajorgrids=true,
grid style=dashed,
width=0.7\textwidth
2022-06-23 16:58:16 +08:00
]
\addplot[
color=black,
samples=2,
ultra thick,
dotted
] {x};
2024-11-15 00:58:32 +08:00
2022-06-23 16:58:16 +08:00
\addplot[
color=blue,
mark=square,
samples=11,
2024-11-15 00:58:32 +08:00
y filter/.expression={y/0.089807 * 0.1}
2022-06-23 16:58:16 +08:00
] coordinates {
(0.0, 0) (0.1, 0.089807) (0.2, 0.179723) (0.3, 0.268852) (0.4, 0.354310) (0.5, 0.441055)
(0.6, 0.526386) (0.7, 0.61233) (0.8, 0.69044) (0.9, 0.75856) (1.0, 0.81703)
};
\addplot[
color=orange,
mark=square,
samples=11,
2024-11-15 00:58:32 +08:00
y filter/.expression={y/50.0729 * 0.1}
] coordinates {
(0, 0) (0.1, 50.0729) (0.2, 100.309) (0.3, 150.996) (0.4, 200.905) (0.5, 250.004)
2024-11-15 00:58:32 +08:00
(0.6, 297.000) (0.7, 345.980) (0.8, 394.391) (0.9, 442.869) (1.0, 490.651)
};
2022-06-23 16:58:16 +08:00
\addplot[
color=green,
mark=square,
samples=11,
2024-11-15 00:58:32 +08:00
y filter/.expression={y/28.4696 * 0.1}
] coordinates {
(0, 0) (0.1, 28.4696) (0.2, 57.143) (0.3, 85.776) (0.4, 114.694) (0.5, 143.302)
(0.6, 171.911) (0.7, 200.098) (0.8, 227.816) (0.9, 256.321) (1.0, 281.930)
};
2022-06-23 16:58:16 +08:00
\addplot[
color=red,
2022-06-23 16:58:16 +08:00
mark=square,
samples=11,
2024-11-15 00:58:32 +08:00
y filter/.expression={y/16.6691 * 0.1}
2022-06-23 16:58:16 +08:00
] coordinates {
(0, 0) (0.1, 16.6691) (0.2, 33.3762) (0.3, 49.8844) (0.4, 67.055) (0.5, 83.652)
(0.6, 99.970) (0.7, 116.906) (0.8, 133.368) (0.9, 150.839) (1.0, 167.033)
};
2022-07-25 17:01:03 +08:00
\legend{Ideal response, 0dB attenuation, 5dB attenuation, 10dB attenuation, 15dB attenuation}
2024-11-15 00:58:32 +08:00
2022-06-23 16:58:16 +08:00
\end{axis}
\end{tikzpicture}
2022-07-25 17:01:03 +08:00
\caption{RMS voltage scaled by ideal voltage at ASF=1, 100 MHz}
\end{figure}
2022-06-23 16:58:16 +08:00
\newpage
2021-12-24 16:36:58 +08:00
\begin{multicols}{2}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_xo_phase_noise.jpg}
\caption{Phase noise of Urukul clocked by\\internal oscillator}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_clock_phase_noise.jpg}
\caption{Phase noise of 200 MHz DDS Output}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_harmonics.png}
\caption[]{Harmonic content of 200 MHz DDS Output\footnotemark}
2021-12-24 16:36:58 +08:00
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_6dbm_harmonics.png}
\caption{Harmonic content of 80 MHz DDS Output (6 dBm)\repeatfootnote{sinara354}}
2021-12-24 16:36:58 +08:00
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_10dbm_harmonics.png}
\caption{Harmonic content of 80 MHz DDS Output (10 dBm)\repeatfootnote{sinara354}}
2021-12-24 16:36:58 +08:00
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{rf_transient.jpg}
\caption{RF switch turn on transient\repeatfootnote{sinara354}}
2021-12-24 16:36:58 +08:00
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{nyquist_rejection_400mhz.png}
\caption{Nyquist rejection 400 MHz to 600 MHz\repeatfootnote{sinara354}}
2021-12-24 16:36:58 +08:00
\end{figure}
\end{multicols}
2024-11-15 00:58:32 +08:00
\footnotetext{\label{urukul64}\url{https://github.com/sinara-hw/Urukul/issues/64}}
2021-12-24 16:36:58 +08:00
\begin{figure}[H]
\centering
2021-12-24 16:36:58 +08:00
\includegraphics[width=3.3in]{nyquist_rejection_450mhz.png}
\caption{Nyquist rejection 450 MHz to 550 MHz\repeatfootnote{sinara354}}
\end{figure}
2021-12-24 16:36:58 +08:00
\begin{figure}[H]
\centering
2021-12-24 16:36:58 +08:00
\includegraphics[width=3.3in]{att_glitch_bitflip.png}
\caption{Attenuator step from 20 to 60 digital\\(16+4dB switch glitch)\repeatfootnote{sinara354}}
\end{figure}
2021-12-24 16:36:58 +08:00
\begin{figure}[H]
\centering
2021-12-24 16:36:58 +08:00
\includegraphics[width=3.3in]{att_glitch_carry.png}
\caption{Attenuator step from 31 to 32 digital\\(major carry glitch)\repeatfootnote{sinara354}}
\end{figure}
2025-01-30 02:50:41 +08:00
\section{Front panel LEDs}
4410/4412 Urukul features a number of indicator LEDs in the front panel. Each of four channel SMA connectors is accompanied by a green LED, used to indicate that RF output is enabled, and a red LED, which activates to indicate a DDS synchronization/PLL issue. Note that when bypassing PLL in ARTIQ gateware (see below) LED may stay on.
Two additional LEDs indicate power good (green) and overtemperature (red).
\newpage
2025-01-30 02:22:50 +08:00
2024-11-15 00:58:32 +08:00
\section{Configuring Operation Mode}
2025-01-30 02:22:50 +08:00
Mode of operation is specified by a DIP switch. The DIP switch can be found at the top right corner of the card. The following table summarizes the required setting for each mode.
\ding{51} indicates ON, while \ding{53} indicates OFF.
2025-01-30 02:22:50 +08:00
\begin{multicols}{2}
2025-01-30 02:22:50 +08:00
\begin{center}
\captionof{table}{DIP switch configurations}
\begin{tabular}{|l|cccc|}
\hline
\multicolumn{1}{|c|}{\multirow{2}{*}{Mode}} & \multicolumn{4}{c|}{DIP Switch} \\ \cline{2-5}
\multicolumn{1}{|c|}{} & \multicolumn{1}{c|}{1} & \multicolumn{1}{c|}{2} & \multicolumn{1}{c|}{3} & 4 \\ \hline
Default & \multicolumn{1}{c|}{\ding{53}} & \multicolumn{1}{c|}{\ding{53}} & \multicolumn{1}{c|}{\ding{53}} & \ding{53} \\ \hline
SU-Servo & \multicolumn{1}{c|}{\ding{51}} & \multicolumn{1}{c|}{\ding{51}} & \multicolumn{1}{c|}{\ding{53}} & \ding{53} \\ \hline
\end{tabular}
\end{center}
2025-01-30 02:22:50 +08:00
\columnbreak
2025-01-30 02:22:50 +08:00
\begin{center}
\centering
\includegraphics[height=1.5in]{urukul_dip_switch.jpg}
\captionof{figure}{Position of DIP switch}
\end{center}
\end{multicols}
2024-11-15 00:58:32 +08:00
\section{Urukul Single-/Double-EEM Modes}
2025-01-30 02:50:30 +08:00
4410/4412 DDS Urukul cards can operate with either a single or double EEM connections. When only EEM0 is connected, the card will act in single-EEM mode; when both EEM0 and EEM1 are connected, the card will act in double-EEM mode. Double-EEM mode provides these additional features in comparison to single-EEM mode:
2022-06-07 12:46:23 +08:00
2025-01-30 02:22:50 +08:00
\begin{itemize}
2025-01-30 02:50:30 +08:00
2025-01-30 02:22:50 +08:00
\item \textbf{1 ns temporal resolution RF switches} \\
2025-01-30 02:50:30 +08:00
Without EEM1, the only way to access the switches is through the CPLD, using SPI. With EEM1, RF switches can be controlled as a TTL output through the LVDS transceiver. 1 ns temporal resolution can then be achieved using the ARTIQ RTIO system.
2022-06-07 12:46:23 +08:00
2025-01-30 02:22:50 +08:00
\item \textbf{SU-Servo (4410 DDS Urukul feature)} \\
SU-Servo requires both EEM0 \& EEM1 to allow the control of multiple DDS channels simultaneously using the QSPI interface.
\end{itemize}
2022-06-07 12:46:23 +08:00
2025-01-30 02:50:30 +08:00
\sysdescsection
4410/4412 Urukul should be entered in the peripherals list of the corresponding core device in the following format:
\begin{tcolorbox}[colback=white]
\begin{minted}{json}
{
"type": "urukul",
"dds": "ad9910", // or "ad9912", as appropriate
"ports": [0, 1], // second port is optional
"synchronization": true, // or false, for AD9910 only
"clk_sel": 2, // select 1 to 3 for clock source
"pll_en": 0 // PLL bypass, for higher external frequencies
"refclk": 125e6, // for external clock signal
}
\end{minted}
\end{tcolorbox}
Replace 0 and 1 with the EEM port numbers used on the core device. Any ports can be used. For single-EEM mode, simply specify only one port. The \texttt{synchronization} field is boolean, false by default, and only applies to AD9910. The \texttt{pll\_en} field may be specified \texttt{0} or \texttt{1} and is \texttt{1} by default.
\newpage
2024-11-15 00:58:32 +08:00
\codesection{4410/4412 DDS Urukul}
2021-11-30 14:17:02 +08:00
2025-01-30 02:50:30 +08:00
For details of AD9910 capabilities, operation modes, profiles, signals, etc., see also the corresponding datasheet, e.g. \url{https://www.analog.com/media/en/technical-documentation/data-sheets/AD9910.pdf}.
2025-01-30 02:22:50 +08:00
\subsection{10 MHz sinusoidal wave}
2021-11-30 14:17:02 +08:00
2025-01-30 02:22:50 +08:00
Generates a 10MHz sinusoid from RF0 with full scale amplitude, attenuated by 6 dB. Both the CPLD and the DDS channels should be initialized. By default, AD9910 single-tone profiles are programmed to profile 7.
2021-11-30 14:17:02 +08:00
2025-01-30 02:22:50 +08:00
\inputcolorboxminted{firstline=11,lastline=18}{examples/dds.py}
2025-01-30 02:22:50 +08:00
If the synchronization feature of AD9910 is enabled, RF signal across different channels of the same Urukul can be synchronized. For example, phase-coherent RF signal can be produced on both channel 0 and channel 1 after configuring an appropriate phase mode.
2025-01-30 02:22:50 +08:00
\inputcolorboxminted{firstline=28,lastline=43}{examples/dds.py}
Note that the phase difference between the 2 channels might not be exactly 0.25 turns, but it is a constant. It can be negated by adjusting the \texttt{phase} parameter.
2021-11-30 14:17:02 +08:00
\newpage
2025-01-30 02:22:50 +08:00
\subsection{Periodic RF pulse (AD9910 Only)}
This example demonstrates that the RF signal can be modulated by amplitude using the RAM modulation feature of the AD9910. By default, RAM profiles are programmed to profile 0.
\inputcolorboxminted{firstline=53,lastline=91}{examples/dds.py}
The generated RF output of the above example consists of the following features in sequence:
\begin{enumerate}
\item A 5 MHz RF pulse for 2 microseconds.
\item No signal for 1 microseconds.
\item A 5 MHz RF pulse for 1 microseconds.
\item No signal for 3 microseconds.
\item Go back to item 1.
\end{enumerate}
2025-01-30 02:50:30 +08:00
The expected waveform is plotted on the following figure. Note that phase of the RF pulses may drift gradually. Urukul was operated with 50$\Omega$ termination for this waveform.
2025-01-30 02:22:50 +08:00
\begin{tikzpicture}[
declare function={
func(\x)= (\x<0) * (0) +
and(\x>=0, \x<2) * (0.42*cos(deg(10*pi*\x))) +
and(\x>=2, \x<3) * (0) +
and(\x>=3, \x<4) * (0.42*cos(deg(10*pi*\x))) +
and(\x>=4, \x<7) * (0) +
and(\x>=7, \x<7.5) * (0.42*cos(deg(10*pi*\x)));
}
]
\begin{axis}[
axis x line=middle, axis y line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=west,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=south,
},
height=5cm,
width=16cm,
ymin=-0.5, ymax=0.5, ytick={-0.42,0.42}, ylabel=Voltage ($V$),
xmin=-0.5, xmax=7.5, xtick={0,...,7}, xlabel=Time ($\mu s$),
]
\addplot[blue, samples=1000, domain=-0.5:7.5]{func(x)};
\end{axis}
\end{tikzpicture}
\subsection{Simple amplitude ramp (AD9910 only)}
An amplitude ramp of an RF signal can be generated by modifying the \texttt{self.amp} array in the previous example.
\inputcolorboxminted{firstline=95,lastline=98}{examples/dds.py}
2025-01-30 02:50:30 +08:00
The generated RF output has an incrementing amplitude scale factor (ASF), increasing by 0.1 at every microsecond. Once the ASF reaches 1.0, it drops back to 0.0 at the next microsecond. The expected waveform over 1 cycle is plotted on the following figure. Note that phase of the RF pulses may drift gradually. Urukul was operated with 50$\Omega$ termination for this waveform.
2025-01-30 02:22:50 +08:00
\begin{tikzpicture}[
declare function={
func(\x)= and(\x>=0, \x<1) * (0) +
and(\x>=1, \x<2) * (0.05*cos(deg(10*pi*\x))) +
and(\x>=2, \x<3) * (0.1*cos(deg(10*pi*\x))) +
and(\x>=3, \x<4) * (0.15*cos(deg(10*pi*\x))) +
and(\x>=4, \x<5) * (0.2*cos(deg(10*pi*\x))) +
and(\x>=5, \x<6) * (0.25*cos(deg(10*pi*\x))) +
and(\x>=6, \x<7) * (0.3*cos(deg(10*pi*\x))) +
and(\x>=7, \x<8) * (0.35*cos(deg(10*pi*\x))) +
and(\x>=8, \x<9) * (0.4*cos(deg(10*pi*\x))) +
and(\x>=9, \x<10) * (0.45*cos(deg(10*pi*\x))) +
and(\x>=10, \x<11) * (0.5*cos(deg(10*pi*\x)));
}
]
\begin{axis}[
axis x line=middle, axis y line=middle,
every axis x label/.style={
at={(ticklabel* cs:1.05)},
anchor=west,
},
every axis y label/.style={
at={(ticklabel* cs:1.05)},
anchor=south,
},
2025-01-30 02:22:50 +08:00
minor tick num=4,
grid=both,
height=8cm,
width=16cm,
ymin=-0.7, ymax=0.7, ytick={-0.5,...,0,...,0.5}, ylabel=Voltage ($V$),
xmin=0, xmax=11.5, xtick={0,...,11}, xlabel=Time ($\mu s$),
]
\addplot[blue, samples=1500, domain=0:11]{func(x)};
\end{axis}
\end{tikzpicture}
\newpage
2025-01-30 02:22:50 +08:00
\subsection{RAM synchronization (AD9910 only)}
2025-01-30 02:50:30 +08:00
2025-01-30 02:22:50 +08:00
Multiple RAM channels can also be synchronized. Similar to the 10 MHz single-tone RF signals, specify \texttt{phase} when calling \texttt{dds.set()} in \texttt{configure\char`_ram\char`_mode}. For example, set phase to 0 for the channels (\texttt{phase=0.0}):
2025-01-30 02:22:50 +08:00
\inputcolorboxminted{firstline=116,lastline=116}{examples/dds.py}
2025-01-30 02:22:50 +08:00
Then, replace the \texttt{run()} function with the following:
2025-01-30 02:22:50 +08:00
\inputcolorboxminted{firstline=122,lastline=134}{examples/dds.py}
2025-01-30 02:50:30 +08:00
Two phase-coherent RF signals with the same waveform as the previous figure (from either RAM examples) should be generated.
2025-01-30 02:50:30 +08:00
% Direct input to avoid issues with minted
\input{shared/suservo.tex}
2021-11-30 14:17:02 +08:00
2024-11-15 00:58:32 +08:00
\ordersection{4410/4412 DDS Urukul}
2021-11-30 14:17:02 +08:00
2024-11-15 00:58:32 +08:00
\finalfootnote
2021-11-30 14:17:02 +08:00
\end{document}