add the reset of the citation

follow up of 56082b94
Update #25, #29
This commit is contained in:
occheung 2022-01-18 12:10:11 +08:00
parent 947b3672b9
commit 0b6c4e2b77
4 changed files with 74 additions and 45 deletions

View File

@ -474,7 +474,7 @@ This card can achieve higher speed and lower jitter than the isolated 2118/2128
\section{Electrical Specifications}
Both recommended operating conditions and electrical characteristics are based on the datasheet of the bus transceivers IC (74LVT162245MTD).
Both recommended operating conditions and electrical characteristics are based on the datasheet of the bus transceivers IC (74LVT162245MTD\footnote{\label{transceiver}https://www.onsemi.com/pdf/datasheet/74lvt162245-d.pdf}).
\begin{table}[h]
\begin{threeparttable}
@ -526,6 +526,8 @@ All specifications are in the recommended operating temperature range unless oth
\end{threeparttable}
\end{table}
\newpage
\section{Configuring IO Direction \& Termination}
The termination and IO direction can be configured by switches.
The per-channel termination and per-bank IO direction switches are found at the top and middle of the card respectively.

View File

@ -335,7 +335,7 @@ Only shielded Ethernet Cat-6 cables should be connected.
\section{Electrical Specifications}
Information in this section is based on the datasheet of the repeaters IC (FIN1101K8X).
Information in this section is based on the datasheet of the repeaters IC (FIN1101K8X\footnote{\label{repeaters}https://www.onsemi.com/pdf/datasheet/fin1101-d.pdf}).
The Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Other specifications should be met without exception.

View File

@ -68,6 +68,7 @@ RF switches (1ns temporal resolution) on each channel provides 70 dB isolation.
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\begin{figure}[h]
\centering
@ -309,6 +310,14 @@ RF switches (1ns temporal resolution) on each channel provides 70 dB isolation.
\onecolumn
\section{Electrical Specifications}
Specifications of parameters are based on the datasheets of the
DDS IC(AD9910\footnote{\label{ad9910}https://www.analog.com/media/en/technical-documentation/data-sheets/AD9910.pdf},
AD9912\footnote{\label{ad9912}https://www.analog.com/media/en/technical-documentation/data-sheets/AD9912.pdf}),
clock buffer IC (Si53312\footnote{\label{clock_buffer}https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si53312.pdf}),
digital attenuator IC (HMC542BLP4E\footnote{\label{attenuator}https://www.analog.com/media/en/technical-documentation/data-sheets/hmc542b.pdf}),
various information from Sinara wiki\footnote{\label{urukul_wiki}https://github.com/sinara-hw/Urukul/wiki\#details-specification-and-typical-performance-data}
and corresponding test results\footnote{\label{sinara354}https://github.com/sinara-hw/sinara/issues/354\#issuecomment-352859041}.
\begin{table}[h]
\begin{threeparttable}
\caption{Recommended Operating Conditions}
@ -318,12 +327,12 @@ RF switches (1ns temporal resolution) on each channel provides 70 dB isolation.
\textbf{Unit} & \textbf{Conditions} \\
\hline
Clock input & & & & & &\\
\hspace{3mm} Input frequency & $f_{clk}$ & 10 & & 1000 & MHz & PLL disabled \\
\hspace{3mm} Input frequency\repeatfootnote{ad9910}\textsuperscript{,}\repeatfootnote{ad9912} & $f_{clk}$ & 10 & & 1000 & MHz & PLL disabled \\
& & 3.2 & & 60 & MHz & AD9910, PLL enabled, no clock division \\
& & 12.8 & & 240 & MHz & AD9910, PLL enabled, 4x clock division \\
& & 11 & & 200 & MHz & AD9912, PLL enabled, no clock division \\
& & 44 & & 800 & MHz & AD9912, PLL enabled, 4x clock division \\
\hspace{3mm} Nominal input power & $P_{in}$ & & 10 & & dBm & \\
\hspace{3mm} Nominal input power\repeatfootnote{clock_buffer} & $P_{in}$ & & 10 & & dBm & \\
\thickhline
\end{tabularx}
\end{threeparttable}
@ -337,23 +346,23 @@ RF switches (1ns temporal resolution) on each channel provides 70 dB isolation.
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Low frequency power & $P(f)$ & & & -20 & dBm & 100 kHz output \\
Low frequency power\repeatfootnote{sinara354} & $P(f)$ & & & -20 & dBm & 100 kHz output \\
& & & & 10 & dBm & 1 MHz output \\
\hline
Frequency & $f_{out}$ & 1 & & 400 & MHz & \\
Frequency\repeatfootnote{ad9910} & $f_{out}$ & 1 & & 400 & MHz & \\
\hline
Digital Attenuation & $\frac{P_{out}}{P_{dds}}$ & -31.5 & & 0 & dB & \\
Digital Attenuation\repeatfootnote{attenuator} & $\frac{P_{out}}{P_{dds}}$ & -31.5 & & 0 & dB & \\
\hline
Resolution & & & & & & \\
\hspace{3mm} Frequency & $Q_f$ & & 0.25 & & Hz & AD9910 \\
\hspace{3mm} Frequency\repeatfootnote{ad9910}\textsuperscript{,}\repeatfootnote{ad9912} & $Q_f$ & & 0.25 & & Hz & AD9910 \\
& & & 8 & & $\mu$Hz & AD9912 \\
\hspace{3mm} Phase offset & $Q_\theta$ & & 16 & & bits & AD9910 \\
\hspace{3mm} Phase offset\repeatfootnote{ad9910}\textsuperscript{,}\repeatfootnote{ad9912} & $Q_\theta$ & & 16 & & bits & AD9910 \\
& & & 14 & & bits & AD9912 \\
\hspace{3mm} Digital amplitude & $M_{asf}$ & & 14 & & bits & AD9910 \\
\hspace{3mm} DAC full scale current & $M_{I}$ & & 8 & & bits & AD9910 \\
\hspace{3mm} Digital amplitude\repeatfootnote{ad9910} & $M_{asf}$ & & 14 & & bits & AD9910 \\
\hspace{3mm} DAC full scale current\repeatfootnote{ad9910}\textsuperscript{,}\repeatfootnote{ad9912} & $M_{I}$ & & 8 & & bits & AD9910 \\
& & & 10 & & bits & AD9912 \\
\hspace{3mm} Temporal (I/O Update) & $\Delta t$ & & 4 & & ns & \\
\hspace{3mm} Digital attenuation & $Q_{att}$ & & 0.5 & & dB & \\
\hspace{3mm} Temporal (I/O Update)\repeatfootnote{urukul_wiki} & $\Delta t$ & & 4 & & ns & \\
\hspace{3mm} Digital attenuation\repeatfootnote{attenuator} & $Q_{att}$ & & 0.5 & & dB & \\
\thickhline
\end{tabularx}
\end{threeparttable}
@ -377,19 +386,19 @@ The tabulated performance characteristics are produced using the following setup
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Digital attenuator glitch duration & $t_s$ & & 100 & & ns & \\
Digital attenuator glitch duration\repeatfootnote{sinara354} & $t_s$ & & 100 & & ns & \\
\hline
RF switch & & & & & &\\
RF switch\repeatfootnote{sinara354} & & & & & &\\
\hspace{3mm} Rise to 90\% & $t_{on}$ & & 100 & & ns & \\
\hspace{3mm} Isolation & $\frac{P_{off}}{P_{dds}}$ & & 70 & & dB & \\
\hspace{3mm} Turn-on chirp & $\gamma$ & & & 0.1 & deg/s & Excluding the first $\mu$s\\
\hline
Crosstalk & $\frac{P_X}{P_{out}}$ & & -84 & & dB & Victim RF switch opened \\
Crosstalk\repeatfootnote{sinara354} & $\frac{P_X}{P_{out}}$ & & -84 & & dB & Victim RF switch opened \\
& & & -110 & & dB & Victim RF switch closed \\
\hline
Cross-channel-intermodulation & $IM$ & & -90 & & dB & \\
Cross-channel-intermodulation\repeatfootnote{sinara354} & $IM$ & & -90 & & dB & \\
\hline
Phase noise & $\mathcal{L}(f)$ & & -85 & & dBc/Hz & 0.1 Hz \\
Phase noise\repeatfootnote{sinara354} & $\mathcal{L}(f)$ & & -85 & & dBc/Hz & 0.1 Hz \\
& & & -95 & & dBc/Hz & 1 Hz \\
& & & -107 & & dBc/Hz & 10 Hz \\
& & & -116 & & dBc/Hz & 100 Hz \\
@ -399,14 +408,14 @@ The tabulated performance characteristics are produced using the following setup
& & & -128 & & dBc/Hz & 1 MHz \\
& & & -149 & & dBc/Hz & 10 MHz \\
\hline
Second-order harmonics & $\frac{P_{n=2}}{P_{n=1}}$ & & -40 & & dB & 6 dBm output \\
Second-order harmonics\repeatfootnote{sinara354} & $\frac{P_{n=2}}{P_{n=1}}$ & & -40 & & dB & 6 dBm output \\
& & & -34 & & dB & 10.5 dBm output \\
\hline
Third-order harmonics & $\frac{P_{n=3}}{P_{n=1}}$ & & -54 & & dB & 6 dBm output \\
Third-order harmonics\repeatfootnote{sinara354} & $\frac{P_{n=3}}{P_{n=1}}$ & & -54 & & dB & 6 dBm output \\
& & & -28 & & dB & 10.5 dBm output \\
\hline
Power consumption (AD9910) & $P$ & & 7 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
Power consumption (AD9912) & $P$ & & 6.5 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
Power consumption (AD9910)\repeatfootnote{urukul_wiki} & $P$ & & 7 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
Power consumption (AD9912)\repeatfootnote{urukul_wiki} & $P$ & & 6.5 & & W & 4x 400 MHz, 10.5 dBm, 52\degree C\\
\thickhline
\end{tabularx}
\end{threeparttable}
@ -414,7 +423,7 @@ The tabulated performance characteristics are produced using the following setup
\newpage
Harmonic content of the DDS signals from 4410 Urukul is tabulated below. An external 125 MHz clock signal were supplied.
Harmonic content of the DDS signals from 4410 Urukul is tabulated below\footnote{\label{urukul29}https://github.com/sinara-hw/Urukul/issues/29}. An external 125 MHz clock signal were supplied.
\newcommand{\ts}{\textsuperscript}
\newcolumntype{Y}{>{\centering\arraybackslash}X}
@ -581,47 +590,49 @@ Harmonic content of the DDS signals from 4410 Urukul is tabulated below. An exte
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_harmonics.png}
\caption{Harmonic content of 200 MHz DDS Output}
\caption[]{Harmonic content of 200 MHz DDS Output\footnotemark}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_6dbm_harmonics.png}
\caption{Harmonic content of 80 MHz DDS Output (6 dBm)}
\caption{Harmonic content of 80 MHz DDS Output (6 dBm)\repeatfootnote{sinara354}}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{urukul_10dbm_harmonics.png}
\caption{Harmonic content of 80 MHz DDS Output (10 dBm)}
\caption{Harmonic content of 80 MHz DDS Output (10 dBm)\repeatfootnote{sinara354}}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{rf_transient.jpg}
\caption{RF switch turn on transient}
\caption{RF switch turn on transient\repeatfootnote{sinara354}}
\end{figure}
\begin{figure}[H]
\includegraphics[width=3.3in]{nyquist_rejection_400mhz.png}
\caption{Nyquist rejection 400 MHz to 600 MHz}
\caption{Nyquist rejection 400 MHz to 600 MHz\repeatfootnote{sinara354}}
\end{figure}
\end{multicols}
\footnotetext{\label{urukul64}https://github.com/sinara-hw/Urukul/issues/64}
\begin{figure}[H]
\centering
\includegraphics[width=3.3in]{nyquist_rejection_450mhz.png}
\caption{Nyquist rejection 450 MHz to 550 MHz}
\caption{Nyquist rejection 450 MHz to 550 MHz\repeatfootnote{sinara354}}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=3.3in]{att_glitch_bitflip.png}
\caption{Attenuator step from 20 to 60 digital\\(16+4dB switch glitch)}
\caption{Attenuator step from 20 to 60 digital\\(16+4dB switch glitch)\repeatfootnote{sinara354}}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=3.3in]{att_glitch_carry.png}
\caption{Attenuator step from 31 to 32 digital\\(major carry glitch)}
\caption{Attenuator step from 31 to 32 digital\\(major carry glitch)\repeatfootnote{sinara354}}
\end{figure}
\newpage

View File

@ -64,6 +64,14 @@ Channels can broken out to BNC, SMA or MCX by adding external 5518 BNC-IDC, 5528
\newcommand*{\MyLabel}[3][2cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand*{\MymyLabel}[3][4cm]{\parbox{#1}{\centering #2 \\ #3}}
\newcommand{\repeatfootnote}[1]{\textsuperscript{\ref{#1}}}
\newcommand{\footnoteurl}[1]{
\hypersetup{hidelinks}
\urlstyle{same}
\url{#1}
\urlstyle{}
\hypersetup{colorlinks}
}
\begin{figure}[h]
\centering
@ -152,6 +160,12 @@ Channels can broken out to BNC, SMA or MCX by adding external 5518 BNC-IDC, 5528
\section{Electrical Specifications}
% \hypersetup{hidelinks}
% \urlstyle{same}
The specifications are based on the datasheet of the DAC IC
(AD5372BCPZ\footnote{\label{dac}\footnoteurl{https://www.analog.com/media/en/technical-documentation/data-sheets/AD5372_5373.pdf}}),
and various information from Sinara wiki\footnote{\label{zotino_wiki}\footnoteurl{https://github.com/sinara-hw/Zotino/wiki}}.
\begin{table}[h]
\begin{threeparttable}
\caption{Output Specifications}
@ -160,21 +174,23 @@ Channels can broken out to BNC, SMA or MCX by adding external 5518 BNC-IDC, 5528
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions} \\
\hline
Output voltage & $V_{out}$ & -10 & & 10 & V & \\
Output voltage\repeatfootnote{dac} & $V_{out}$ & -10 & & 10 & V & \\
\hline
Output impedance & $Z_{out}$ & \multicolumn{4}{c|}{470 $\Omega$ $||$ 2.2nF} & \\
Output impedance\repeatfootnote{zotino_wiki} & $Z_{out}$ & \multicolumn{4}{c|}{470 $\Omega$ $||$ 2.2nF} & \\
\hline
Resolution & & & 16 & & bits & \\
Resolution\repeatfootnote{dac} & & & 16 & & bits & \\
\hline
3dB bandwidth & & & 75 & & kHz & \\
3dB bandwidth\repeatfootnote{zotino_wiki} & & & 75 & & kHz & \\
\hline
Power consumption & & 3 & & 8.7 & W & \\
Power consumption\repeatfootnote{zotino_wiki} & & 3 & & 8.7 & W & \\
\thickhline
\end{tabularx}
\end{threeparttable}
\end{table}
Output noise are measured after 15 cm IDC cable, IDC-SMA, 100 cm coax ($\sim$50 pF), and 500 k$\Omega$ $||$ 150 pF. The DAC output is 3.5 V.
The following are cross-talk and transient behavior of Zotino\footnote{\label{zotino21}\footnoteurl{https://github.com/sinara-hw/Zotino/issues/21}}.
In terms of output noise, it was measured after 15 cm IDC cable, IDC-SMA, 100 cm coax ($\sim$50 pF), and 500 k$\Omega$ $||$ 150 pF\footnote{\label{zotino27}\footnoteurl{https://github.com/sinara-hw/Zotino/issues/27}}.
The DAC output during noise measurement is 3.5 V.
\begin{table}[h]
\begin{threeparttable}
@ -184,18 +200,18 @@ Output noise are measured after 15 cm IDC cable, IDC-SMA, 100 cm coax ($\sim$50
\textbf{Parameter} & \textbf{Symbol} & \textbf{Min.} & \textbf{Typ.} & \textbf{Max.} &
\textbf{Unit} & \textbf{Conditions / Comments} \\
\hline
DC cross-talk & & & -116 & & dB & \\
DC cross-talk\repeatfootnote{zotino21} & & & -116 & & dB & \\
\hline
Fall-time & & & 18.5 & & $\mu$s & 10\% to 90\% fall-time \\
Fall-time\repeatfootnote{zotino21} & & & 18.5 & & $\mu$s & 10\% to 90\% fall-time \\
& & & 25 & & $\mu$s & 1\% to 99\% fall-time \\
\hline
Negative overshoot & & & 0.5\% & & - & \\
Negative overshoot\repeatfootnote{zotino21} & & & 0.5\% & & - & \\
\hline
Rise-time & & & 30 & & $\mu$s & 1\% to 99\% rise-time \\
Rise-time\repeatfootnote{zotino21} & & & 30 & & $\mu$s & 1\% to 99\% rise-time \\
\hline
Positive overshoot & & & 0.65\% & & - & \\
Positive overshoot\repeatfootnote{zotino21} & & & 0.65\% & & - & \\
\hline
Output noise & & & & & & \\
Output noise\repeatfootnote{zotino27} & & & & & & \\
\hspace{18mm} @ 100 Hz & & & 500 & & nV/rtHz & 6.9 Hz bandwidth \\
\hspace{18mm} @ 300 Hz & & & 300 & & nV/rtHz & 6.9 Hz bandwidth \\
\hspace{18mm} @ 50 kHz & & & 210 & & nV/rtHz & 6.9 kHz bandwidth \\
@ -208,7 +224,7 @@ Output noise are measured after 15 cm IDC cable, IDC-SMA, 100 cm coax ($\sim$50
\newpage
Step response are found by setting the DAC register to 0x0000 (-10V) or 0xFFFF (10V) and observe the waveform.
Step response are found by setting the DAC register to 0x0000 (-10V) or 0xFFFF (10V) and observe the waveform\repeatfootnote{zotino21}.
\begin{figure}[hbt!]
\centering
@ -221,7 +237,7 @@ Step response are found by setting the DAC register to 0x0000 (-10V) or 0xFFFF (
\caption{Step response}%
\end{figure}
Far-end crosstalk is measured using the following setup.
Far-end crosstalk is measured using the following setup\repeatfootnote{zotino21}.
\begin{enumerate}
\item CH1 as aggressor, CH0 as victim