dds: closure param for ram set

This commit is contained in:
occheung 2020-09-18 14:08:51 +08:00
parent 25f8363e54
commit 883e821794

View File

@ -64,7 +64,7 @@ construct_bitmask!(DDSCFRMask; u32;
const WRITE_MASK :u8 = 0x00; const WRITE_MASK :u8 = 0x00;
const READ_MASK :u8 = 0x80; const READ_MASK :u8 = 0x80;
#[derive(Clone)] #[derive(Clone, PartialEq)]
pub enum RAMDestination { pub enum RAMDestination {
Frequency = 0, Frequency = 0,
Phase = 1, Phase = 1,
@ -355,14 +355,9 @@ where
assert!(phase_offset >= 0.0 && phase_offset < 360.0); assert!(phase_offset >= 0.0 && phase_offset < 360.0);
assert!(amp_scale_factor >=0.0 && amp_scale_factor <= 1.0); assert!(amp_scale_factor >=0.0 && amp_scale_factor <= 1.0);
let resolutions :[u64; 3] = [1 << 32, 1 << 16, 1 << 14]; let ftw = self.frequency_to_ftw(f_out);
let ftw = ((resolutions[0] as f64) * f_out / self.f_sys_clk) as u32; let pow = self.degree_to_pow(phase_offset);
let pow = ((resolutions[1] as f64) * phase_offset / 360.0) as u16; let asf = self.amplitude_to_asf(amp_scale_factor);
let asf :u16 = if amp_scale_factor == 1.0 {
0x3FFF
} else {
((resolutions[2] as f64) * amp_scale_factor) as u16
};
// Setup configuration registers before writing single tone register // Setup configuration registers before writing single tone register
self.enable_single_tone_configuration()?; self.enable_single_tone_configuration()?;
@ -390,9 +385,7 @@ where
// Setup configuration registers before writing single tone register // Setup configuration registers before writing single tone register
self.enable_single_tone_configuration()?; self.enable_single_tone_configuration()?;
// Calculate frequency tuning work (FTW) let ftw = self.frequency_to_ftw(f_out);
let f_res: u64 = 1 << 32;
let ftw = ((f_res as f64) * f_out / self.f_sys_clk) as u32;
// Read existing amplitude/phase data // Read existing amplitude/phase data
let mut register: [u8; 8] = [0; 8]; let mut register: [u8; 8] = [0; 8];
@ -418,9 +411,7 @@ where
// Setup configuration registers before writing single tone register // Setup configuration registers before writing single tone register
self.enable_single_tone_configuration()?; self.enable_single_tone_configuration()?;
// Calculate phase offset work (POW) let pow = self.degree_to_pow(phase_offset);
let phase_res: u64 = 1 << 16;
let pow = ((phase_res as f64) * phase_offset / 360.0) as u16;
// Read existing amplitude/frequency data // Read existing amplitude/frequency data
let mut register: [u8; 8] = [0; 8]; let mut register: [u8; 8] = [0; 8];
@ -445,12 +436,7 @@ where
self.enable_single_tone_configuration()?; self.enable_single_tone_configuration()?;
// Calculate amplitude_scale_factor (ASF) // Calculate amplitude_scale_factor (ASF)
let amp_res: u64 = 1 << 14; let asf = self.amplitude_to_asf(amp_scale_factor);
let asf :u16 = if amp_scale_factor == 1.0 {
0x3FFF
} else {
((amp_res as f64) * amp_scale_factor) as u16
};
// Read existing frequency/phase data // Read existing frequency/phase data
let mut register: [u8; 8] = [0; 8]; let mut register: [u8; 8] = [0; 8];
@ -496,16 +482,91 @@ where
]) ])
} }
/*
* Configure a RAM mode profile, but with RAM data generated by a closure
*/
pub fn set_ram_profile_with_closure<F>(&mut self, profile: u8, start_addr: u16,
ram_dst: RAMDestination, no_dwell_high: bool, zero_crossing: bool,
op_mode: RAMOperationMode, playback_rate: f64, f: F) -> Result<(), Error<E>>
where
F: FnOnce() -> ArrayVec::<[f64; 2048]>
{
// Check the legality of the profile setup
assert!(profile < 7);
assert!(start_addr < 1024);
let mut vec = f();
if (ram_dst != RAMDestination::Polar && ((vec.len() as u16) + start_addr) < 1024) ||
((((vec.len()/2) as u16) + start_addr) < 1024) {
return Err(Error::DDSRAMError);
}
// TODO: Convert argument into bytes for RAM
let mut byte_vec: ArrayVec<[u8; 8192]> = ArrayVec::new();
match ram_dst {
RAMDestination::Frequency => {
for freq in vec.into_iter() {
let ftw = self.frequency_to_ftw(freq);
byte_vec.push(((ftw >> 24) & 0xFF) as u8);
byte_vec.push(((ftw >> 16) & 0xFF) as u8);
byte_vec.push(((ftw >> 8) & 0xFF) as u8);
byte_vec.push(((ftw >> 0) & 0xFF) as u8);
}
}
RAMDestination::Phase => {
for deg in vec.into_iter() {
let pow = self.degree_to_pow(deg);
byte_vec.push(((pow >> 8) & 0xFF) as u8);
byte_vec.push(((pow >> 0) & 0xFF) as u8);
byte_vec.push(0);
byte_vec.push(0);
}
}
RAMDestination::Amplitude => {
for amp in vec.into_iter() {
let asf = self.amplitude_to_asf(amp);
byte_vec.push(((asf >> 8) & 0xFF) as u8);
byte_vec.push(((asf << 2) & 0xFC) as u8);
byte_vec.push(0);
byte_vec.push(0);
}
}
RAMDestination::Polar => {
// Alternate phase and amplitude
let mut phase = true;
for pol in vec.into_iter() {
if phase {
let pow = self.degree_to_pow(pol);
byte_vec.push(((pow >> 8) & 0xFF) as u8);
byte_vec.push(((pow >> 0) & 0xFF) as u8);
phase = false;
} else {
let asf = self.amplitude_to_asf(pol);
byte_vec.push(((asf >> 8) & 0xFF) as u8);
byte_vec.push(((asf << 2) & 0xFC) as u8);
phase = true;
}
}
if phase {
return Err(Error::DDSRAMError);
}
}
}
let data = byte_vec.as_slice();
self.set_ram_profile(profile, start_addr, start_addr + (((data.len()/4) - 1) as u16),
ram_dst, no_dwell_high, zero_crossing, op_mode, playback_rate, data)
}
/* /*
* Configure a RAM mode profile * Configure a RAM mode profile
* * TODO: Possibly remove redundant end_addr parameter.
* This can be inferred by start_addr and data size.
*/ */
pub fn set_ram_profile(&mut self, profile: u8, start_addr: u16, end_addr: u16, pub fn set_ram_profile(&mut self, profile: u8, start_addr: u16, end_addr: u16,
ram_dst: RAMDestination, no_dwell_high: bool, zero_crossing: bool, ram_dst: RAMDestination, no_dwell_high: bool, zero_crossing: bool,
op_mode: RAMOperationMode, playback_rate: f64, data: &[u8] op_mode: RAMOperationMode, playback_rate: f64, data: &[u8]
) -> Result<(), Error<E>> { ) -> Result<(), Error<E>> {
// Check the legality of this setup // Check the legality of the profile setup
assert!(profile < 7); assert!(profile < 7);
assert!(end_addr >= start_addr); assert!(end_addr >= start_addr);
assert!(end_addr < 1024); assert!(end_addr < 1024);
@ -513,8 +574,8 @@ where
// Calculate address step rate, and check legality // Calculate address step rate, and check legality
let step_rate = (self.f_sys_clk/(4.0 * playback_rate)) as u64; let step_rate = (self.f_sys_clk/(4.0 * playback_rate)) as u64;
if (step_rate == 0 || step_rate > 0xFFFF) { if step_rate == 0 || step_rate > 0xFFFF {
return Err(Error::ParameterError); return Err(Error::DDSRAMError);
} }
// Before setting up RAM, disable RAM_ENABLE // Before setting up RAM, disable RAM_ENABLE
@ -533,7 +594,7 @@ where
])?; ])?;
// Temporarily disable RAM mode while accessing into RAM // Temporarily disable RAM mode while accessing into RAM
self.disable_ram_configuration(); self.disable_ram_configuration()?;
self.write_ram(data)?; self.write_ram(data)?;
// Properly configure start_addr and end_addr // Properly configure start_addr and end_addr
@ -541,8 +602,26 @@ where
} }
// Helper function to write data in RAM // Calculate ftw (frequency tuning word)
// Need address range for data size check fn frequency_to_ftw(&mut self, f_out: f64) -> u32 {
let f_res: u64 = 1 << 32;
((f_res as f64) * f_out / self.f_sys_clk) as u32
}
// Calculate pow (Phase Offset Word)
fn degree_to_pow(&mut self, phase_offset: f64) -> u16 {
// Calculate phase offset word (POW)
let phase_res: u64 = 1 << 16;
((phase_res as f64) * phase_offset / 360.0) as u16
}
// Calculate asf (Amplitude Scale Factor)
fn amplitude_to_asf(&mut self, amplitude: f64) -> u16 {
let amp_res: u64 = 0x3FFF;
((amp_res as f64) * amplitude) as u16
}
// Write data in RAM
fn write_ram(&mut self, data: &[u8]) -> Result<(), Error<E>> { fn write_ram(&mut self, data: &[u8]) -> Result<(), Error<E>> {
let mut vec: ArrayVec<[u8; 8192]> = ArrayVec::new(); let mut vec: ArrayVec<[u8; 8192]> = ArrayVec::new();
vec.try_push(0x16) vec.try_push(0x16)