forked from M-Labs/nac3
standalone/ndarray: improve {reshape,broadcast_to,transpose} tests
Print their shapes and exhaustively print all contents.
This commit is contained in:
parent
a83df19a81
commit
d44e226e43
@ -214,29 +214,65 @@ def test_ndarray_transpose():
|
|||||||
y = np_transpose(x)
|
y = np_transpose(x)
|
||||||
z = np_transpose(y)
|
z = np_transpose(y)
|
||||||
|
|
||||||
|
output_int32(np_shape(x)[0])
|
||||||
|
output_int32(np_shape(x)[1])
|
||||||
output_ndarray_float_2(x)
|
output_ndarray_float_2(x)
|
||||||
|
|
||||||
|
output_int32(np_shape(y)[0])
|
||||||
|
output_int32(np_shape(y)[1])
|
||||||
output_ndarray_float_2(y)
|
output_ndarray_float_2(y)
|
||||||
|
|
||||||
|
output_int32(np_shape(z)[0])
|
||||||
|
output_int32(np_shape(z)[1])
|
||||||
|
output_ndarray_float_2(z)
|
||||||
|
|
||||||
def test_ndarray_reshape():
|
def test_ndarray_reshape():
|
||||||
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
|
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
|
||||||
x = np_reshape(w, (1, 2, 1, -1))
|
x = np_reshape(w, (1, 2, 1, -1))
|
||||||
y = np_reshape(x, [2, -1])
|
y = np_reshape(x, [2, -1])
|
||||||
z = np_reshape(y, 10)
|
z = np_reshape(y, 10)
|
||||||
|
|
||||||
|
output_int32(np_shape(w)[0])
|
||||||
|
output_ndarray_float_1(w)
|
||||||
|
|
||||||
|
output_int32(np_shape(x)[0])
|
||||||
|
output_int32(np_shape(x)[1])
|
||||||
|
output_int32(np_shape(x)[2])
|
||||||
|
output_int32(np_shape(x)[3])
|
||||||
|
output_ndarray_float_4(x)
|
||||||
|
|
||||||
|
output_int32(np_shape(y)[0])
|
||||||
|
output_int32(np_shape(y)[1])
|
||||||
|
output_ndarray_float_2(y)
|
||||||
|
|
||||||
|
output_int32(np_shape(z)[0])
|
||||||
|
output_ndarray_float_1(z)
|
||||||
|
|
||||||
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
|
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
|
||||||
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
|
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
|
||||||
|
|
||||||
output_ndarray_float_1(w)
|
output_int32(np_shape(x1)[0])
|
||||||
output_ndarray_float_2(y)
|
output_ndarray_int32_1(x1)
|
||||||
output_ndarray_float_1(z)
|
|
||||||
|
output_int32(np_shape(x2)[0])
|
||||||
|
output_int32(np_shape(x2)[1])
|
||||||
|
output_ndarray_int32_2(x2)
|
||||||
|
|
||||||
def test_ndarray_broadcast_to():
|
def test_ndarray_broadcast_to():
|
||||||
xs = np_array([1.0, 2.0, 3.0])
|
xs = np_array([1.0, 2.0, 3.0])
|
||||||
ys = np_broadcast_to(xs, (1, 3))
|
ys = np_broadcast_to(xs, (1, 3))
|
||||||
zs = np_broadcast_to(ys, (2, 4, 3))
|
zs = np_broadcast_to(ys, (2, 4, 3))
|
||||||
|
|
||||||
|
output_int32(np_shape(xs)[0])
|
||||||
output_ndarray_float_1(xs)
|
output_ndarray_float_1(xs)
|
||||||
|
|
||||||
|
output_int32(np_shape(ys)[0])
|
||||||
|
output_int32(np_shape(ys)[1])
|
||||||
output_ndarray_float_2(ys)
|
output_ndarray_float_2(ys)
|
||||||
|
|
||||||
|
output_int32(np_shape(zs)[0])
|
||||||
|
output_int32(np_shape(zs)[1])
|
||||||
|
output_int32(np_shape(zs)[2])
|
||||||
output_ndarray_float_3(zs)
|
output_ndarray_float_3(zs)
|
||||||
|
|
||||||
def test_ndarray_subscript_assignment():
|
def test_ndarray_subscript_assignment():
|
||||||
|
Loading…
Reference in New Issue
Block a user