standalone/ndarray: add and organize view function tests

This commit is contained in:
lyken 2024-08-25 00:36:24 +08:00 committed by David Mak
parent 7f3c45302d
commit a83df19a81

View File

@ -68,6 +68,19 @@ def output_ndarray_float_2(n: ndarray[float, Literal[2]]):
for c in range(len(n[r])):
output_float64(n[r][c])
def output_ndarray_float_3(n: ndarray[float, Literal[3]]):
for d in range(len(n)):
for r in range(len(n[d])):
for c in range(len(n[d][r])):
output_float64(n[d][r][c])
def output_ndarray_float_4(n: ndarray[float, Literal[4]]):
for x in range(len(n)):
for y in range(len(n[x])):
for z in range(len(n[x][y])):
for w in range(len(n[x][y][z])):
output_float64(n[x][y][z][w])
def consume_ndarray_1(n: ndarray[float, Literal[1]]):
pass
@ -196,6 +209,68 @@ def test_ndarray_nd_idx():
output_float64(x[1, 0])
output_float64(x[1, 1])
def test_ndarray_transpose():
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
y = np_transpose(x)
z = np_transpose(y)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_reshape():
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = np_reshape(w, (1, 2, 1, -1))
y = np_reshape(x, [2, -1])
z = np_reshape(y, 10)
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
output_ndarray_float_1(w)
output_ndarray_float_2(y)
output_ndarray_float_1(z)
def test_ndarray_broadcast_to():
xs = np_array([1.0, 2.0, 3.0])
ys = np_broadcast_to(xs, (1, 3))
zs = np_broadcast_to(ys, (2, 4, 3))
output_ndarray_float_1(xs)
output_ndarray_float_2(ys)
output_ndarray_float_3(zs)
def test_ndarray_subscript_assignment():
xs = np_array([[11.0, 22.0, 33.0, 44.0], [55.0, 66.0, 77.0, 88.0]])
xs[0, 0] = 99.0
output_ndarray_float_2(xs)
xs[0] = 100.0
output_ndarray_float_2(xs)
xs[:, ::2] = 101.0
output_ndarray_float_2(xs)
xs[1:, 0] = 102.0
output_ndarray_float_2(xs)
xs[0] = np_array([-1.0, -2.0, -3.0, -4.0])
output_ndarray_float_2(xs)
xs[:] = np_array([-5.0, -6.0, -7.0, -8.0])
output_ndarray_float_2(xs)
# Test assignment with memory sharing
ys1 = np_reshape(xs, (2, 4))
ys2 = np_transpose(ys1)
ys3 = ys2[::-1, 0]
ys3[0] = -999.0
output_ndarray_float_2(xs)
output_ndarray_float_2(ys1)
output_ndarray_float_2(ys2)
output_ndarray_float_1(ys3)
def test_ndarray_add():
x = np_identity(2)
y = x + np_ones([2, 2])
@ -540,11 +615,59 @@ def test_ndarray_ipow_broadcast_scalar():
output_ndarray_float_2(x)
def test_ndarray_matmul():
x = np_identity(2)
y = x @ np_ones([2, 2])
# 2D @ 2D -> 2D
a1 = np_array([[2.0, 3.0], [5.0, 7.0]])
b1 = np_array([[11.0, 13.0], [17.0, 23.0]])
c1 = a1 @ b1
output_int32(np_shape(c1)[0])
output_int32(np_shape(c1)[1])
output_ndarray_float_2(c1)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
# 1D @ 1D -> Scalar
a2 = np_array([2.0, 3.0, 5.0])
b2 = np_array([7.0, 11.0, 13.0])
c2 = a2 @ b2
output_float64(c2)
# 2D @ 1D -> 1D
a3 = np_array([[1.0, 2.0, 3.0], [7.0, 8.0, 9.0]])
b3 = np_array([4.0, 5.0, 6.0])
c3 = a3 @ b3
output_int32(np_shape(c3)[0])
output_ndarray_float_1(c3)
# 1D @ 2D -> 1D
a4 = np_array([1.0, 2.0, 3.0])
b4 = np_array([[4.0, 5.0], [6.0, 7.0], [8.0, 9.0]])
c4 = a4 @ b4
output_int32(np_shape(c4)[0])
output_ndarray_float_1(c4)
# Broadcasting
a5 = np_array([
[[ 0.0, 1.0, 2.0, 3.0],
[ 4.0, 5.0, 6.0, 7.0]],
[[ 8.0, 9.0, 10.0, 11.0],
[12.0, 13.0, 14.0, 15.0]],
[[16.0, 17.0, 18.0, 19.0],
[20.0, 21.0, 22.0, 23.0]]
])
b5 = np_array([
[[[ 0.0, 1.0, 2.0],
[ 3.0, 4.0, 5.0],
[ 6.0, 7.0, 8.0],
[ 9.0, 10.0, 11.0]]],
[[[12.0, 13.0, 14.0],
[15.0, 16.0, 17.0],
[18.0, 19.0, 20.0],
[21.0, 22.0, 23.0]]]
])
c5 = a5 @ b5
output_int32(np_shape(c5)[0])
output_int32(np_shape(c5)[1])
output_int32(np_shape(c5)[2])
output_int32(np_shape(c5)[3])
output_ndarray_float_4(c5)
def test_ndarray_imatmul():
x = np_identity(2)
@ -1439,27 +1562,6 @@ def test_ndarray_nextafter_broadcast_rhs_scalar():
output_ndarray_float_2(nextafter_x_zeros)
output_ndarray_float_2(nextafter_x_ones)
def test_ndarray_transpose():
x: ndarray[float, 2] = np_array([[1., 2., 3.], [4., 5., 6.]])
y = np_transpose(x)
z = np_transpose(y)
output_ndarray_float_2(x)
output_ndarray_float_2(y)
def test_ndarray_reshape():
w: ndarray[float, 1] = np_array([1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])
x = np_reshape(w, (1, 2, 1, -1))
y = np_reshape(x, [2, -1])
z = np_reshape(y, 10)
x1: ndarray[int32, 1] = np_array([1, 2, 3, 4])
x2: ndarray[int32, 2] = np_reshape(x1, (2, 2))
output_ndarray_float_1(w)
output_ndarray_float_2(y)
output_ndarray_float_1(z)
def test_ndarray_dot():
x1: ndarray[float, 1] = np_array([5.0, 1.0, 4.0, 2.0])
y1: ndarray[float, 1] = np_array([5.0, 1.0, 6.0, 6.0])
@ -1591,6 +1693,11 @@ def run() -> int32:
test_ndarray_slices()
test_ndarray_nd_idx()
test_ndarray_transpose()
test_ndarray_reshape()
test_ndarray_broadcast_to()
test_ndarray_subscript_assignment()
test_ndarray_add()
test_ndarray_add_broadcast()
test_ndarray_add_broadcast_lhs_scalar()
@ -1754,8 +1861,6 @@ def run() -> int32:
test_ndarray_nextafter_broadcast()
test_ndarray_nextafter_broadcast_lhs_scalar()
test_ndarray_nextafter_broadcast_rhs_scalar()
test_ndarray_transpose()
test_ndarray_reshape()
test_ndarray_dot()
test_ndarray_cholesky()