Compare commits
4 Commits
16e9b62b54
...
25715683ab
Author | SHA1 | Date |
---|---|---|
dsleung | 25715683ab | |
Donald Sebastian Leung | 8b2351d9a7 | |
Donald Sebastian Leung | 7875c1dcd5 | |
Donald Sebastian Leung | ffc74fbb85 |
|
@ -45,11 +45,10 @@ def cmp_wrap(a, b):
|
|||
return Mux((a[-2] == a[-1]) & (b[-2] == b[-1]) & (a[-1] != b[-1]), a[-1], a < b)
|
||||
|
||||
class OutputNetwork(Elaboratable):
|
||||
def __init__(self, lane_count, seqn_width, layout_payload, *, fv_mode=False):
|
||||
def __init__(self, lane_count, seqn_width, layout_payload):
|
||||
self.lane_count = lane_count
|
||||
self.seqn_width = seqn_width
|
||||
self.layout_payload = layout_payload
|
||||
self.fv_mode = fv_mode
|
||||
|
||||
self.steps = boms_steps_pairs(lane_count)
|
||||
self.network = [[Record(layouts.output_network_node(seqn_width, layout_payload)) for _ in range(lane_count)] for _ in range(len(self.steps) + 1)]
|
||||
|
@ -102,99 +101,4 @@ class OutputNetwork(Elaboratable):
|
|||
for node in unchanged:
|
||||
m.d.sync += self.network[i + 1][node].eq(self.network[i][node])
|
||||
|
||||
if self.fv_mode:
|
||||
# Model arbitrary inputs for network nodes
|
||||
for i in range(self.lane_count):
|
||||
m.d.comb += self.input[i].valid.eq(1)
|
||||
m.d.comb += self.input[i].seqn.eq(AnySeq(self.seqn_width))
|
||||
m.d.comb += self.input[i].replace_occured.eq(0)
|
||||
m.d.comb += self.input[i].nondata_replace_occured.eq(0)
|
||||
for field, width in self.layout_payload:
|
||||
m.d.comb += getattr(self.input[i].payload, field).eq(AnySeq(width))
|
||||
|
||||
# Indicator of when inputs from the first clock cycle make it
|
||||
# through the sorting network
|
||||
network_latency = latency(self.lane_count)
|
||||
counter = Signal(range(network_latency + 1))
|
||||
m.d.sync += counter.eq(counter + 1)
|
||||
with m.If(counter == network_latency):
|
||||
m.d.sync += counter.eq(counter)
|
||||
f_output_valid = Signal()
|
||||
m.d.comb += f_output_valid.eq(counter == network_latency)
|
||||
|
||||
with m.If(f_output_valid):
|
||||
replacement_occurred = Signal()
|
||||
for node in self.output:
|
||||
with m.If(node.replace_occured):
|
||||
m.d.comb += replacement_occurred.eq(1)
|
||||
channels_unique = Signal(reset=1)
|
||||
for node1 in range(len(self.input)):
|
||||
for node2 in range(node1):
|
||||
k1 = Past(self.input[node1].payload.channel, clocks=network_latency)
|
||||
k2 = Past(self.input[node2].payload.channel, clocks=network_latency)
|
||||
with m.If(k1 == k2):
|
||||
m.d.comb += channels_unique.eq(0)
|
||||
# If there are no replacements then:
|
||||
# - Input channel numbers are unique
|
||||
# - All outputs are valid
|
||||
# - All inputs make it through the sorting network
|
||||
with m.If(~replacement_occurred):
|
||||
m.d.comb += Assert(channels_unique)
|
||||
for node in self.output:
|
||||
m.d.comb += Assert(node.valid)
|
||||
for input_node in self.input:
|
||||
appeared = Signal()
|
||||
for output_node in self.output:
|
||||
match = Signal(reset=1)
|
||||
with m.If(Past(input_node.valid, clocks=network_latency) != output_node.valid):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(Past(input_node.seqn, clocks=network_latency) != output_node.seqn):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(Past(input_node.replace_occured, clocks=network_latency) != output_node.replace_occured):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(Past(input_node.nondata_replace_occured, clocks=network_latency) != output_node.nondata_replace_occured):
|
||||
m.d.comb += match.eq(0)
|
||||
for field, _ in self.layout_payload:
|
||||
with m.If(Past(getattr(input_node.payload, field), clocks=network_latency) != getattr(output_node.payload, field)):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(match):
|
||||
m.d.comb += appeared.eq(1)
|
||||
m.d.comb += Assert(appeared)
|
||||
# Otherwise, if there are replacements:
|
||||
# - Channel numbers are not unique
|
||||
# - Not all outputs are valid
|
||||
# - All channel numbers in the input appear exactly once as a
|
||||
# valid output
|
||||
# - All valid outputs match an input modulo accounting
|
||||
# information
|
||||
with m.Else():
|
||||
m.d.comb += Assert(~channels_unique)
|
||||
all_valid = Signal(reset=1)
|
||||
for node in self.output:
|
||||
with m.If(~node.valid):
|
||||
m.d.comb += all_valid.eq(0)
|
||||
m.d.comb += Assert(~all_valid)
|
||||
for input_node in self.input:
|
||||
input_channel_valid_once = Const(0)
|
||||
for node1 in range(len(self.output)):
|
||||
accum = (Past(input_node.payload.channel, clocks=network_latency) == self.output[node1].payload.channel) & self.output[node1].valid
|
||||
for node2 in range(len(self.output)):
|
||||
if node1 != node2:
|
||||
accum = accum & ((Past(input_node.payload.channel, clocks=network_latency) != self.output[node2].payload.channel) | ~self.output[node2].valid)
|
||||
input_channel_valid_once = input_channel_valid_once | accum
|
||||
m.d.comb += Assert(input_channel_valid_once)
|
||||
for output_node in self.output:
|
||||
with m.If(output_node.valid):
|
||||
found_input = Signal()
|
||||
for input_node in self.input:
|
||||
match = Signal(reset=1)
|
||||
with m.If(Past(input_node.seqn, clocks=network_latency) != output_node.seqn):
|
||||
m.d.comb += match.eq(0)
|
||||
for field, _ in self.layout_payload:
|
||||
with m.If(Past(getattr(input_node.payload, field), clocks=network_latency) != getattr(output_node.payload, field)):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(match):
|
||||
m.d.comb += found_input.eq(1)
|
||||
m.d.comb += Assert(found_input)
|
||||
|
||||
return m
|
||||
|
|
|
@ -7,11 +7,132 @@ from ...sed.output_network import *
|
|||
Verification tasks for OutputNetwork
|
||||
"""
|
||||
|
||||
class OutputNetworkSpec(Elaboratable):
|
||||
def elaborate(self, platform):
|
||||
m = Module()
|
||||
m.submodules.output_network = output_network = OutputNetwork(4, 2, [("data", 32), ("channel", 3)])
|
||||
|
||||
# Model arbitrary inputs for network nodes
|
||||
for i in range(output_network.lane_count):
|
||||
m.d.comb += output_network.input[i].eq(AnySeq(1))
|
||||
m.d.comb += output_network.input[i].seqn.eq(AnySeq(output_network.seqn_width))
|
||||
m.d.comb += output_network.input[i].replace_occured.eq(0)
|
||||
m.d.comb += output_network.input[i].nondata_replace_occured.eq(0)
|
||||
for field, width in output_network.layout_payload:
|
||||
m.d.comb += getattr(output_network.input[i].payload, field).eq(AnySeq(width))
|
||||
# Indicator of when inputs from the first clock cycle make it
|
||||
# through the sorting network
|
||||
network_latency = latency(output_network.lane_count)
|
||||
counter = Signal(range(network_latency + 1))
|
||||
m.d.sync += counter.eq(counter + 1)
|
||||
with m.If(counter == network_latency):
|
||||
m.d.sync += counter.eq(counter)
|
||||
f_output_valid = Signal()
|
||||
m.d.comb += f_output_valid.eq(counter == network_latency)
|
||||
|
||||
with m.If(f_output_valid):
|
||||
replacement_occurred = Signal()
|
||||
for node in output_network.output:
|
||||
with m.If(node.replace_occured):
|
||||
m.d.comb += replacement_occurred.eq(1)
|
||||
valid_channels_unique = Signal(reset=1)
|
||||
for node1 in range(len(output_network.input)):
|
||||
with m.If(Past(output_network.input[node1].valid, clocks=network_latency)):
|
||||
for node2 in range(node1):
|
||||
with m.If(Past(output_network.input[node2].valid, clocks=network_latency)):
|
||||
k1 = Past(output_network.input[node1].payload.channel, clocks=network_latency)
|
||||
k2 = Past(output_network.input[node2].payload.channel, clocks=network_latency)
|
||||
with m.If(k1 == k2):
|
||||
m.d.comb += valid_channels_unique.eq(0)
|
||||
invalid_channels_unique = Signal(reset=1)
|
||||
for node1 in range(len(output_network.input)):
|
||||
with m.If(~Past(output_network.input[node1].valid, clocks=network_latency)):
|
||||
for node2 in range(node1):
|
||||
with m.If(~Past(output_network.input[node2].valid, clocks=network_latency)):
|
||||
k1 = Past(output_network.input[node1].payload.channel, clocks=network_latency)
|
||||
k2 = Past(output_network.input[node2].payload.channel, clocks=network_latency)
|
||||
with m.If(k1 == k2):
|
||||
m.d.comb += invalid_channels_unique.eq(0)
|
||||
# If there are no replacements then:
|
||||
# - Input channel numbers are unique among (in)valid nodes
|
||||
# - All inputs make it through the sorting network unmodified
|
||||
with m.If(~replacement_occurred):
|
||||
m.d.comb += Assert(valid_channels_unique)
|
||||
m.d.comb += Assert(invalid_channels_unique)
|
||||
for input_node in output_network.input:
|
||||
appeared = Signal()
|
||||
for output_node in output_network.output:
|
||||
match = Signal(reset=1)
|
||||
with m.If(Past(input_node.valid, clocks=network_latency) != output_node.valid):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(Past(input_node.seqn, clocks=network_latency) != output_node.seqn):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(Past(input_node.replace_occured, clocks=network_latency) != output_node.replace_occured):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(Past(input_node.nondata_replace_occured, clocks=network_latency) != output_node.nondata_replace_occured):
|
||||
m.d.comb += match.eq(0)
|
||||
for field, _ in output_network.layout_payload:
|
||||
with m.If(Past(getattr(input_node.payload, field), clocks=network_latency) != getattr(output_node.payload, field)):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(match):
|
||||
m.d.comb += appeared.eq(1)
|
||||
m.d.comb += Assert(appeared)
|
||||
# Otherwise, if there are replacements:
|
||||
# - There is a channel number collision among the valid or invalid
|
||||
# nodes
|
||||
# - All channel numbers in valid inputs appear exactly once as a
|
||||
# valid output
|
||||
# - All valid outputs correspond to a valid input modulo accounting
|
||||
# information
|
||||
# - Channel numbers in invalid inputs not appearing in valid inputs
|
||||
# as well never appear as a valid output
|
||||
with m.Else():
|
||||
m.d.comb += Assert(~valid_channels_unique | ~invalid_channels_unique)
|
||||
for input_node in output_network.input:
|
||||
input_channel_valid_once = Const(0)
|
||||
for node1 in range(len(output_network.output)):
|
||||
accum = (Past(input_node.payload.channel, clocks=network_latency) == output_network.output[node1].payload.channel) & output_network.output[node1].valid
|
||||
for node2 in range(len(output_network.output)):
|
||||
if node1 != node2:
|
||||
accum = accum & ((Past(input_node.payload.channel, clocks=network_latency) != output_network.output[node2].payload.channel) | ~output_network.output[node2].valid)
|
||||
input_channel_valid_once = input_channel_valid_once | accum
|
||||
with m.If(Past(input_node.valid, clocks=network_latency)):
|
||||
m.d.comb += Assert(input_channel_valid_once)
|
||||
for output_node in output_network.output:
|
||||
with m.If(output_node.valid):
|
||||
found_input = Signal()
|
||||
for input_node in output_network.input:
|
||||
match = Signal(reset=1)
|
||||
with m.If(~Past(input_node.valid, clocks=network_latency)):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(Past(input_node.seqn, clocks=network_latency) != output_node.seqn):
|
||||
m.d.comb += match.eq(0)
|
||||
for field, _ in output_network.layout_payload:
|
||||
with m.If(Past(getattr(input_node.payload, field), clocks=network_latency) != getattr(output_node.payload, field)):
|
||||
m.d.comb += match.eq(0)
|
||||
with m.If(match):
|
||||
m.d.comb += found_input.eq(1)
|
||||
m.d.comb += Assert(found_input)
|
||||
for node1 in output_network.input:
|
||||
with m.If(~Past(node1.valid, clocks=network_latency)):
|
||||
has_valid_input = Signal()
|
||||
for node2 in output_network.input:
|
||||
with m.If(Past(node2.valid, clocks=network_latency) & (Past(node1.payload.channel, clocks=network_latency) == Past(node2.payload.channel, clocks=network_latency))):
|
||||
m.d.comb += has_valid_input.eq(1)
|
||||
with m.If(~has_valid_input):
|
||||
has_valid_output = Signal()
|
||||
for output_node in output_network.output:
|
||||
with m.If(output_node.valid & (output_node.payload.channel == Past(node1.payload.channel, clocks=network_latency))):
|
||||
m.d.comb += has_valid_output.eq(1)
|
||||
m.d.comb += Assert(~has_valid_output)
|
||||
|
||||
return m
|
||||
|
||||
class OutputNetworkTestCase(FHDLTestCase):
|
||||
def verify(self):
|
||||
# Bounded model check
|
||||
self.assertFormal(
|
||||
OutputNetwork(4, 2, [("data", 32), ("channel", 3)], fv_mode=True),
|
||||
OutputNetworkSpec(),
|
||||
mode="bmc", depth=40)
|
||||
# TODO: unbounded proof
|
||||
|
||||
|
|
Loading…
Reference in New Issue