140 lines
4.6 KiB
Rust
140 lines
4.6 KiB
Rust
//! Construction of householder elementary reflections.
|
|
|
|
use crate::allocator::Allocator;
|
|
use crate::base::{DefaultAllocator, OMatrix, OVector, Unit, Vector};
|
|
use crate::dimension::Dim;
|
|
use crate::storage::StorageMut;
|
|
use num::Zero;
|
|
use simba::scalar::ComplexField;
|
|
|
|
use crate::geometry::Reflection;
|
|
|
|
/// Replaces `column` by the axis of the householder reflection that transforms `column` into
|
|
/// `(+/-|column|, 0, ..., 0)`.
|
|
///
|
|
/// The unit-length axis is output to `column`. Returns what would be the first component of
|
|
/// `column` after reflection and `false` if no reflection was necessary.
|
|
#[doc(hidden)]
|
|
#[inline(always)]
|
|
pub fn reflection_axis_mut<T: ComplexField, D: Dim, S: StorageMut<T, D>>(
|
|
column: &mut Vector<T, D, S>,
|
|
) -> (T, bool) {
|
|
let reflection_sq_norm = column.norm_squared();
|
|
let reflection_norm = reflection_sq_norm.clone().sqrt();
|
|
|
|
let factor;
|
|
let signed_norm;
|
|
|
|
unsafe {
|
|
let (modulus, sign) = column.vget_unchecked(0).clone().to_exp();
|
|
signed_norm = sign.scale(reflection_norm.clone());
|
|
factor = (reflection_sq_norm + modulus * reflection_norm) * crate::convert(2.0);
|
|
*column.vget_unchecked_mut(0) += signed_norm.clone();
|
|
};
|
|
|
|
if !factor.is_zero() {
|
|
column.unscale_mut(factor.sqrt());
|
|
(-signed_norm, true)
|
|
} else {
|
|
// TODO: not sure why we don't have a - sign here.
|
|
(signed_norm, false)
|
|
}
|
|
}
|
|
|
|
/// Uses an householder reflection to zero out the `icol`-th column, starting with the `shift + 1`-th
|
|
/// subdiagonal element.
|
|
///
|
|
/// Returns the signed norm of the column.
|
|
#[doc(hidden)]
|
|
#[must_use]
|
|
pub fn clear_column_unchecked<T: ComplexField, R: Dim, C: Dim>(
|
|
matrix: &mut OMatrix<T, R, C>,
|
|
icol: usize,
|
|
shift: usize,
|
|
bilateral: Option<&mut OVector<T, R>>,
|
|
) -> T
|
|
where
|
|
DefaultAllocator: Allocator<T, R, C> + Allocator<T, R>,
|
|
{
|
|
let (mut left, mut right) = matrix.columns_range_pair_mut(icol, icol + 1..);
|
|
let mut axis = left.rows_range_mut(icol + shift..);
|
|
|
|
let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis);
|
|
|
|
if not_zero {
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
|
let sign = reflection_norm.clone().signum();
|
|
if let Some(mut work) = bilateral {
|
|
refl.reflect_rows_with_sign(&mut right, &mut work, sign.clone());
|
|
}
|
|
refl.reflect_with_sign(&mut right.rows_range_mut(icol + shift..), sign.conjugate());
|
|
}
|
|
|
|
reflection_norm
|
|
}
|
|
|
|
/// Uses an householder reflection to zero out the `irow`-th row, ending before the `shift + 1`-th
|
|
/// superdiagonal element.
|
|
///
|
|
/// Returns the signed norm of the column.
|
|
#[doc(hidden)]
|
|
#[must_use]
|
|
pub fn clear_row_unchecked<T: ComplexField, R: Dim, C: Dim>(
|
|
matrix: &mut OMatrix<T, R, C>,
|
|
axis_packed: &mut OVector<T, C>,
|
|
work: &mut OVector<T, R>,
|
|
irow: usize,
|
|
shift: usize,
|
|
) -> T
|
|
where
|
|
DefaultAllocator: Allocator<T, R, C> + Allocator<T, R> + Allocator<T, C>,
|
|
{
|
|
let (mut top, mut bottom) = matrix.rows_range_pair_mut(irow, irow + 1..);
|
|
let mut axis = axis_packed.rows_range_mut(irow + shift..);
|
|
axis.tr_copy_from(&top.columns_range(irow + shift..));
|
|
|
|
let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis);
|
|
axis.conjugate_mut(); // So that reflect_rows actually cancels the first row.
|
|
|
|
if not_zero {
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
|
refl.reflect_rows_with_sign(
|
|
&mut bottom.columns_range_mut(irow + shift..),
|
|
&mut work.rows_range_mut(irow + 1..),
|
|
reflection_norm.clone().signum().conjugate(),
|
|
);
|
|
top.columns_range_mut(irow + shift..)
|
|
.tr_copy_from(refl.axis());
|
|
} else {
|
|
top.columns_range_mut(irow + shift..).tr_copy_from(&axis);
|
|
}
|
|
|
|
reflection_norm
|
|
}
|
|
|
|
/// Computes the orthogonal transformation described by the elementary reflector axii stored on
|
|
/// the lower-diagonal element of the given matrix.
|
|
/// matrices.
|
|
#[doc(hidden)]
|
|
pub fn assemble_q<T: ComplexField, D: Dim>(m: &OMatrix<T, D, D>, signs: &[T]) -> OMatrix<T, D, D>
|
|
where
|
|
DefaultAllocator: Allocator<T, D, D>,
|
|
{
|
|
assert!(m.is_square());
|
|
let dim = m.shape_generic().0;
|
|
|
|
// NOTE: we could build the identity matrix and call p_mult on it.
|
|
// Instead we don't so that we take in account the matrix sparseness.
|
|
let mut res = OMatrix::identity_generic(dim, dim);
|
|
|
|
for i in (0..dim.value() - 1).rev() {
|
|
let axis = m.slice_range(i + 1.., i);
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), T::zero());
|
|
|
|
let mut res_rows = res.slice_range_mut(i + 1.., i..);
|
|
refl.reflect_with_sign(&mut res_rows, signs[i].clone().signum());
|
|
}
|
|
|
|
res
|
|
}
|