//! Construction of householder elementary reflections. use crate::allocator::Allocator; use crate::base::{DefaultAllocator, OMatrix, OVector, Unit, Vector}; use crate::dimension::Dim; use crate::storage::StorageMut; use num::Zero; use simba::scalar::ComplexField; use crate::geometry::Reflection; /// Replaces `column` by the axis of the householder reflection that transforms `column` into /// `(+/-|column|, 0, ..., 0)`. /// /// The unit-length axis is output to `column`. Returns what would be the first component of /// `column` after reflection and `false` if no reflection was necessary. #[doc(hidden)] #[inline(always)] pub fn reflection_axis_mut>( column: &mut Vector, ) -> (T, bool) { let reflection_sq_norm = column.norm_squared(); let reflection_norm = reflection_sq_norm.clone().sqrt(); let factor; let signed_norm; unsafe { let (modulus, sign) = column.vget_unchecked(0).clone().to_exp(); signed_norm = sign.scale(reflection_norm.clone()); factor = (reflection_sq_norm + modulus * reflection_norm) * crate::convert(2.0); *column.vget_unchecked_mut(0) += signed_norm.clone(); }; if !factor.is_zero() { column.unscale_mut(factor.sqrt()); (-signed_norm, true) } else { // TODO: not sure why we don't have a - sign here. (signed_norm, false) } } /// Uses an householder reflection to zero out the `icol`-th column, starting with the `shift + 1`-th /// subdiagonal element. /// /// Returns the signed norm of the column. #[doc(hidden)] #[must_use] pub fn clear_column_unchecked( matrix: &mut OMatrix, icol: usize, shift: usize, bilateral: Option<&mut OVector>, ) -> T where DefaultAllocator: Allocator + Allocator, { let (mut left, mut right) = matrix.columns_range_pair_mut(icol, icol + 1..); let mut axis = left.rows_range_mut(icol + shift..); let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis); if not_zero { let refl = Reflection::new(Unit::new_unchecked(axis), T::zero()); let sign = reflection_norm.clone().signum(); if let Some(mut work) = bilateral { refl.reflect_rows_with_sign(&mut right, &mut work, sign.clone()); } refl.reflect_with_sign(&mut right.rows_range_mut(icol + shift..), sign.conjugate()); } reflection_norm } /// Uses an householder reflection to zero out the `irow`-th row, ending before the `shift + 1`-th /// superdiagonal element. /// /// Returns the signed norm of the column. #[doc(hidden)] #[must_use] pub fn clear_row_unchecked( matrix: &mut OMatrix, axis_packed: &mut OVector, work: &mut OVector, irow: usize, shift: usize, ) -> T where DefaultAllocator: Allocator + Allocator + Allocator, { let (mut top, mut bottom) = matrix.rows_range_pair_mut(irow, irow + 1..); let mut axis = axis_packed.rows_range_mut(irow + shift..); axis.tr_copy_from(&top.columns_range(irow + shift..)); let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis); axis.conjugate_mut(); // So that reflect_rows actually cancels the first row. if not_zero { let refl = Reflection::new(Unit::new_unchecked(axis), T::zero()); refl.reflect_rows_with_sign( &mut bottom.columns_range_mut(irow + shift..), &mut work.rows_range_mut(irow + 1..), reflection_norm.clone().signum().conjugate(), ); top.columns_range_mut(irow + shift..) .tr_copy_from(refl.axis()); } else { top.columns_range_mut(irow + shift..).tr_copy_from(&axis); } reflection_norm } /// Computes the orthogonal transformation described by the elementary reflector axii stored on /// the lower-diagonal element of the given matrix. /// matrices. #[doc(hidden)] pub fn assemble_q(m: &OMatrix, signs: &[T]) -> OMatrix where DefaultAllocator: Allocator, { assert!(m.is_square()); let dim = m.shape_generic().0; // NOTE: we could build the identity matrix and call p_mult on it. // Instead we don't so that we take in account the matrix sparseness. let mut res = OMatrix::identity_generic(dim, dim); for i in (0..dim.value() - 1).rev() { let axis = m.slice_range(i + 1.., i); let refl = Reflection::new(Unit::new_unchecked(axis), T::zero()); let mut res_rows = res.slice_range_mut(i + 1.., i..); refl.reflect_with_sign(&mut res_rows, signs[i].clone().signum()); } res }