nalgebra/src/geometry/unit_complex.rs
Sébastien Crozet c97dfaf381
Add renormalization and rotation extraction from general 2D and 3D matrices. (#549)
* Add From impls to convert between UnitQuaterion/UnitComplex and Rotation2/3

* Add rotation extraction from a Matrix2 or Matrix3.

* Add fast Taylor renormalization for Unit.

Fix 376.

* Add renormalization for Rotation3.

Renormalization for Rotation2 requires Complex to implement VectorSpace which will be fixed only on alga v0.9

* Update Changelog.
2019-02-18 22:41:46 +01:00

306 lines
8.7 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num_complex::Complex;
use std::fmt;
use alga::general::Real;
use base::{Matrix2, Matrix3, Unit, Vector1};
use geometry::Rotation2;
/// A complex number with a norm equal to 1.
pub type UnitComplex<N> = Unit<Complex<N>>;
impl<N: Real> UnitComplex<N> {
/// The rotation angle in `]-pi; pi]` of this unit complex number.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let rot = UnitComplex::new(1.78);
/// assert_eq!(rot.angle(), 1.78);
/// ```
#[inline]
pub fn angle(&self) -> N {
self.im.atan2(self.re)
}
/// The sine of the rotation angle.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let angle = 1.78f32;
/// let rot = UnitComplex::new(angle);
/// assert_eq!(rot.sin_angle(), angle.sin());
/// ```
#[inline]
pub fn sin_angle(&self) -> N {
self.im
}
/// The cosine of the rotation angle.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let angle = 1.78f32;
/// let rot = UnitComplex::new(angle);
/// assert_eq!(rot.cos_angle(),angle.cos());
/// ```
#[inline]
pub fn cos_angle(&self) -> N {
self.re
}
/// The rotation angle returned as a 1-dimensional vector.
///
/// This is generally used in the context of generic programming. Using
/// the `.angle()` method instead is more common.
#[inline]
pub fn scaled_axis(&self) -> Vector1<N> {
Vector1::new(self.angle())
}
/// The rotation axis and angle in ]0, pi] of this complex number.
///
/// This is generally used in the context of generic programming. Using
/// the `.angle()` method instead is more common.
/// Returns `None` if the angle is zero.
#[inline]
pub fn axis_angle(&self) -> Option<(Unit<Vector1<N>>, N)> {
let ang = self.angle();
if ang.is_zero() {
None
} else if ang.is_sign_negative() {
Some((Unit::new_unchecked(Vector1::x()), -ang))
} else {
Some((Unit::new_unchecked(-Vector1::<N>::x()), ang))
}
}
/// The underlying complex number.
///
/// Same as `self.as_ref()`.
///
/// # Example
/// ```
/// # extern crate num_complex;
/// # use num_complex::Complex;
/// # use nalgebra::UnitComplex;
/// let angle = 1.78f32;
/// let rot = UnitComplex::new(angle);
/// assert_eq!(*rot.complex(), Complex::new(angle.cos(), angle.sin()));
/// ```
#[inline]
pub fn complex(&self) -> &Complex<N> {
self.as_ref()
}
/// Compute the conjugate of this unit complex number.
///
/// # Example
/// ```
/// # use nalgebra::UnitComplex;
/// let rot = UnitComplex::new(1.78);
/// let conj = rot.conjugate();
/// assert_eq!(rot.complex().im, -conj.complex().im);
/// assert_eq!(rot.complex().re, conj.complex().re);
/// ```
#[inline]
pub fn conjugate(&self) -> Self {
Self::new_unchecked(self.conj())
}
/// Inverts this complex number if it is not zero.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let rot = UnitComplex::new(1.2);
/// let inv = rot.inverse();
/// assert_relative_eq!(rot * inv, UnitComplex::identity(), epsilon = 1.0e-6);
/// assert_relative_eq!(inv * rot, UnitComplex::identity(), epsilon = 1.0e-6);
/// ```
#[inline]
pub fn inverse(&self) -> Self {
self.conjugate()
}
/// The rotation angle needed to make `self` and `other` coincide.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let rot1 = UnitComplex::new(0.1);
/// let rot2 = UnitComplex::new(1.7);
/// assert_relative_eq!(rot1.angle_to(&rot2), 1.6);
/// ```
#[inline]
pub fn angle_to(&self, other: &Self) -> N {
let delta = self.rotation_to(other);
delta.angle()
}
/// The unit complex number needed to make `self` and `other` coincide.
///
/// The result is such that: `self.rotation_to(other) * self == other`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let rot1 = UnitComplex::new(0.1);
/// let rot2 = UnitComplex::new(1.7);
/// let rot_to = rot1.rotation_to(&rot2);
///
/// assert_relative_eq!(rot_to * rot1, rot2);
/// assert_relative_eq!(rot_to.inverse() * rot2, rot1);
/// ```
#[inline]
pub fn rotation_to(&self, other: &Self) -> Self {
other / self
}
/// Compute in-place the conjugate of this unit complex number.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let angle = 1.7;
/// let rot = UnitComplex::new(angle);
/// let mut conj = UnitComplex::new(angle);
/// conj.conjugate_mut();
/// assert_eq!(rot.complex().im, -conj.complex().im);
/// assert_eq!(rot.complex().re, conj.complex().re);
/// ```
#[inline]
pub fn conjugate_mut(&mut self) {
let me = self.as_mut_unchecked();
me.im = -me.im;
}
/// Inverts in-place this unit complex number.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let angle = 1.7;
/// let mut rot = UnitComplex::new(angle);
/// rot.inverse_mut();
/// assert_relative_eq!(rot * UnitComplex::new(angle), UnitComplex::identity());
/// assert_relative_eq!(UnitComplex::new(angle) * rot, UnitComplex::identity());
/// ```
#[inline]
pub fn inverse_mut(&mut self) {
self.conjugate_mut()
}
/// Raise this unit complex number to a given floating power.
///
/// This returns the unit complex number that identifies a rotation angle equal to
/// `self.angle() × n`.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::UnitComplex;
/// let rot = UnitComplex::new(0.78);
/// let pow = rot.powf(2.0);
/// assert_relative_eq!(pow.angle(), 2.0 * 0.78);
/// ```
#[inline]
pub fn powf(&self, n: N) -> Self {
Self::from_angle(self.angle() * n)
}
/// Builds the rotation matrix corresponding to this unit complex number.
///
/// # Example
/// ```
/// # use nalgebra::{UnitComplex, Rotation2};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
/// let expected = Rotation2::new(f32::consts::FRAC_PI_6);
/// assert_eq!(rot.to_rotation_matrix(), expected);
/// ```
#[inline]
pub fn to_rotation_matrix(&self) -> Rotation2<N> {
let r = self.re;
let i = self.im;
Rotation2::from_matrix_unchecked(Matrix2::new(r, -i, i, r))
}
/// Converts this unit complex number into its equivalent homogeneous transformation matrix.
///
/// # Example
/// ```
/// # use nalgebra::{UnitComplex, Matrix3};
/// # use std::f32;
/// let rot = UnitComplex::new(f32::consts::FRAC_PI_6);
/// let expected = Matrix3::new(0.8660254, -0.5, 0.0,
/// 0.5, 0.8660254, 0.0,
/// 0.0, 0.0, 1.0);
/// assert_eq!(rot.to_homogeneous(), expected);
/// ```
#[inline]
pub fn to_homogeneous(&self) -> Matrix3<N> {
self.to_rotation_matrix().to_homogeneous()
}
}
impl<N: Real + fmt::Display> fmt::Display for UnitComplex<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "UnitComplex angle: {}", self.angle())
}
}
impl<N: Real> AbsDiffEq for UnitComplex<N> {
type Epsilon = N;
#[inline]
fn default_epsilon() -> Self::Epsilon {
N::default_epsilon()
}
#[inline]
fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
self.re.abs_diff_eq(&other.re, epsilon) && self.im.abs_diff_eq(&other.im, epsilon)
}
}
impl<N: Real> RelativeEq for UnitComplex<N> {
#[inline]
fn default_max_relative() -> Self::Epsilon {
N::default_max_relative()
}
#[inline]
fn relative_eq(
&self,
other: &Self,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
{
self.re.relative_eq(&other.re, epsilon, max_relative)
&& self.im.relative_eq(&other.im, epsilon, max_relative)
}
}
impl<N: Real> UlpsEq for UnitComplex<N> {
#[inline]
fn default_max_ulps() -> u32 {
N::default_max_ulps()
}
#[inline]
fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
self.re.ulps_eq(&other.re, epsilon, max_ulps)
&& self.im.ulps_eq(&other.im, epsilon, max_ulps)
}
}