340 lines
10 KiB
Rust
340 lines
10 KiB
Rust
use num::Zero;
|
|
|
|
use simba::scalar::{RealField, SubsetOf, SupersetOf};
|
|
use simba::simd::{PrimitiveSimdValue, SimdValue};
|
|
|
|
use crate::base::allocator::Allocator;
|
|
use crate::base::dimension::{DimMin, DimNameAdd, DimNameSum, U1};
|
|
use crate::base::{Const, DefaultAllocator, Matrix2, Matrix3, Matrix4, OMatrix, SMatrix, Scalar};
|
|
|
|
use crate::geometry::{
|
|
AbstractRotation, Isometry, Rotation, Rotation2, Rotation3, Similarity, SuperTCategoryOf,
|
|
TAffine, Transform, Translation, UnitComplex, UnitDualQuaternion, UnitQuaternion,
|
|
};
|
|
|
|
/*
|
|
* This file provides the following conversions:
|
|
* =============================================
|
|
*
|
|
* Rotation -> Rotation
|
|
* Rotation3 -> UnitQuaternion
|
|
* Rotation3 -> UnitDualQuaternion
|
|
* Rotation2 -> UnitComplex
|
|
* Rotation -> Isometry
|
|
* Rotation -> Similarity
|
|
* Rotation -> Transform
|
|
* Rotation -> Matrix (homogeneous)
|
|
|
|
*/
|
|
|
|
impl<T1, T2, const D: usize> SubsetOf<Rotation<T2, D>> for Rotation<T1, D>
|
|
where
|
|
T1: RealField,
|
|
T2: RealField + SupersetOf<T1>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> Rotation<T2, D> {
|
|
Rotation::from_matrix_unchecked(self.matrix().to_superset())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(rot: &Rotation<T2, D>) -> bool {
|
|
crate::is_convertible::<_, SMatrix<T1, D, D>>(rot.matrix())
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(rot: &Rotation<T2, D>) -> Self {
|
|
Rotation::from_matrix_unchecked(rot.matrix().to_subset_unchecked())
|
|
}
|
|
}
|
|
|
|
impl<T1, T2> SubsetOf<UnitQuaternion<T2>> for Rotation3<T1>
|
|
where
|
|
T1: RealField,
|
|
T2: RealField + SupersetOf<T1>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> UnitQuaternion<T2> {
|
|
let q = UnitQuaternion::<T1>::from_rotation_matrix(self);
|
|
q.to_superset()
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(q: &UnitQuaternion<T2>) -> bool {
|
|
crate::is_convertible::<_, UnitQuaternion<T1>>(q)
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(q: &UnitQuaternion<T2>) -> Self {
|
|
let q: UnitQuaternion<T1> = crate::convert_ref_unchecked(q);
|
|
q.to_rotation_matrix()
|
|
}
|
|
}
|
|
|
|
impl<T1, T2> SubsetOf<UnitDualQuaternion<T2>> for Rotation3<T1>
|
|
where
|
|
T1: RealField,
|
|
T2: RealField + SupersetOf<T1>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> UnitDualQuaternion<T2> {
|
|
let q = UnitQuaternion::<T1>::from_rotation_matrix(self);
|
|
let dq = UnitDualQuaternion::from_rotation(q);
|
|
dq.to_superset()
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(dq: &UnitDualQuaternion<T2>) -> bool {
|
|
crate::is_convertible::<_, UnitQuaternion<T1>>(&dq.rotation())
|
|
&& dq.translation().vector.is_zero()
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(dq: &UnitDualQuaternion<T2>) -> Self {
|
|
let dq: UnitDualQuaternion<T1> = crate::convert_ref_unchecked(dq);
|
|
dq.rotation().to_rotation_matrix()
|
|
}
|
|
}
|
|
|
|
impl<T1, T2> SubsetOf<UnitComplex<T2>> for Rotation2<T1>
|
|
where
|
|
T1: RealField,
|
|
T2: RealField + SupersetOf<T1>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> UnitComplex<T2> {
|
|
let q = UnitComplex::<T1>::from_rotation_matrix(self);
|
|
q.to_superset()
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(q: &UnitComplex<T2>) -> bool {
|
|
crate::is_convertible::<_, UnitComplex<T1>>(q)
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(q: &UnitComplex<T2>) -> Self {
|
|
let q: UnitComplex<T1> = crate::convert_ref_unchecked(q);
|
|
q.to_rotation_matrix()
|
|
}
|
|
}
|
|
|
|
impl<T1, T2, R, const D: usize> SubsetOf<Isometry<T2, R, D>> for Rotation<T1, D>
|
|
where
|
|
T1: RealField,
|
|
T2: RealField + SupersetOf<T1>,
|
|
R: AbstractRotation<T2, D> + SupersetOf<Self>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> Isometry<T2, R, D> {
|
|
Isometry::from_parts(Translation::identity(), crate::convert_ref(self))
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(iso: &Isometry<T2, R, D>) -> bool {
|
|
iso.translation.vector.is_zero()
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(iso: &Isometry<T2, R, D>) -> Self {
|
|
crate::convert_ref_unchecked(&iso.rotation)
|
|
}
|
|
}
|
|
|
|
impl<T1, T2, R, const D: usize> SubsetOf<Similarity<T2, R, D>> for Rotation<T1, D>
|
|
where
|
|
T1: RealField,
|
|
T2: RealField + SupersetOf<T1>,
|
|
R: AbstractRotation<T2, D> + SupersetOf<Self>,
|
|
{
|
|
#[inline]
|
|
fn to_superset(&self) -> Similarity<T2, R, D> {
|
|
Similarity::from_parts(Translation::identity(), crate::convert_ref(self), T2::one())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(sim: &Similarity<T2, R, D>) -> bool {
|
|
sim.isometry.translation.vector.is_zero() && sim.scaling() == T2::one()
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(sim: &Similarity<T2, R, D>) -> Self {
|
|
crate::convert_ref_unchecked(&sim.isometry.rotation)
|
|
}
|
|
}
|
|
|
|
impl<T1, T2, C, const D: usize> SubsetOf<Transform<T2, C, D>> for Rotation<T1, D>
|
|
where
|
|
T1: RealField,
|
|
T2: RealField + SupersetOf<T1>,
|
|
C: SuperTCategoryOf<TAffine>,
|
|
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>, // needed by .is_special_orthogonal()
|
|
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
|
|
+ Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
|
// + Allocator<(usize, usize), D>,
|
|
// Allocator<T1, D, D>
|
|
// + Allocator<T2, D, D>
|
|
{
|
|
// needed by .is_special_orthogonal()
|
|
#[inline]
|
|
fn to_superset(&self) -> Transform<T2, C, D> {
|
|
Transform::from_matrix_unchecked(self.to_homogeneous().to_superset())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(t: &Transform<T2, C, D>) -> bool {
|
|
<Self as SubsetOf<_>>::is_in_subset(t.matrix())
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(t: &Transform<T2, C, D>) -> Self {
|
|
Self::from_superset_unchecked(t.matrix())
|
|
}
|
|
}
|
|
|
|
impl<T1, T2, const D: usize>
|
|
SubsetOf<OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>> for Rotation<T1, D>
|
|
where
|
|
T1: RealField,
|
|
T2: RealField + SupersetOf<T1>,
|
|
Const<D>: DimNameAdd<U1> + DimMin<Const<D>, Output = Const<D>>, // needed by .is_special_orthogonal()
|
|
DefaultAllocator: Allocator<T1, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>
|
|
+ Allocator<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>, // + Allocator<(usize, usize), D>,
|
|
// + Allocator<T1, D, D>
|
|
// + Allocator<T2, D, D>
|
|
{
|
|
// needed by .is_special_orthogonal()
|
|
#[inline]
|
|
fn to_superset(&self) -> OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>> {
|
|
self.to_homogeneous().to_superset()
|
|
}
|
|
|
|
#[inline]
|
|
fn is_in_subset(m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>) -> bool {
|
|
let rot = m.fixed_slice::<D, D>(0, 0);
|
|
let bottom = m.fixed_slice::<1, D>(D, 0);
|
|
|
|
// Scalar types agree.
|
|
m.iter().all(|e| SupersetOf::<T1>::is_in_subset(e)) &&
|
|
// The block part is a rotation.
|
|
rot.is_special_orthogonal(T2::default_epsilon() * crate::convert(100.0)) &&
|
|
// The bottom row is (0, 0, ..., 1)
|
|
bottom.iter().all(|e| e.is_zero()) && m[(D, D)] == T2::one()
|
|
}
|
|
|
|
#[inline]
|
|
fn from_superset_unchecked(
|
|
m: &OMatrix<T2, DimNameSum<Const<D>, U1>, DimNameSum<Const<D>, U1>>,
|
|
) -> Self {
|
|
let r = m.fixed_slice::<D, D>(0, 0);
|
|
Self::from_matrix_unchecked(crate::convert_unchecked(r.into_owned()))
|
|
}
|
|
}
|
|
|
|
impl<T: RealField> From<Rotation2<T>> for Matrix3<T> {
|
|
#[inline]
|
|
fn from(q: Rotation2<T>) -> Self {
|
|
q.to_homogeneous()
|
|
}
|
|
}
|
|
|
|
impl<T: RealField> From<Rotation2<T>> for Matrix2<T> {
|
|
#[inline]
|
|
fn from(q: Rotation2<T>) -> Self {
|
|
q.into_inner()
|
|
}
|
|
}
|
|
|
|
impl<T: RealField> From<Rotation3<T>> for Matrix4<T> {
|
|
#[inline]
|
|
fn from(q: Rotation3<T>) -> Self {
|
|
q.to_homogeneous()
|
|
}
|
|
}
|
|
|
|
impl<T: RealField> From<Rotation3<T>> for Matrix3<T> {
|
|
#[inline]
|
|
fn from(q: Rotation3<T>) -> Self {
|
|
q.into_inner()
|
|
}
|
|
}
|
|
|
|
impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Rotation<T::Element, D>; 2]>
|
|
for Rotation<T, D>
|
|
where
|
|
T: From<[<T as SimdValue>::Element; 2]>,
|
|
T::Element: Scalar + Copy,
|
|
{
|
|
#[inline]
|
|
fn from(arr: [Rotation<T::Element, D>; 2]) -> Self {
|
|
Self::from_matrix_unchecked(OMatrix::from([arr[0].into_inner(), arr[1].into_inner()]))
|
|
}
|
|
}
|
|
|
|
impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Rotation<T::Element, D>; 4]>
|
|
for Rotation<T, D>
|
|
where
|
|
T: From<[<T as SimdValue>::Element; 4]>,
|
|
T::Element: Scalar + Copy,
|
|
{
|
|
#[inline]
|
|
fn from(arr: [Rotation<T::Element, D>; 4]) -> Self {
|
|
Self::from_matrix_unchecked(OMatrix::from([
|
|
arr[0].into_inner(),
|
|
arr[1].into_inner(),
|
|
arr[2].into_inner(),
|
|
arr[3].into_inner(),
|
|
]))
|
|
}
|
|
}
|
|
|
|
impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Rotation<T::Element, D>; 8]>
|
|
for Rotation<T, D>
|
|
where
|
|
T: From<[<T as SimdValue>::Element; 8]>,
|
|
T::Element: Scalar + Copy,
|
|
{
|
|
#[inline]
|
|
fn from(arr: [Rotation<T::Element, D>; 8]) -> Self {
|
|
Self::from_matrix_unchecked(OMatrix::from([
|
|
arr[0].into_inner(),
|
|
arr[1].into_inner(),
|
|
arr[2].into_inner(),
|
|
arr[3].into_inner(),
|
|
arr[4].into_inner(),
|
|
arr[5].into_inner(),
|
|
arr[6].into_inner(),
|
|
arr[7].into_inner(),
|
|
]))
|
|
}
|
|
}
|
|
|
|
impl<T: Scalar + PrimitiveSimdValue, const D: usize> From<[Rotation<T::Element, D>; 16]>
|
|
for Rotation<T, D>
|
|
where
|
|
T: From<[<T as SimdValue>::Element; 16]>,
|
|
T::Element: Scalar + Copy,
|
|
{
|
|
#[inline]
|
|
fn from(arr: [Rotation<T::Element, D>; 16]) -> Self {
|
|
Self::from_matrix_unchecked(OMatrix::from([
|
|
arr[0].into_inner(),
|
|
arr[1].into_inner(),
|
|
arr[2].into_inner(),
|
|
arr[3].into_inner(),
|
|
arr[4].into_inner(),
|
|
arr[5].into_inner(),
|
|
arr[6].into_inner(),
|
|
arr[7].into_inner(),
|
|
arr[8].into_inner(),
|
|
arr[9].into_inner(),
|
|
arr[10].into_inner(),
|
|
arr[11].into_inner(),
|
|
arr[12].into_inner(),
|
|
arr[13].into_inner(),
|
|
arr[14].into_inner(),
|
|
arr[15].into_inner(),
|
|
]))
|
|
}
|
|
}
|