nalgebra/src/structs/quat.rs
Sébastien Crozet 58000e4838 Implement AsRef, AsMut, From for vectors and matrices.
This allows pointer conversion between arrays and vectors or matrices.
Those implementations replace the `.as_array()` and `.as_array_mut()` method.
2015-11-15 21:38:28 +01:00

545 lines
14 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Quaternion definition.
#![allow(missing_docs)] // we allow missing to avoid having to document the dispatch trait.
use std::mem;
use std::slice::{Iter, IterMut};
use std::ops::{Add, Sub, Mul, Div, Neg, Index, IndexMut};
use std::iter::{FromIterator, IntoIterator};
use rand::{Rand, Rng};
use num::{Zero, One};
use structs::{Vec3, Pnt3, Rot3, Mat3};
use traits::operations::{ApproxEq, Inv, POrd, POrdering, Axpy};
use traits::structure::{Cast, Indexable, Iterable, IterableMut, Dim, Shape, BaseFloat, BaseNum,
Bounded, Repeat};
use traits::geometry::{Norm, Rotation, RotationMatrix, Rotate, RotationTo, Transform};
#[cfg(feature="arbitrary")]
use quickcheck::{Arbitrary, Gen};
/// A quaternion.
#[repr(C)]
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Hash, Debug, Copy)]
pub struct Quat<N> {
/// The scalar component of the quaternion.
pub w: N,
/// The first vector component of the quaternion.
pub i: N,
/// The second vector component of the quaternion.
pub j: N,
/// The third vector component of the quaternion.
pub k: N
}
impl<N> Quat<N> {
/// Creates a new quaternion from its components.
#[inline]
pub fn new(w: N, i: N, j: N, k: N) -> Quat<N> {
Quat {
w: w,
i: i,
j: j,
k: k
}
}
/// The vector part `(i, j, k)` of this quaternion.
#[inline]
pub fn vector<'a>(&'a self) -> &'a Vec3<N> {
// FIXME: do this require a `repr(C)` ?
unsafe {
mem::transmute(&self.i)
}
}
/// The scalar part `w` of this quaternion.
#[inline]
pub fn scalar<'a>(&'a self) -> &'a N {
&self.w
}
}
impl<N: Neg<Output = N> + Copy> Quat<N> {
/// Compute the conjugate of this quaternion.
#[inline]
pub fn conjugate(&self) -> Quat<N> {
Quat { w: self.w, i: -self.i, j: -self.j, k: -self.k }
}
/// Replaces this quaternion by its conjugate.
#[inline]
pub fn conjugate_mut(&mut self) {
self.i = -self.i;
self.j = -self.j;
self.k = -self.k;
}
}
impl<N: BaseFloat + ApproxEq<N>> Inv for Quat<N> {
#[inline]
fn inv(&self) -> Option<Quat<N>> {
let mut res = *self;
if res.inv_mut() {
Some(res)
}
else {
None
}
}
#[inline]
fn inv_mut(&mut self) -> bool {
let sqnorm = Norm::sqnorm(self);
if ApproxEq::approx_eq(&sqnorm, &::zero()) {
false
}
else {
self.conjugate_mut();
self.w = self.w / sqnorm;
self.i = self.i / sqnorm;
self.j = self.j / sqnorm;
self.k = self.k / sqnorm;
true
}
}
}
impl<N: BaseFloat> Norm<N> for Quat<N> {
#[inline]
fn sqnorm(&self) -> N {
self.w * self.w + self.i * self.i + self.j * self.j + self.k * self.k
}
#[inline]
fn normalize(&self) -> Quat<N> {
let n = self.norm();
Quat::new(self.w / n, self.i / n, self.j / n, self.k / n)
}
#[inline]
fn normalize_mut(&mut self) -> N {
let n = Norm::norm(self);
self.w = self.w / n;
self.i = self.i / n;
self.j = self.j / n;
self.k = self.k / n;
n
}
}
impl<N> Mul<Quat<N>> for Quat<N>
where N: Copy + Mul<N, Output = N> + Sub<N, Output = N> + Add<N, Output = N> {
type Output = Quat<N>;
#[inline]
fn mul(self, right: Quat<N>) -> Quat<N> {
Quat::new(
self.w * right.w - self.i * right.i - self.j * right.j - self.k * right.k,
self.w * right.i + self.i * right.w + self.j * right.k - self.k * right.j,
self.w * right.j - self.i * right.k + self.j * right.w + self.k * right.i,
self.w * right.k + self.i * right.j - self.j * right.i + self.k * right.w)
}
}
impl<N: ApproxEq<N> + BaseFloat> Div<Quat<N>> for Quat<N> {
type Output = Quat<N>;
#[inline]
fn div(self, right: Quat<N>) -> Quat<N> {
self * right.inv().expect("Unable to invert the denominator.")
}
}
rand_impl!(Quat, w, i, j, k);
/// A unit quaternion that can represent a 3D rotation.
#[repr(C)]
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Hash, Debug, Copy)]
pub struct UnitQuat<N> {
q: Quat<N>
}
impl<N: BaseFloat> UnitQuat<N> {
/// Creates a new unit quaternion from the axis-angle representation of a rotation.
#[inline]
pub fn new(axisangle: Vec3<N>) -> UnitQuat<N> {
let sqang = Norm::sqnorm(&axisangle);
if ::is_zero(&sqang) {
::one()
}
else {
let ang = sqang.sqrt();
let (s, c) = (ang / Cast::from(2.0)).sin_cos();
let s_ang = s / ang;
unsafe {
UnitQuat::new_with_unit_quat(
Quat::new(
c,
axisangle.x * s_ang,
axisangle.y * s_ang,
axisangle.z * s_ang)
)
}
}
}
/// Creates a new unit quaternion from a quaternion.
///
/// The input quaternion will be normalized.
#[inline]
pub fn new_with_quat(q: Quat<N>) -> UnitQuat<N> {
UnitQuat { q: q.normalize() }
}
/// Creates a new unit quaternion from Euler angles.
///
/// The primitive rotations are applied in order: 1 roll 2 pitch 3 yaw.
#[inline]
pub fn new_with_euler_angles(roll: N, pitch: N, yaw: N) -> UnitQuat<N> {
let _0_5: N = Cast::from(0.5);
let (sr, cr) = (roll * _0_5).sin_cos();
let (sp, cp) = (pitch * _0_5).sin_cos();
let (sy, cy) = (yaw * _0_5).sin_cos();
unsafe {
UnitQuat::new_with_unit_quat(
Quat::new(
cr * cp * cy + sr * sp * sy,
sr * cp * cy - cr * sp * sy,
cr * sp * cy + sr * cp * sy,
cr * cp * sy - sr * sp * cy)
)
}
}
/// Builds a rotation matrix from this quaternion.
pub fn to_rot(&self) -> Rot3<N> {
let _2: N = Cast::from(2.0);
let ww = self.q.w * self.q.w;
let ii = self.q.i * self.q.i;
let jj = self.q.j * self.q.j;
let kk = self.q.k * self.q.k;
let ij = _2 * self.q.i * self.q.j;
let wk = _2 * self.q.w * self.q.k;
let wj = _2 * self.q.w * self.q.j;
let ik = _2 * self.q.i * self.q.k;
let jk = _2 * self.q.j * self.q.k;
let wi = _2 * self.q.w * self.q.i;
unsafe {
Rot3::new_with_mat(
Mat3::new(
ww + ii - jj - kk, ij - wk, wj + ik,
wk + ij, ww - ii + jj - kk, jk - wi,
ik - wj, wi + jk, ww - ii - jj + kk
)
)
}
}
}
impl<N> UnitQuat<N> {
/// Creates a new unit quaternion from a quaternion.
///
/// This is unsafe because the input quaternion will not be normalized.
#[inline]
pub unsafe fn new_with_unit_quat(q: Quat<N>) -> UnitQuat<N> {
UnitQuat {
q: q
}
}
/// The `Quat` representation of this unit quaternion.
#[inline]
pub fn quat<'a>(&'a self) -> &'a Quat<N> {
&self.q
}
}
impl<N: BaseNum> One for UnitQuat<N> {
#[inline]
fn one() -> UnitQuat<N> {
unsafe {
UnitQuat::new_with_unit_quat(Quat::new(::one(), ::zero(), ::zero(), ::zero()))
}
}
}
impl<N: Copy + Neg<Output = N>> Inv for UnitQuat<N> {
#[inline]
fn inv(&self) -> Option<UnitQuat<N>> {
let mut cpy = *self;
cpy.inv_mut();
Some(cpy)
}
#[inline]
fn inv_mut(&mut self) -> bool {
self.q.conjugate_mut();
true
}
}
impl<N: Rand + BaseFloat> Rand for UnitQuat<N> {
#[inline]
fn rand<R: Rng>(rng: &mut R) -> UnitQuat<N> {
UnitQuat::new(rng.gen())
}
}
impl<N: ApproxEq<N>> ApproxEq<N> for UnitQuat<N> {
#[inline]
fn approx_epsilon(_: Option<UnitQuat<N>>) -> N {
ApproxEq::approx_epsilon(None::<N>)
}
#[inline]
fn approx_ulps(_: Option<UnitQuat<N>>) -> u32 {
ApproxEq::approx_ulps(None::<N>)
}
#[inline]
fn approx_eq_eps(&self, other: &UnitQuat<N>, eps: &N) -> bool {
ApproxEq::approx_eq_eps(&self.q, &other.q, eps)
}
#[inline]
fn approx_eq_ulps(&self, other: &UnitQuat<N>, ulps: u32) -> bool {
ApproxEq::approx_eq_ulps(&self.q, &other.q, ulps)
}
}
impl<N: BaseFloat + ApproxEq<N>> Div<UnitQuat<N>> for UnitQuat<N> {
type Output = UnitQuat<N>;
#[inline]
fn div(self, other: UnitQuat<N>) -> UnitQuat<N> {
UnitQuat { q: self.q / other.q }
}
}
impl<N: BaseNum> Mul<UnitQuat<N>> for UnitQuat<N> {
type Output = UnitQuat<N>;
#[inline]
fn mul(self, right: UnitQuat<N>) -> UnitQuat<N> {
UnitQuat { q: self.q * right.q }
}
}
impl<N: BaseNum> Mul<Vec3<N>> for UnitQuat<N> {
type Output = Vec3<N>;
#[inline]
fn mul(self, right: Vec3<N>) -> Vec3<N> {
let _2: N = ::one::<N>() + ::one();
let mut t = ::cross(self.q.vector(), &right);
t.x = t.x * _2;
t.y = t.y * _2;
t.z = t.z * _2;
Vec3::new(t.x * self.q.w, t.y * self.q.w, t.z * self.q.w) + ::cross(self.q.vector(), &t) + right
}
}
impl<N: BaseNum> Mul<Pnt3<N>> for UnitQuat<N> {
type Output = Pnt3<N>;
#[inline]
fn mul(self, right: Pnt3<N>) -> Pnt3<N> {
::orig::<Pnt3<N>>() + self * *right.as_vec()
}
}
impl<N: BaseNum + Neg<Output = N>> Mul<UnitQuat<N>> for Vec3<N> {
type Output = Vec3<N>;
#[inline]
fn mul(self, right: UnitQuat<N>) -> Vec3<N> {
let mut inv_quat = right;
inv_quat.inv_mut();
inv_quat * self
}
}
impl<N: BaseNum + Neg<Output = N>> Mul<UnitQuat<N>> for Pnt3<N> {
type Output = Pnt3<N>;
#[inline]
fn mul(self, right: UnitQuat<N>) -> Pnt3<N> {
::orig::<Pnt3<N>>() + *self.as_vec() * right
}
}
impl<N: BaseFloat> Rotation<Vec3<N>> for UnitQuat<N> {
#[inline]
fn rotation(&self) -> Vec3<N> {
let _2 = ::one::<N>() + ::one();
let mut v = *self.q.vector();
let ang = _2 * v.normalize_mut().atan2(self.q.w);
if ::is_zero(&ang) {
::zero()
}
else {
Vec3::new(v.x * ang, v.y * ang, v.z * ang)
}
}
#[inline]
fn inv_rotation(&self) -> Vec3<N> {
-self.rotation()
}
#[inline]
fn append_rotation_mut(&mut self, amount: &Vec3<N>) {
*self = Rotation::append_rotation(self, amount)
}
#[inline]
fn append_rotation(&self, amount: &Vec3<N>) -> UnitQuat<N> {
*self * UnitQuat::new(*amount)
}
#[inline]
fn prepend_rotation_mut(&mut self, amount: &Vec3<N>) {
*self = Rotation::prepend_rotation(self, amount)
}
#[inline]
fn prepend_rotation(&self, amount: &Vec3<N>) -> UnitQuat<N> {
UnitQuat::new(*amount) * *self
}
#[inline]
fn set_rotation(&mut self, v: Vec3<N>) {
*self = UnitQuat::new(v)
}
}
impl<N: BaseFloat> RotationMatrix<N, Vec3<N>, Vec3<N>> for UnitQuat<N> {
type Output = Rot3<N>;
#[inline]
fn to_rot_mat(&self) -> Rot3<N> {
self.to_rot()
}
}
impl<N: BaseNum + Neg<Output = N>> Rotate<Vec3<N>> for UnitQuat<N> {
#[inline]
fn rotate(&self, v: &Vec3<N>) -> Vec3<N> {
*self * *v
}
#[inline]
fn inv_rotate(&self, v: &Vec3<N>) -> Vec3<N> {
*v * *self
}
}
impl<N: BaseNum + Neg<Output = N>> Rotate<Pnt3<N>> for UnitQuat<N> {
#[inline]
fn rotate(&self, p: &Pnt3<N>) -> Pnt3<N> {
*self * *p
}
#[inline]
fn inv_rotate(&self, p: &Pnt3<N>) -> Pnt3<N> {
*p * *self
}
}
impl<N: BaseFloat + ApproxEq<N>> RotationTo for UnitQuat<N> {
type AngleType = N;
type DeltaRotationType = UnitQuat<N>;
#[inline]
fn angle_to(&self, other: &Self) -> N {
let delta = self.rotation_to(other);
let _2 = ::one::<N>() + ::one();
_2 * delta.q.vector().norm().atan2(delta.q.w)
}
#[inline]
fn rotation_to(&self, other: &Self) -> UnitQuat<N> {
*other / *self
}
}
impl<N: BaseNum + Neg<Output = N>> Transform<Vec3<N>> for UnitQuat<N> {
#[inline]
fn transform(&self, v: &Vec3<N>) -> Vec3<N> {
*self * *v
}
#[inline]
fn inv_transform(&self, v: &Vec3<N>) -> Vec3<N> {
*v * *self
}
}
impl<N: BaseNum + Neg<Output = N>> Transform<Pnt3<N>> for UnitQuat<N> {
#[inline]
fn transform(&self, p: &Pnt3<N>) -> Pnt3<N> {
*self * *p
}
#[inline]
fn inv_transform(&self, p: &Pnt3<N>) -> Pnt3<N> {
*p * *self
}
}
#[cfg(feature="arbitrary")]
impl<N: Arbitrary + BaseFloat> Arbitrary for UnitQuat<N> {
fn arbitrary<G: Gen>(g: &mut G) -> UnitQuat<N> {
UnitQuat::new(Arbitrary::arbitrary(g))
}
}
ord_impl!(Quat, w, i, j, k);
vec_axis_impl!(Quat, w, i, j, k);
vec_cast_impl!(Quat, w, i, j, k);
conversion_impl!(Quat, 4);
index_impl!(Quat);
indexable_impl!(Quat, 4);
at_fast_impl!(Quat, 4);
repeat_impl!(Quat, val, w, i, j, k);
dim_impl!(Quat, 3);
container_impl!(Quat);
add_impl!(Quat, w, i, j, k);
sub_impl!(Quat, w, i, j, k);
scalar_add_impl!(Quat, w, i, j, k);
scalar_sub_impl!(Quat, w, i, j, k);
scalar_mul_impl!(Quat, w, i, j, k);
scalar_div_impl!(Quat, w, i, j, k);
neg_impl!(Quat, w, i, j, k);
zero_one_impl!(Quat, w, i, j, k);
approx_eq_impl!(Quat, w, i, j, k);
from_iterator_impl!(Quat, iterator, iterator, iterator, iterator);
bounded_impl!(Quat, w, i, j, k);
axpy_impl!(Quat, w, i, j, k);
iterable_impl!(Quat, 4);
iterable_mut_impl!(Quat, 4);
arbitrary_impl!(Quat, w, i, j, k);
dim_impl!(UnitQuat, 3);