Linear algebra library for Rust.
Go to file
Sébastien Crozet 58000e4838 Implement AsRef, AsMut, From for vectors and matrices.
This allows pointer conversion between arrays and vectors or matrices.
Those implementations replace the `.as_array()` and `.as_array_mut()` method.
2015-11-15 21:38:28 +01:00
benches Use the `Zero` and `One` traits from the `num` crate. 2015-04-18 14:38:34 +02:00
src Implement AsRef, AsMut, From for vectors and matrices. 2015-11-15 21:38:28 +01:00
tests Fix eigenvalue calculation for diagonal matrices 2015-11-14 15:40:35 +01:00
.gitignore Add points. 2014-10-10 11:45:20 +02:00
.travis.yml Don't run benchmarks on travis. 2015-06-19 23:48:27 +02:00
Cargo.toml Release v0.3.2. 2015-11-15 00:20:20 +01:00
LICENSE Initial commit. 2013-05-14 11:34:28 +00:00
Makefile Remove implementations of `Rotation`, `Translation` and `Transformation` for the `Identity` type. 2015-07-07 22:40:14 +02:00
README.md Add Travis badge to the README. 2015-07-12 09:35:10 +02:00

README.md

Build Status

nalgebra

nalgebra is a low-dimensional linear algebra library written for Rust targeting:

  • general-purpose linear algebra (still lacks a lot of features…).
  • real time computer graphics.
  • real time computer physics.

An on-line version of this documentation is available here.

Using nalgebra

All the functionality of nalgebra is grouped in one place: the root module nalgebra::. This module re-exports everything and includes free functions for all traits methods doing out-of-place modifications.

  • You can import the whole prelude using:
use nalgebra::*;

The preferred way to use nalgebra is to import types and traits explicitly, and call free-functions using the na:: prefix:

extern crate nalgebra as na;
use na::{Vec3, Rot3, Rotation};

fn main() {
    let     a = Vec3::new(1.0f64, 1.0, 1.0);
    let mut b = Rot3::new(na::zero());

    b.append_rotation_mut(&a);

    assert!(na::approx_eq(&na::rotation(&b), &a));
}

Features

nalgebra is meant to be a general-purpose, low-dimensional, linear algebra library, with an optimized set of tools for computer graphics and physics. Those features include:

  • Vectors with static sizes: Vec0, Vec1, Vec2, Vec3, Vec4, Vec5, Vec6.
  • Points with static sizes: Pnt0, Pnt1, Pnt2, Pnt3, Pnt4, Pnt5, Pnt6.
  • Square matrices with static sizes: Mat1, Mat2, Mat3, Mat4, Mat5, Mat6 .
  • Rotation matrices: Rot2, Rot3, Rot4.
  • Quaternions: Quat, UnitQuat.
  • Isometries: Iso2, Iso3, Iso4.
  • 3D projections for computer graphics: Persp3, PerspMat3, Ortho3, OrthoMat3.
  • Dynamically sized vector: DVec.
  • Dynamically sized (square or rectangular) matrix: DMat.
  • A few methods for data analysis: Cov, Mean.
  • Almost one trait per functionality: useful for generic programming.
  • Operator overloading using multidispatch.