nalgebra/src/geometry/abstract_rotation.rs
2021-04-11 13:57:54 +02:00

152 lines
3.8 KiB
Rust

use crate::geometry::{Rotation, UnitComplex, UnitQuaternion};
use crate::{Const, OVector, Point, SVector, Scalar, SimdRealField, Unit};
use simba::scalar::ClosedMul;
/// Trait implemented by rotations that can be used inside of an `Isometry` or `Similarity`.
pub trait AbstractRotation<T: Scalar, const D: usize>: PartialEq + ClosedMul + Clone {
/// The rotation identity.
fn identity() -> Self;
/// The rotation inverse.
fn inverse(&self) -> Self;
/// Change `self` to its inverse.
fn inverse_mut(&mut self);
/// Apply the rotation to the given vector.
fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D>;
/// Apply the rotation to the given point.
fn transform_point(&self, p: &Point<T, D>) -> Point<T, D>;
/// Apply the inverse rotation to the given vector.
fn inverse_transform_vector(&self, v: &OVector<T, Const<D>>) -> OVector<T, Const<D>>;
/// Apply the inverse rotation to the given unit vector.
fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
Unit::new_unchecked(self.inverse_transform_vector(&**v))
}
/// Apply the inverse rotation to the given point.
fn inverse_transform_point(&self, p: &Point<T, D>) -> Point<T, D>;
}
impl<T: SimdRealField, const D: usize> AbstractRotation<T, D> for Rotation<T, D>
where
T::Element: SimdRealField,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
#[inline]
fn inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn inverse_mut(&mut self) {
self.inverse_mut()
}
#[inline]
fn transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self * v
}
#[inline]
fn transform_point(&self, p: &Point<T, D>) -> Point<T, D> {
self * p
}
#[inline]
fn inverse_transform_vector(&self, v: &SVector<T, D>) -> SVector<T, D> {
self.inverse_transform_vector(v)
}
#[inline]
fn inverse_transform_unit_vector(&self, v: &Unit<SVector<T, D>>) -> Unit<SVector<T, D>> {
self.inverse_transform_unit_vector(v)
}
#[inline]
fn inverse_transform_point(&self, p: &Point<T, D>) -> Point<T, D> {
self.inverse_transform_point(p)
}
}
impl<T: SimdRealField> AbstractRotation<T, 3> for UnitQuaternion<T>
where
T::Element: SimdRealField,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
#[inline]
fn inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn inverse_mut(&mut self) {
self.inverse_mut()
}
#[inline]
fn transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3> {
self * v
}
#[inline]
fn transform_point(&self, p: &Point<T, 3>) -> Point<T, 3> {
self * p
}
#[inline]
fn inverse_transform_vector(&self, v: &SVector<T, 3>) -> SVector<T, 3> {
self.inverse_transform_vector(v)
}
#[inline]
fn inverse_transform_point(&self, p: &Point<T, 3>) -> Point<T, 3> {
self.inverse_transform_point(p)
}
}
impl<T: SimdRealField> AbstractRotation<T, 2> for UnitComplex<T>
where
T::Element: SimdRealField,
{
#[inline]
fn identity() -> Self {
Self::identity()
}
#[inline]
fn inverse(&self) -> Self {
self.inverse()
}
#[inline]
fn inverse_mut(&mut self) {
self.inverse_mut()
}
#[inline]
fn transform_vector(&self, v: &SVector<T, 2>) -> SVector<T, 2> {
self * v
}
#[inline]
fn transform_point(&self, p: &Point<T, 2>) -> Point<T, 2> {
self * p
}
#[inline]
fn inverse_transform_vector(&self, v: &SVector<T, 2>) -> SVector<T, 2> {
self.inverse_transform_vector(v)
}
#[inline]
fn inverse_transform_point(&self, p: &Point<T, 2>) -> Point<T, 2> {
self.inverse_transform_point(p)
}
}