New code and modified tests for generalized_eigenvalues
This commit is contained in:
parent
748848fea7
commit
ae35d1cf97
|
@ -4,7 +4,7 @@ use serde::{Deserialize, Serialize};
|
||||||
use num::Zero;
|
use num::Zero;
|
||||||
use num_complex::Complex;
|
use num_complex::Complex;
|
||||||
|
|
||||||
use simba::scalar:: RealField;
|
use simba::scalar::RealField;
|
||||||
|
|
||||||
use crate::ComplexHelper;
|
use crate::ComplexHelper;
|
||||||
use na::allocator::Allocator;
|
use na::allocator::Allocator;
|
||||||
|
@ -14,6 +14,19 @@ use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
|
||||||
use lapack;
|
use lapack;
|
||||||
|
|
||||||
/// Generalized eigenvalues and generalized eigenvectors(left and right) of a pair of N*N square matrices.
|
/// Generalized eigenvalues and generalized eigenvectors(left and right) of a pair of N*N square matrices.
|
||||||
|
///
|
||||||
|
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
|
||||||
|
///
|
||||||
|
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
||||||
|
/// of (A,B) satisfies
|
||||||
|
///
|
||||||
|
/// A * v(j) = lambda(j) * B * v(j).
|
||||||
|
///
|
||||||
|
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
||||||
|
/// of (A,B) satisfies
|
||||||
|
///
|
||||||
|
/// u(j)**H * A = lambda(j) * u(j)**H * B .
|
||||||
|
/// where u(j)**H is the conjugate-transpose of u(j).
|
||||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||||
#[cfg_attr(
|
#[cfg_attr(
|
||||||
feature = "serde-serialize",
|
feature = "serde-serialize",
|
||||||
|
@ -55,11 +68,21 @@ impl<T: GEScalar + RealField + Copy, D: Dim> GE<T, D>
|
||||||
where
|
where
|
||||||
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
DefaultAllocator: Allocator<T, D, D> + Allocator<T, D>,
|
||||||
{
|
{
|
||||||
/// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's
|
/// Attempts to compute the generalized eigenvalues, and left and right associated eigenvectors
|
||||||
/// dggev and sggev routines
|
/// via the raw returns from LAPACK's dggev and sggev routines
|
||||||
///
|
///
|
||||||
/// For each e in generalized eigenvalues and the associated eigenvectors e_l and e_r (left andf right)
|
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
|
||||||
/// it satisfies e_l*a = e*e_l*b and a*e_r = e*b*e_r
|
///
|
||||||
|
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
||||||
|
/// of (A,B) satisfies
|
||||||
|
///
|
||||||
|
/// A * v(j) = lambda(j) * B * v(j).
|
||||||
|
///
|
||||||
|
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
||||||
|
/// of (A,B) satisfies
|
||||||
|
///
|
||||||
|
/// u(j)**H * A = lambda(j) * u(j)**H * B .
|
||||||
|
/// where u(j)**H is the conjugate-transpose of u(j).
|
||||||
///
|
///
|
||||||
/// Panics if the method did not converge.
|
/// Panics if the method did not converge.
|
||||||
pub fn new(a: OMatrix<T, D, D>, b: OMatrix<T, D, D>) -> Self {
|
pub fn new(a: OMatrix<T, D, D>, b: OMatrix<T, D, D>) -> Self {
|
||||||
|
@ -69,8 +92,18 @@ where
|
||||||
/// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's
|
/// Attempts to compute the generalized eigenvalues (and eigenvectors) via the raw returns from LAPACK's
|
||||||
/// dggev and sggev routines
|
/// dggev and sggev routines
|
||||||
///
|
///
|
||||||
/// For each e in generalized eigenvalues and the associated eigenvectors e_l and e_r (left andf right)
|
/// Each generalized eigenvalue (lambda) satisfies determinant(A - lambda*B) = 0
|
||||||
/// it satisfies e_l*a = e*e_l*b and a*e_r = e*b*e_r
|
///
|
||||||
|
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
||||||
|
/// of (A,B) satisfies
|
||||||
|
///
|
||||||
|
/// A * v(j) = lambda(j) * B * v(j).
|
||||||
|
///
|
||||||
|
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
||||||
|
/// of (A,B) satisfies
|
||||||
|
///
|
||||||
|
/// u(j)**H * A = lambda(j) * u(j)**H * B .
|
||||||
|
/// where u(j)**H is the conjugate-transpose of u(j).
|
||||||
///
|
///
|
||||||
/// Returns `None` if the method did not converge.
|
/// Returns `None` if the method did not converge.
|
||||||
pub fn try_new(mut a: OMatrix<T, D, D>, mut b: OMatrix<T, D, D>) -> Option<Self> {
|
pub fn try_new(mut a: OMatrix<T, D, D>, mut b: OMatrix<T, D, D>) -> Option<Self> {
|
||||||
|
@ -147,9 +180,24 @@ where
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
|
/// Calculates the generalized eigenvectors (left and right) associated with the generalized eigenvalues
|
||||||
|
/// Outputs two matrices, the first one containing the left eigenvectors of the generalized eigenvalues
|
||||||
|
/// as columns and the second matrix contains the right eigenvectors of the generalized eigenvalues
|
||||||
|
/// as columns
|
||||||
|
///
|
||||||
|
/// The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
|
||||||
|
/// of (A,B) satisfies
|
||||||
|
///
|
||||||
|
/// A * v(j) = lambda(j) * B * v(j).
|
||||||
|
///
|
||||||
|
/// The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
|
||||||
|
/// of (A,B) satisfies
|
||||||
|
///
|
||||||
|
/// u(j)**H * A = lambda(j) * u(j)**H * B .
|
||||||
|
/// where u(j)**H is the conjugate-transpose of u(j).
|
||||||
pub fn eigenvectors(self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
|
pub fn eigenvectors(self) -> (OMatrix<Complex<T>, D, D>, OMatrix<Complex<T>, D, D>)
|
||||||
where
|
where
|
||||||
DefaultAllocator: Allocator<Complex<T>, D, D> + Allocator<Complex<T>, D>,
|
DefaultAllocator:
|
||||||
|
Allocator<Complex<T>, D, D> + Allocator<Complex<T>, D> + Allocator<(Complex<T>, T), D>,
|
||||||
{
|
{
|
||||||
let n = self.vsl.shape().0;
|
let n = self.vsl.shape().0;
|
||||||
let mut l = self
|
let mut l = self
|
||||||
|
@ -199,9 +247,10 @@ where
|
||||||
(l, r)
|
(l, r)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// computes the generalized eigenvalues
|
/// computes the generalized eigenvalues i.e values of lambda that satisfy the following equation
|
||||||
|
/// determinant(A - lambda* B) = 0
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn eigenvalues(&self) -> OVector<Complex<T>, D>
|
fn eigenvalues(&self) -> OVector<Complex<T>, D>
|
||||||
where
|
where
|
||||||
DefaultAllocator: Allocator<Complex<T>, D>,
|
DefaultAllocator: Allocator<Complex<T>, D>,
|
||||||
{
|
{
|
||||||
|
@ -233,6 +282,26 @@ where
|
||||||
|
|
||||||
out
|
out
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// outputs the unprocessed (almost) version of generalized eigenvalues ((alphar, alpai), beta)
|
||||||
|
/// straight from LAPACK
|
||||||
|
#[must_use]
|
||||||
|
pub fn raw_eigenvalues(&self) -> OVector<(Complex<T>, T), D>
|
||||||
|
where
|
||||||
|
DefaultAllocator: Allocator<(Complex<T>, T), D>,
|
||||||
|
{
|
||||||
|
let mut out = Matrix::from_element_generic(
|
||||||
|
self.vsl.shape_generic().0,
|
||||||
|
Const::<1>,
|
||||||
|
(Complex::zero(), T::RealField::zero()),
|
||||||
|
);
|
||||||
|
|
||||||
|
for i in 0..out.len() {
|
||||||
|
out[i] = (Complex::new(self.alphar[i], self.alphai[i]), self.beta[i])
|
||||||
|
}
|
||||||
|
|
||||||
|
out
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
|
|
|
@ -17,21 +17,29 @@ proptest! {
|
||||||
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
|
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
|
||||||
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
|
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
|
||||||
|
|
||||||
if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0 {
|
if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 {
|
||||||
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
|
let a_c = a.clone().map(|x| Complex::new(x, 0.0));
|
||||||
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
|
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
|
||||||
|
|
||||||
let ge = GE::new(a.clone(), b.clone());
|
let ge = GE::new(a.clone(), b.clone());
|
||||||
let (vsl,vsr) = ge.clone().eigenvectors();
|
let (vsl,vsr) = ge.clone().eigenvectors();
|
||||||
let eigenvalues = ge.clone().eigenvalues();
|
|
||||||
|
|
||||||
for i in 0..n {
|
for (i,(alpha,beta)) in ge.raw_eigenvalues().iter().enumerate() {
|
||||||
let left_eigenvector = &vsl.column(i);
|
let l_a = a_c.clone() * Complex::new(*beta, 0.0);
|
||||||
prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Dynamic::new(n)) ,epsilon = 1.0e-7));
|
let l_b = b_c.clone() * *alpha;
|
||||||
|
|
||||||
let right_eigenvector = &vsr.column(i);
|
prop_assert!(
|
||||||
prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Dynamic::new(n), Const::<1>) ,epsilon = 1.0e-7));
|
relative_eq!(
|
||||||
};
|
((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()),
|
||||||
|
OMatrix::zeros_generic(Dynamic::new(n), Const::<1>),
|
||||||
|
epsilon = 1.0e-7));
|
||||||
|
|
||||||
|
prop_assert!(
|
||||||
|
relative_eq!(
|
||||||
|
(vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()),
|
||||||
|
OMatrix::zeros_generic(Const::<1>, Dynamic::new(n)),
|
||||||
|
epsilon = 1.0e-7))
|
||||||
|
};
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -40,20 +48,27 @@ proptest! {
|
||||||
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
|
let a_condition_no = a.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&a)));
|
||||||
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
|
let b_condition_no = b.clone().try_inverse().and_then(|x| Some(EuclideanNorm.norm(&x)* EuclideanNorm.norm(&b)));
|
||||||
|
|
||||||
if a_condition_no.unwrap_or(200000.0) < 10.0 && b_condition_no.unwrap_or(200000.0) < 10.0{
|
if a_condition_no.unwrap_or(200000.0) < 5.0 && b_condition_no.unwrap_or(200000.0) < 5.0 {
|
||||||
let ge = GE::new(a.clone(), b.clone());
|
let ge = GE::new(a.clone(), b.clone());
|
||||||
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
|
let a_c =a.clone().map(|x| Complex::new(x, 0.0));
|
||||||
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
|
let b_c = b.clone().map(|x| Complex::new(x, 0.0));
|
||||||
let (vsl,vsr) = ge.eigenvectors();
|
let (vsl,vsr) = ge.eigenvectors();
|
||||||
let eigenvalues = ge.eigenvalues();
|
let eigenvalues = ge.raw_eigenvalues();
|
||||||
|
|
||||||
for i in 0..4 {
|
for (i,(alpha,beta)) in eigenvalues.iter().enumerate() {
|
||||||
let left_eigenvector = &vsl.column(i);
|
let l_a = a_c.clone() * Complex::new(*beta, 0.0);
|
||||||
prop_assert!(relative_eq!((left_eigenvector.transpose()*&a_c - left_eigenvector.transpose()*&b_c*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<1>,Const::<4>) ,epsilon = 1.0e-7));
|
let l_b = b_c.clone() * *alpha;
|
||||||
|
|
||||||
let right_eigenvector = &vsr.column(i);
|
prop_assert!(
|
||||||
prop_assert!(relative_eq!((&a_c*right_eigenvector - &b_c*right_eigenvector*eigenvalues[i]).map(|x| x.modulus()), OMatrix::zeros_generic(Const::<4>, Const::<1>) ,epsilon = 1.0e-7));
|
relative_eq!(
|
||||||
};
|
((&l_a - &l_b)*vsr.column(i)).map(|x| x.modulus()),
|
||||||
|
OMatrix::zeros_generic(Const::<4>, Const::<1>),
|
||||||
|
epsilon = 1.0e-7));
|
||||||
|
prop_assert!(
|
||||||
|
relative_eq!((vsl.column(i).adjoint()*(&l_a - &l_b)).map(|x| x.modulus()),
|
||||||
|
OMatrix::zeros_generic(Const::<1>, Const::<4>),
|
||||||
|
epsilon = 1.0e-7))
|
||||||
|
}
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue