Cleanup of QZ module and added GE's calculation of eigenvalues as a test for QZ's calculation of eigenvalues
This commit is contained in:
parent
7d8fb3d384
commit
748848fea7
@ -13,7 +13,11 @@ use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
|
||||
|
||||
use lapack;
|
||||
|
||||
/// Generalized eigendecomposition of a pair of N*N square matrices.
|
||||
/// QZ decomposition of a pair of N*N square matrices.
|
||||
/// Retrieves the left and right matrices of Schur Vectors (VSL and VSR)
|
||||
/// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the
|
||||
/// decomposed input matrix `a` equals `VSL * S * VSL.transpose()` and
|
||||
/// decomposed input matrix `b` equals `VSL * T * VSL.transpose()`.
|
||||
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
||||
#[cfg_attr(
|
||||
feature = "serde-serialize",
|
||||
@ -59,6 +63,11 @@ where
|
||||
{
|
||||
/// Attempts to compute the QZ decomposition of input square matrices `a` and `b`.
|
||||
///
|
||||
/// i.e retrieves the left and right matrices of Schur Vectors (VSL and VSR)
|
||||
/// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the
|
||||
/// decomposed matrix `a` equals `VSL * S * VSL.transpose()` and
|
||||
/// decomposed matrix `b` equals `VSL * T * VSL.transpose()`.
|
||||
///
|
||||
/// Panics if the method did not converge.
|
||||
pub fn new(a: OMatrix<T, D, D>, b: OMatrix<T, D, D>) -> Self {
|
||||
Self::try_new(a, b).expect("QZ decomposition: convergence failed.")
|
||||
@ -154,8 +163,8 @@ where
|
||||
|
||||
/// Retrieves the left and right matrices of Schur Vectors (VSL and VSR)
|
||||
/// the upper-quasitriangular matrix `S` and upper triangular matrix `T` such that the
|
||||
/// decomposed matrix `A` equals `VSL * S * VSL.transpose()` and
|
||||
/// decomposed matrix `B` equals `VSL * T * VSL.transpose()`.
|
||||
/// decomposed input matrix `a` equals `VSL * S * VSL.transpose()` and
|
||||
/// decomposed input matrix `b` equals `VSL * T * VSL.transpose()`.
|
||||
pub fn unpack(
|
||||
self,
|
||||
) -> (
|
||||
@ -167,8 +176,6 @@ where
|
||||
(self.vsl, self.s, self.t, self.vsr)
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// computes the generalized eigenvalues
|
||||
#[must_use]
|
||||
pub fn eigenvalues(&self) -> OVector<Complex<T>, D>
|
||||
|
@ -1,7 +1,5 @@
|
||||
use na::{zero, DMatrix, SMatrix};
|
||||
use nl::QZ;
|
||||
use num_complex::Complex;
|
||||
use simba::scalar::ComplexField;
|
||||
use na::DMatrix;
|
||||
use nl::{GE, QZ};
|
||||
use std::cmp;
|
||||
|
||||
use crate::proptest::*;
|
||||
@ -16,33 +14,28 @@ proptest! {
|
||||
|
||||
let qz = QZ::new(a.clone(), b.clone());
|
||||
let (vsl,s,t,vsr) = qz.clone().unpack();
|
||||
//let eigenvalues = qz.eigenvalues();
|
||||
//let a_c = a.clone().map(|x| Complex::new(x, zero::<f64>()));
|
||||
let eigenvalues = qz.eigenvalues();
|
||||
|
||||
let ge = GE::new(a.clone(), b.clone());
|
||||
let eigenvalues2 = ge.eigenvalues();
|
||||
|
||||
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a.clone(), epsilon = 1.0e-7));
|
||||
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b.clone(), epsilon = 1.0e-7));
|
||||
// spotty test that skips over the first eigenvalue which in some cases is extremely large relative to the other ones
|
||||
// and fails the condition
|
||||
//for i in 1..n {
|
||||
// let b_c = b.clone().map(|x| eigenvalues[i]*Complex::new(x,zero::<f64>()));
|
||||
// prop_assert!(relative_eq!((&a_c - &b_c).determinant().modulus(), 0.0, epsilon = 1.0e-6));
|
||||
//}
|
||||
prop_assert!(eigenvalues == eigenvalues2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn qz_static(a in matrix4(), b in matrix4()) {
|
||||
let qz = QZ::new(a.clone(), b.clone());
|
||||
let ge = GE::new(a.clone(), b.clone());
|
||||
let (vsl,s,t,vsr) = qz.unpack();
|
||||
//let eigenvalues = qz.eigenvalues();
|
||||
//let a_c = a.clone().map(|x| Complex::new(x, zero::<f64>()));
|
||||
let eigenvalues = qz.eigenvalues();
|
||||
let eigenvalues2 = ge.eigenvalues();
|
||||
|
||||
prop_assert!(relative_eq!(&vsl * s * vsr.transpose(), a, epsilon = 1.0e-7));
|
||||
prop_assert!(relative_eq!(vsl * t * vsr.transpose(), b, epsilon = 1.0e-7));
|
||||
|
||||
//for i in 0..4 {
|
||||
// let b_c = b.clone().map(|x| eigenvalues[i]*Complex::new(x,zero::<f64>()));
|
||||
// println!("{}",eigenvalues);
|
||||
// prop_assert!(relative_eq!((&a_c - &b_c).determinant().modulus(), 0.0, epsilon = 1.0e-4))
|
||||
//}
|
||||
prop_assert!(eigenvalues == eigenvalues2);
|
||||
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user