Merge pull request #819 from dimforge/dev

Release v0.24.0
This commit is contained in:
Sébastien Crozet 2020-12-30 15:23:53 +01:00 committed by GitHub
commit 3e2ab0119e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 370 additions and 66 deletions

View File

@ -4,10 +4,25 @@ documented here.
This project adheres to [Semantic Versioning](https://semver.org/).
## [0.24.0]
### Added
* The `DualQuaternion` type. It is still work-in-progress but the basics are here:
creation from its real and dual part, multiplication of two dual quaternions,
and normalization.
### Removed
* There is no blanket `impl<T> PartialEq for Unit<T>` any more. Instead, it is
implemented specifically for `UnitComplex`, `UnitQuaternion` and `Unit<Vector>`.
## [0.23.2]
In this release, we improved the documentation of some of the geometric types
by applying changes similar to what we did in the version 0.23.1 for matrices.
### Added
* The `Isometry::inv_mul` method which is a more efficient way of doing
`isometry1.inverse() * isometry2`.
## [0.23.1]
In this release we improved the documentation of the matrix and vector types by:
- Grouping `impl` bocks logically, adding a title comment to these impl blocks.

View File

@ -1,6 +1,6 @@
[package]
name = "nalgebra"
version = "0.23.2"
version = "0.24.0"
authors = [ "Sébastien Crozet <developer@crozet.re>" ]
description = "Linear algebra library with transformations and statically-sized or dynamically-sized matrices."

View File

@ -1,6 +1,6 @@
[package]
name = "nalgebra-glm"
version = "0.9.0"
version = "0.10.0"
authors = ["sebcrozet <developer@crozet.re>"]
description = "A computer-graphics oriented API for nalgebra, inspired by the C++ GLM library."
@ -25,4 +25,4 @@ abomonation-serialize = [ "nalgebra/abomonation-serialize" ]
num-traits = { version = "0.2", default-features = false }
approx = { version = "0.4", default-features = false }
simba = { version = "0.3", default-features = false }
nalgebra = { path = "..", version = "0.23", default-features = false }
nalgebra = { path = "..", version = "0.24", default-features = false }

View File

@ -1,6 +1,6 @@
[package]
name = "nalgebra-lapack"
version = "0.14.0"
version = "0.15.0"
authors = [ "Sébastien Crozet <developer@crozet.re>", "Andrew Straw <strawman@astraw.com>" ]
description = "Linear algebra library with transformations and satically-sized or dynamically-sized matrices."
@ -23,7 +23,7 @@ accelerate = ["lapack-src/accelerate"]
intel-mkl = ["lapack-src/intel-mkl"]
[dependencies]
nalgebra = { version = "0.22" } # , path = ".." }
nalgebra = { version = "0.24", path = ".." }
num-traits = "0.2"
num-complex = { version = "0.2", default-features = false }
simba = "0.2"
@ -34,7 +34,7 @@ lapack-src = { version = "0.5", default-features = false }
# clippy = "*"
[dev-dependencies]
nalgebra = { version = "0.22", features = [ "arbitrary" ] } # path = ".." }
nalgebra = { version = "0.24", features = [ "arbitrary" ], path = ".." }
quickcheck = "0.9"
approx = "0.3"
rand = "0.7"

View File

@ -11,7 +11,8 @@ use abomonation::Abomonation;
use crate::allocator::Allocator;
use crate::base::DefaultAllocator;
use crate::{Dim, MatrixMN, RealField, Scalar, SimdComplexField, SimdRealField};
use crate::storage::Storage;
use crate::{Dim, Matrix, MatrixMN, RealField, Scalar, SimdComplexField, SimdRealField};
/// A wrapper that ensures the underlying algebraic entity has a unit norm.
///
@ -24,7 +25,7 @@ use crate::{Dim, MatrixMN, RealField, Scalar, SimdComplexField, SimdRealField};
/// and [`UnitQuaternion`](crate::UnitQuaternion); both built on top of `Unit`. If you are interested
/// in their documentation, read their dedicated pages directly.
#[repr(transparent)]
#[derive(Eq, PartialEq, Clone, Hash, Debug, Copy)]
#[derive(Clone, Hash, Debug, Copy)]
pub struct Unit<T> {
pub(crate) value: T,
}
@ -64,6 +65,28 @@ impl<T: Abomonation> Abomonation for Unit<T> {
}
}
impl<N, R, C, S> PartialEq for Unit<Matrix<N, R, C, S>>
where
N: Scalar + PartialEq,
R: Dim,
C: Dim,
S: Storage<N, R, C>,
{
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.value.eq(&rhs.value)
}
}
impl<N, R, C, S> Eq for Unit<Matrix<N, R, C, S>>
where
N: Scalar + Eq,
R: Dim,
C: Dim,
S: Storage<N, R, C>,
{
}
/// Trait implemented by entities scan be be normalized and put in an `Unit` struct.
pub trait Normed {
/// The type of the norm.

View File

@ -0,0 +1,116 @@
use crate::{Quaternion, SimdRealField};
#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Deserializer, Serialize, Serializer};
/// A dual quaternion.
///
/// # Indexing
///
/// DualQuaternions are stored as \[..real, ..dual\].
/// Both of the quaternion components are laid out in `i, j, k, w` order.
///
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
///
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
///
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
/// assert_eq!(dq[0], 2.0);
/// assert_eq!(dq[1], 3.0);
///
/// assert_eq!(dq[4], 6.0);
/// assert_eq!(dq[7], 5.0);
/// ```
///
/// NOTE:
/// As of December 2020, dual quaternion support is a work in progress.
/// If a feature that you need is missing, feel free to open an issue or a PR.
/// See https://github.com/dimforge/nalgebra/issues/487
#[repr(C)]
#[derive(Debug, Default, Eq, PartialEq, Copy, Clone)]
pub struct DualQuaternion<N: SimdRealField> {
/// The real component of the quaternion
pub real: Quaternion<N>,
/// The dual component of the quaternion
pub dual: Quaternion<N>,
}
impl<N: SimdRealField> DualQuaternion<N>
where
N::Element: SimdRealField,
{
/// Normalizes this quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// let dq_normalized = dq.normalize();
///
/// relative_eq!(dq_normalized.real.norm(), 1.0);
/// ```
#[inline]
#[must_use = "Did you mean to use normalize_mut()?"]
pub fn normalize(&self) -> Self {
let real_norm = self.real.norm();
Self::from_real_and_dual(self.real / real_norm, self.dual / real_norm)
}
/// Normalizes this quaternion.
///
/// # Example
/// ```
/// # #[macro_use] extern crate approx;
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let real = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let dual = Quaternion::new(5.0, 6.0, 7.0, 8.0);
/// let mut dq = DualQuaternion::from_real_and_dual(real, dual);
///
/// dq.normalize_mut();
///
/// relative_eq!(dq.real.norm(), 1.0);
/// ```
#[inline]
pub fn normalize_mut(&mut self) {
*self = self.normalize();
}
}
#[cfg(feature = "serde-serialize")]
impl<N: SimdRealField> Serialize for DualQuaternion<N>
where
N: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where
S: Serializer,
{
self.as_ref().serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: SimdRealField> Deserialize<'a> for DualQuaternion<N>
where
N: Deserialize<'a>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: Deserializer<'a>,
{
type Dq<N> = [N; 8];
let dq: Dq<N> = Dq::<N>::deserialize(deserializer)?;
Ok(Self {
real: Quaternion::new(dq[3], dq[0], dq[1], dq[2]),
dual: Quaternion::new(dq[7], dq[4], dq[5], dq[6]),
})
}
}

View File

@ -0,0 +1,42 @@
use crate::{DualQuaternion, Quaternion, SimdRealField};
impl<N: SimdRealField> DualQuaternion<N> {
/// Creates a dual quaternion from its rotation and translation components.
///
/// # Example
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
/// let rot = Quaternion::new(1.0, 2.0, 3.0, 4.0);
/// let trans = Quaternion::new(5.0, 6.0, 7.0, 8.0);
///
/// let dq = DualQuaternion::from_real_and_dual(rot, trans);
/// assert_eq!(dq.real.w, 1.0);
/// ```
#[inline]
pub fn from_real_and_dual(real: Quaternion<N>, dual: Quaternion<N>) -> Self {
Self { real, dual }
}
/// The dual quaternion multiplicative identity
///
/// # Example
///
/// ```
/// # use nalgebra::{DualQuaternion, Quaternion};
///
/// let dq1 = DualQuaternion::identity();
/// let dq2 = DualQuaternion::from_real_and_dual(
/// Quaternion::new(1.,2.,3.,4.),
/// Quaternion::new(5.,6.,7.,8.)
/// );
///
/// assert_eq!(dq1 * dq2, dq2);
/// assert_eq!(dq2 * dq1, dq2);
/// ```
#[inline]
pub fn identity() -> Self {
Self::from_real_and_dual(
Quaternion::from_real(N::one()),
Quaternion::from_real(N::zero()),
)
}
}

View File

@ -0,0 +1,104 @@
/*
* This file provides:
*
* NOTE: Work in progress https://github.com/dimforge/nalgebra/issues/487
*
* (Dual Quaternion)
*
* Index<usize>
* IndexMut<usize>
*
* (Assignment Operators)
*
* DualQuaternion × Scalar
* DualQuaternion × DualQuaternion
* DualQuaternion + DualQuaternion
* DualQuaternion - DualQuaternion
*
* ---
*
* References:
* Multiplication:
* - https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf
*/
use crate::{DualQuaternion, SimdRealField};
use std::mem;
use std::ops::{Add, Index, IndexMut, Mul, Sub};
impl<N: SimdRealField> AsRef<[N; 8]> for DualQuaternion<N> {
#[inline]
fn as_ref(&self) -> &[N; 8] {
unsafe { mem::transmute(self) }
}
}
impl<N: SimdRealField> AsMut<[N; 8]> for DualQuaternion<N> {
#[inline]
fn as_mut(&mut self) -> &mut [N; 8] {
unsafe { mem::transmute(self) }
}
}
impl<N: SimdRealField> Index<usize> for DualQuaternion<N> {
type Output = N;
#[inline]
fn index(&self, i: usize) -> &Self::Output {
&self.as_ref()[i]
}
}
impl<N: SimdRealField> IndexMut<usize> for DualQuaternion<N> {
#[inline]
fn index_mut(&mut self, i: usize) -> &mut N {
&mut self.as_mut()[i]
}
}
impl<N: SimdRealField> Mul<DualQuaternion<N>> for DualQuaternion<N>
where
N::Element: SimdRealField,
{
type Output = DualQuaternion<N>;
fn mul(self, rhs: Self) -> Self::Output {
Self::from_real_and_dual(
self.real * rhs.real,
self.real * rhs.dual + self.dual * rhs.real,
)
}
}
impl<N: SimdRealField> Mul<N> for DualQuaternion<N>
where
N::Element: SimdRealField,
{
type Output = DualQuaternion<N>;
fn mul(self, rhs: N) -> Self::Output {
Self::from_real_and_dual(self.real * rhs, self.dual * rhs)
}
}
impl<N: SimdRealField> Add<DualQuaternion<N>> for DualQuaternion<N>
where
N::Element: SimdRealField,
{
type Output = DualQuaternion<N>;
fn add(self, rhs: DualQuaternion<N>) -> Self::Output {
Self::from_real_and_dual(self.real + rhs.real, self.dual + rhs.dual)
}
}
impl<N: SimdRealField> Sub<DualQuaternion<N>> for DualQuaternion<N>
where
N::Element: SimdRealField,
{
type Output = DualQuaternion<N>;
fn sub(self, rhs: DualQuaternion<N>) -> Self::Output {
Self::from_real_and_dual(self.real - rhs.real, self.dual - rhs.dual)
}
}

View File

@ -35,6 +35,10 @@ mod quaternion_coordinates;
mod quaternion_ops;
mod quaternion_simba;
mod dual_quaternion;
mod dual_quaternion_construction;
mod dual_quaternion_ops;
mod unit_complex;
#[cfg(feature = "alga")]
mod unit_complex_alga;
@ -98,6 +102,8 @@ pub use self::rotation_alias::*;
pub use self::quaternion::*;
pub use self::dual_quaternion::*;
pub use self::unit_complex::*;
pub use self::translation::*;

View File

@ -1,7 +1,6 @@
use approx::{AbsDiffEq, RelativeEq, UlpsEq};
use num::Zero;
use std::fmt;
use std::hash;
#[cfg(feature = "abomonation-serialize")]
use std::io::{Result as IOResult, Write};
@ -13,8 +12,8 @@ use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "abomonation-serialize")]
use abomonation::Abomonation;
use simba::scalar::RealField;
use simba::simd::{SimdBool, SimdOption, SimdRealField, SimdValue};
use simba::scalar::{ClosedNeg, RealField};
use simba::simd::{SimdBool, SimdOption, SimdRealField};
use crate::base::dimension::{U1, U3, U4};
use crate::base::storage::{CStride, RStride};
@ -27,13 +26,13 @@ use crate::geometry::{Point3, Rotation};
/// A quaternion. See the type alias `UnitQuaternion = Unit<Quaternion>` for a quaternion
/// that may be used as a rotation.
#[repr(C)]
#[derive(Debug)]
pub struct Quaternion<N: Scalar + SimdValue> {
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
pub struct Quaternion<N: Scalar> {
/// This quaternion as a 4D vector of coordinates in the `[ x, y, z, w ]` storage order.
pub coords: Vector4<N>,
}
impl<N: RealField> Default for Quaternion<N> {
impl<N: Scalar + Zero> Default for Quaternion<N> {
fn default() -> Self {
Quaternion {
coords: Vector4::zeros(),
@ -42,7 +41,7 @@ impl<N: RealField> Default for Quaternion<N> {
}
#[cfg(feature = "abomonation-serialize")]
impl<N: SimdRealField> Abomonation for Quaternion<N>
impl<N: Scalar> Abomonation for Quaternion<N>
where
Vector4<N>: Abomonation,
{
@ -59,36 +58,8 @@ where
}
}
impl<N: SimdRealField + Eq> Eq for Quaternion<N> where N::Element: SimdRealField {}
impl<N: SimdRealField> PartialEq for Quaternion<N>
where
N::Element: SimdRealField,
{
fn eq(&self, rhs: &Self) -> bool {
self.coords == rhs.coords ||
// Account for the double-covering of S², i.e. q = -q
self.as_vector().iter().zip(rhs.as_vector().iter()).all(|(a, b)| *a == -*b)
}
}
impl<N: SimdRealField + hash::Hash> hash::Hash for Quaternion<N> {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.coords.hash(state)
}
}
impl<N: Scalar + Copy + SimdValue> Copy for Quaternion<N> {}
impl<N: Scalar + SimdValue> Clone for Quaternion<N> {
#[inline]
fn clone(&self) -> Self {
Self::from(self.coords.clone())
}
}
#[cfg(feature = "serde-serialize")]
impl<N: SimdRealField> Serialize for Quaternion<N>
impl<N: Scalar> Serialize for Quaternion<N>
where
Owned<N, U4>: Serialize,
{
@ -101,7 +72,7 @@ where
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: SimdRealField> Deserialize<'a> for Quaternion<N>
impl<'a, N: Scalar> Deserialize<'a> for Quaternion<N>
where
Owned<N, U4>: Deserialize<'a>,
{
@ -980,6 +951,17 @@ impl<N: RealField + fmt::Display> fmt::Display for Quaternion<N> {
/// A unit quaternions. May be used to represent a rotation.
pub type UnitQuaternion<N> = Unit<Quaternion<N>>;
impl<N: Scalar + ClosedNeg + PartialEq> PartialEq for UnitQuaternion<N> {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.coords == rhs.coords ||
// Account for the double-covering of S², i.e. q = -q
self.coords.iter().zip(rhs.coords.iter()).all(|(a, b)| *a == -b.inlined_clone())
}
}
impl<N: Scalar + ClosedNeg + Eq> Eq for UnitQuaternion<N> {}
impl<N: SimdRealField> Normed for Quaternion<N> {
type Norm = N::SimdRealField;

View File

@ -10,7 +10,7 @@ use rand::distributions::{Distribution, OpenClosed01, Standard};
use rand::Rng;
use simba::scalar::RealField;
use simba::simd::{SimdBool, SimdValue};
use simba::simd::SimdBool;
use crate::base::dimension::U3;
use crate::base::storage::Storage;
@ -19,7 +19,7 @@ use crate::{Scalar, SimdRealField};
use crate::geometry::{Quaternion, Rotation3, UnitQuaternion};
impl<N: Scalar + SimdValue> Quaternion<N> {
impl<N: Scalar> Quaternion<N> {
/// Creates a quaternion from a 4D vector. The quaternion scalar part corresponds to the `w`
/// vector component.
#[inline]

View File

@ -184,36 +184,36 @@ impl<N1: RealField, N2: RealField + SupersetOf<N1>> SubsetOf<Matrix4<N2>> for Un
}
#[cfg(feature = "mint")]
impl<N: SimdRealField> From<mint::Quaternion<N>> for Quaternion<N> {
impl<N: Scalar> From<mint::Quaternion<N>> for Quaternion<N> {
fn from(q: mint::Quaternion<N>) -> Self {
Self::new(q.s, q.v.x, q.v.y, q.v.z)
}
}
#[cfg(feature = "mint")]
impl<N: SimdRealField> Into<mint::Quaternion<N>> for Quaternion<N> {
impl<N: Scalar> Into<mint::Quaternion<N>> for Quaternion<N> {
fn into(self) -> mint::Quaternion<N> {
mint::Quaternion {
v: mint::Vector3 {
x: self[0],
y: self[1],
z: self[2],
x: self[0].inlined_clone(),
y: self[1].inlined_clone(),
z: self[2].inlined_clone(),
},
s: self[3],
s: self[3].inlined_clone(),
}
}
}
#[cfg(feature = "mint")]
impl<N: SimdRealField> Into<mint::Quaternion<N>> for UnitQuaternion<N> {
impl<N: Scalar + SimdValue> Into<mint::Quaternion<N>> for UnitQuaternion<N> {
fn into(self) -> mint::Quaternion<N> {
mint::Quaternion {
v: mint::Vector3 {
x: self[0],
y: self[1],
z: self[2],
x: self[0].inlined_clone(),
y: self[1].inlined_clone(),
z: self[2].inlined_clone(),
},
s: self[3],
s: self[3].inlined_clone(),
}
}
}
@ -258,14 +258,14 @@ where
}
}
impl<N: Scalar + SimdValue> From<Vector4<N>> for Quaternion<N> {
impl<N: Scalar> From<Vector4<N>> for Quaternion<N> {
#[inline]
fn from(coords: Vector4<N>) -> Self {
Self { coords }
}
}
impl<N: Scalar + SimdValue> From<[N; 4]> for Quaternion<N> {
impl<N: Scalar> From<[N; 4]> for Quaternion<N> {
#[inline]
fn from(coords: [N; 4]) -> Self {
Self {

View File

@ -57,12 +57,12 @@ use std::ops::{
use crate::base::allocator::Allocator;
use crate::base::dimension::{U1, U3, U4};
use crate::base::storage::Storage;
use crate::base::{DefaultAllocator, Unit, Vector, Vector3};
use crate::base::{DefaultAllocator, Scalar, Unit, Vector, Vector3};
use crate::SimdRealField;
use crate::geometry::{Point3, Quaternion, Rotation, UnitQuaternion};
impl<N: SimdRealField> Index<usize> for Quaternion<N> {
impl<N: Scalar> Index<usize> for Quaternion<N> {
type Output = N;
#[inline]
@ -71,7 +71,7 @@ impl<N: SimdRealField> Index<usize> for Quaternion<N> {
}
}
impl<N: SimdRealField> IndexMut<usize> for Quaternion<N> {
impl<N: Scalar> IndexMut<usize> for Quaternion<N> {
#[inline]
fn index_mut(&mut self, i: usize) -> &mut N {
&mut self.coords[i]

View File

@ -4,8 +4,10 @@ use std::fmt;
use crate::base::{Matrix2, Matrix3, Normed, Unit, Vector1, Vector2};
use crate::geometry::{Point2, Rotation2};
use crate::Scalar;
use simba::scalar::RealField;
use simba::simd::SimdRealField;
use std::cmp::{Eq, PartialEq};
/// A 2D rotation represented as a complex number with magnitude 1.
///
@ -29,6 +31,15 @@ use simba::simd::SimdRealField;
/// * [Conversion to a matrix <span style="float:right;">`to_rotation_matrix`, `to_homogeneous`…</span>](#conversion-to-a-matrix)
pub type UnitComplex<N> = Unit<Complex<N>>;
impl<N: Scalar + PartialEq> PartialEq for UnitComplex<N> {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
(**self).eq(&**rhs)
}
}
impl<N: Scalar + Eq> Eq for UnitComplex<N> {}
impl<N: SimdRealField> Normed for Complex<N> {
type Norm = N::SimdRealField;

View File

@ -4,9 +4,15 @@
//! The tests here only check that the necessary trait implementations are correctly implemented,
//! in addition to some sanity checks with example input.
use nalgebra::{DMatrix, MatrixMN, U4, U5};
use nalgebra::{MatrixMN, U4, U5};
use matrixcompare::{assert_matrix_eq, DenseAccess};
#[cfg(feature = "arbitrary")]
use nalgebra::DMatrix;
use matrixcompare::assert_matrix_eq;
#[cfg(feature = "arbitrary")]
use matrixcompare::DenseAccess;
#[cfg(feature = "arbitrary")]
quickcheck! {

View File

@ -114,7 +114,6 @@ quickcheck!(
*/
fn unit_quaternion_double_covering(q: UnitQuaternion<f64>) -> bool {
let mq = UnitQuaternion::new_unchecked(-q.into_inner());
mq == q && mq.angle() == q.angle() && mq.axis() == q.axis()
}