nalgebra/src/base/norm.rs

402 lines
11 KiB
Rust
Raw Normal View History

use num::Zero;
2020-03-21 19:16:46 +08:00
use std::ops::Neg;
2019-03-23 21:29:07 +08:00
use crate::allocator::Allocator;
2020-03-21 19:16:46 +08:00
use crate::base::{DefaultAllocator, Dim, Matrix, MatrixMN, Normed};
use crate::constraint::{SameNumberOfColumns, SameNumberOfRows, ShapeConstraint};
2019-03-23 21:29:07 +08:00
use crate::storage::{Storage, StorageMut};
2020-03-21 19:16:46 +08:00
use crate::{ComplexField, Scalar, SimdComplexField, Unit};
use simba::scalar::ClosedNeg;
use simba::simd::{SimdOption, SimdPartialOrd};
// FIXME: this should be be a trait on alga?
/// A trait for abstract matrix norms.
///
/// This may be moved to the alga crate in the future.
pub trait Norm<N: SimdComplexField> {
/// Apply this norm to the given matrix.
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<N, R, C>;
/// Use the metric induced by this norm to compute the metric distance between the two given matrices.
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>,
) -> N::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>;
}
/// Euclidean norm.
pub struct EuclideanNorm;
/// Lp norm.
pub struct LpNorm(pub i32);
/// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
pub struct UniformNorm;
impl<N: SimdComplexField> Norm<N> for EuclideanNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
{
m.norm_squared().simd_sqrt()
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>,
) -> N::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{
m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| {
let diff = a - b;
acc + diff.simd_modulus_squared()
})
.simd_sqrt()
}
}
impl<N: SimdComplexField> Norm<N> for LpNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
{
m.fold(N::SimdRealField::zero(), |a, b| {
a + b.simd_modulus().simd_powi(self.0)
})
.simd_powf(crate::convert(1.0 / (self.0 as f64)))
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>,
) -> N::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{
m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| {
let diff = a - b;
acc + diff.simd_modulus().simd_powi(self.0)
})
.simd_powf(crate::convert(1.0 / (self.0 as f64)))
}
}
impl<N: SimdComplexField> Norm<N> for UniformNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::SimdRealField
where
R: Dim,
C: Dim,
S: Storage<N, R, C>,
{
// NOTE: we don't use `m.amax()` here because for the complex
// numbers this will return the max norm1 instead of the modulus.
m.fold(N::SimdRealField::zero(), |acc, a| {
acc.simd_max(a.simd_modulus())
})
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(
&self,
m1: &Matrix<N, R1, C1, S1>,
m2: &Matrix<N, R2, C2, S2>,
) -> N::SimdRealField
where
R1: Dim,
C1: Dim,
S1: Storage<N, R1, C1>,
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>,
{
m1.zip_fold(m2, N::SimdRealField::zero(), |acc, a, b| {
let val = (a - b).simd_modulus();
acc.simd_max(val)
})
}
}
impl<N: SimdComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// The squared L2 norm of this vector.
#[inline]
pub fn norm_squared(&self) -> N::SimdRealField {
let mut res = N::SimdRealField::zero();
for i in 0..self.ncols() {
let col = self.column(i);
res += col.dotc(&col).simd_real()
}
res
}
/// The L2 norm of this matrix.
///
/// Use `.apply_norm` to apply a custom norm.
#[inline]
pub fn norm(&self) -> N::SimdRealField {
self.norm_squared().simd_sqrt()
}
/// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm.
///
/// Use `.apply_metric_distance` to apply a custom norm.
#[inline]
pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>) -> N::SimdRealField
where
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
self.apply_metric_distance(rhs, &EuclideanNorm)
}
/// Uses the given `norm` to compute the norm of `self`.
///
/// # Example
///
/// ```
/// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
///
/// let v = Vector3::new(1.0, 2.0, 3.0);
/// assert_eq!(v.apply_norm(&UniformNorm), 3.0);
/// assert_eq!(v.apply_norm(&LpNorm(1)), 6.0);
/// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
/// ```
#[inline]
pub fn apply_norm(&self, norm: &impl Norm<N>) -> N::SimdRealField {
norm.norm(self)
}
/// Uses the metric induced by the given `norm` to compute the metric distance between `self` and `rhs`.
///
/// # Example
///
/// ```
/// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
///
/// let v1 = Vector3::new(1.0, 2.0, 3.0);
/// let v2 = Vector3::new(10.0, 20.0, 30.0);
///
/// assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0);
/// assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0);
/// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm());
/// ```
#[inline]
pub fn apply_metric_distance<R2, C2, S2>(
&self,
rhs: &Matrix<N, R2, C2, S2>,
norm: &impl Norm<N>,
) -> N::SimdRealField
where
R2: Dim,
C2: Dim,
S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2>,
{
norm.metric_distance(self, rhs)
}
/// A synonym for the norm of this matrix.
///
/// Aka the length.
///
/// This function is simply implemented as a call to `norm()`
#[inline]
pub fn magnitude(&self) -> N::SimdRealField {
self.norm()
}
/// A synonym for the squared norm of this matrix.
///
/// Aka the squared length.
///
/// This function is simply implemented as a call to `norm_squared()`
#[inline]
pub fn magnitude_squared(&self) -> N::SimdRealField {
self.norm_squared()
}
/// Sets the magnitude of this vector.
#[inline]
pub fn set_magnitude(&mut self, magnitude: N::SimdRealField)
where S: StorageMut<N, R, C> {
let n = self.norm();
self.scale_mut(magnitude / n)
}
/// Returns a normalized version of this matrix.
#[inline]
#[must_use = "Did you mean to use normalize_mut()?"]
pub fn normalize(&self) -> MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C> {
self.unscale(self.norm())
}
/// The Lp norm of this matrix.
#[inline]
pub fn lp_norm(&self, p: i32) -> N::SimdRealField {
self.apply_norm(&LpNorm(p))
}
2020-03-21 19:16:46 +08:00
#[inline]
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
pub fn simd_try_normalize(&self, min_norm: N::SimdRealField) -> SimdOption<MatrixMN<N, R, C>>
where
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
{
let n = self.norm();
let le = n.simd_le(min_norm);
let val = self.unscale(n);
SimdOption::new(val, le)
}
}
impl<N: ComplexField, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// Sets the magnitude of this vector unless it is smaller than `min_magnitude`.
///
/// If `self.magnitude()` is smaller than `min_magnitude`, it will be left unchanged.
/// Otherwise this is equivalent to: `*self = self.normalize() * magnitude.
#[inline]
pub fn try_set_magnitude(&mut self, magnitude: N::RealField, min_magnitude: N::RealField)
where S: StorageMut<N, R, C> {
let n = self.norm();
if n >= min_magnitude {
self.scale_mut(magnitude / n)
}
}
/// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
#[inline]
#[must_use = "Did you mean to use try_normalize_mut()?"]
2019-03-25 18:21:41 +08:00
pub fn try_normalize(&self, min_norm: N::RealField) -> Option<MatrixMN<N, R, C>>
where DefaultAllocator: Allocator<N, R, C> {
let n = self.norm();
if n <= min_norm {
None
} else {
Some(self.unscale(n))
}
}
}
impl<N: SimdComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Normalizes this matrix in-place and returns its norm.
#[inline]
pub fn normalize_mut(&mut self) -> N::SimdRealField {
let n = self.norm();
self.unscale_mut(n);
n
}
2020-03-21 19:16:46 +08:00
#[inline]
#[must_use = "Did you mean to use simd_try_normalize_mut()?"]
pub fn simd_try_normalize_mut(
&mut self,
min_norm: N::SimdRealField,
) -> SimdOption<N::SimdRealField>
where
N::Element: Scalar,
DefaultAllocator: Allocator<N, R, C> + Allocator<N::Element, R, C>,
{
let n = self.norm();
let le = n.simd_le(min_norm);
self.apply(|e| e.simd_unscale(n).select(le, e));
SimdOption::new(n, le)
}
}
impl<N: ComplexField, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
///
/// If the normalization succeeded, returns the old norm of this matrix.
#[inline]
2020-03-21 19:16:46 +08:00
pub fn try_normalize_mut(&mut self, min_norm: N::RealField) -> Option<N::RealField> {
let n = self.norm();
if n <= min_norm {
None
} else {
self.unscale_mut(n);
Some(n)
}
}
}
2020-03-21 19:16:46 +08:00
impl<N: SimdComplexField, R: Dim, C: Dim> Normed for MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C>
{
type Norm = N::SimdRealField;
#[inline]
fn norm(&self) -> N::SimdRealField {
self.norm()
}
#[inline]
fn norm_squared(&self) -> N::SimdRealField {
self.norm_squared()
}
#[inline]
fn scale_mut(&mut self, n: Self::Norm) {
self.scale_mut(n)
}
#[inline]
fn unscale_mut(&mut self, n: Self::Norm) {
self.unscale_mut(n)
}
}
impl<N: Scalar + ClosedNeg, R: Dim, C: Dim> Neg for Unit<MatrixMN<N, R, C>>
where DefaultAllocator: Allocator<N, R, C>
{
type Output = Unit<MatrixMN<N, R, C>>;
#[inline]
fn neg(self) -> Self::Output {
Unit::new_unchecked(-self.value)
}
}