nalgebra/src/base/norm.rs

240 lines
7.8 KiB
Rust
Raw Normal View History

use num::{Signed, Zero};
use std::cmp::PartialOrd;
use allocator::Allocator;
use ::{Real, Complex, Scalar};
use storage::{Storage, StorageMut};
use base::{DefaultAllocator, Matrix, Dim, MatrixMN};
use constraint::{SameNumberOfRows, SameNumberOfColumns, ShapeConstraint};
// FIXME: this should be be a trait on alga?
/// A trait for abstract matrix norms.
///
/// This may be moved to the alga crate in the future.
pub trait Norm<N: Complex> {
/// Apply this norm to the given matrix.
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::Real
where R: Dim, C: Dim, S: Storage<N, R, C>;
/// Use the metric induced by this norm to compute the metric distance between the two given matrices.
fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::Real
where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2>;
}
/// Euclidean norm.
pub struct EuclideanNorm;
/// Lp norm.
pub struct LpNorm(pub i32);
/// L-infinite norm aka. Chebytchev norm aka. uniform norm aka. suppremum norm.
pub struct UniformNorm;
impl<N: Complex> Norm<N> for EuclideanNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::Real
where R: Dim, C: Dim, S: Storage<N, R, C> {
m.cdot(m).real().sqrt()
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::Real
where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
m1.zip_fold(m2, N::Real::zero(), |acc, a, b| {
let diff = a - b;
acc + (diff.conjugate() * diff).real()
}).sqrt()
}
}
impl<N: Complex> Norm<N> for LpNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::Real
where R: Dim, C: Dim, S: Storage<N, R, C> {
m.fold(N::Real::zero(), |a, b| {
a + b.modulus().powi(self.0)
}).powf(::convert(1.0 / (self.0 as f64)))
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::Real
where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
m1.zip_fold(m2, N::Real::zero(), |acc, a, b| {
let diff = a - b;
acc + diff.modulus().powi(self.0)
}).powf(::convert(1.0 / (self.0 as f64)))
}
}
impl<N: Complex> Norm<N> for UniformNorm {
#[inline]
fn norm<R, C, S>(&self, m: &Matrix<N, R, C, S>) -> N::Real
where R: Dim, C: Dim, S: Storage<N, R, C> {
m.fold(N::Real::zero(), |acc, a| acc.max(a.modulus()))
}
#[inline]
fn metric_distance<R1, C1, S1, R2, C2, S2>(&self, m1: &Matrix<N, R1, C1, S1>, m2: &Matrix<N, R2, C2, S2>) -> N::Real
where R1: Dim, C1: Dim, S1: Storage<N, R1, C1>,
R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R1, R2> + SameNumberOfColumns<C1, C2> {
m1.zip_fold(m2, N::Real::zero(), |acc, a, b| {
let val = (a - b).modulus();
if val > acc {
val
} else {
acc
}
})
}
}
impl<N: Complex, R: Dim, C: Dim, S: Storage<N, R, C>> Matrix<N, R, C, S> {
/// The squared L2 norm of this vector.
#[inline]
pub fn norm_squared(&self) -> N::Real {
let mut res = N::Real::zero();
for i in 0..self.ncols() {
let col = self.column(i);
res += col.cdot(&col).real()
}
res
}
/// The L2 norm of this matrix.
///
/// Use `.apply_norm` to apply a custom norm.
#[inline]
pub fn norm(&self) -> N::Real {
self.norm_squared().sqrt()
}
/// Compute the distance between `self` and `rhs` using the metric induced by the euclidean norm.
///
/// Use `.apply_metric_distance` to apply a custom norm.
#[inline]
pub fn metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>) -> N::Real
where R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
self.apply_metric_distance(rhs, &EuclideanNorm)
}
/// Uses the given `norm` to compute the norm of `self`.
///
/// # Example
///
/// ```
/// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
///
/// let v = Vector3::new(1.0, 2.0, 3.0);
/// assert_eq!(v.apply_norm(&UniformNorm), 3.0);
/// assert_eq!(v.apply_norm(&LpNorm(1)), 6.0);
/// assert_eq!(v.apply_norm(&EuclideanNorm), v.norm());
/// ```
#[inline]
pub fn apply_norm(&self, norm: &impl Norm<N>) -> N::Real {
norm.norm(self)
}
/// Uses the metric induced by the given `norm` to compute the metric distance between `self` and `rhs`.
///
/// # Example
///
/// ```
/// # use nalgebra::{Vector3, UniformNorm, LpNorm, EuclideanNorm};
///
/// let v1 = Vector3::new(1.0, 2.0, 3.0);
/// let v2 = Vector3::new(10.0, 20.0, 30.0);
///
/// assert_eq!(v1.apply_metric_distance(&v2, &UniformNorm), 27.0);
/// assert_eq!(v1.apply_metric_distance(&v2, &LpNorm(1)), 27.0 + 18.0 + 9.0);
/// assert_eq!(v1.apply_metric_distance(&v2, &EuclideanNorm), (v1 - v2).norm());
/// ```
#[inline]
pub fn apply_metric_distance<R2, C2, S2>(&self, rhs: &Matrix<N, R2, C2, S2>, norm: &impl Norm<N>) -> N::Real
where R2: Dim, C2: Dim, S2: Storage<N, R2, C2>,
ShapeConstraint: SameNumberOfRows<R, R2> + SameNumberOfColumns<C, C2> {
norm.metric_distance(self, rhs)
}
/// A synonym for the norm of this matrix.
///
/// Aka the length.
///
/// This function is simply implemented as a call to `norm()`
#[inline]
pub fn magnitude(&self) -> N::Real {
self.norm()
}
/// A synonym for the squared norm of this matrix.
///
/// Aka the squared length.
///
/// This function is simply implemented as a call to `norm_squared()`
#[inline]
pub fn magnitude_squared(&self) -> N::Real {
self.norm_squared()
}
/// Returns a normalized version of this matrix.
#[inline]
pub fn normalize(&self) -> MatrixMN<N, R, C>
where DefaultAllocator: Allocator<N, R, C> {
self.map(|e| e.unscale(self.norm()))
}
/// Returns a normalized version of this matrix unless its norm as smaller or equal to `eps`.
#[inline]
pub fn try_normalize(&self, min_norm: N::Real) -> Option<MatrixMN<N, R, C>>
where DefaultAllocator: Allocator<N, R, C> {
let n = self.norm();
if n <= min_norm {
None
} else {
Some(self.map(|e| e.unscale(n)))
}
}
/// The Lp norm of this matrix.
#[inline]
pub fn lp_norm(&self, p: i32) -> N::Real {
self.apply_norm(&LpNorm(p))
}
}
impl<N: Complex, R: Dim, C: Dim, S: StorageMut<N, R, C>> Matrix<N, R, C, S> {
/// Normalizes this matrix in-place and returns its norm.
#[inline]
pub fn normalize_mut(&mut self) -> N::Real {
let n = self.norm();
self.apply(|e| e.unscale(n));
n
}
/// Normalizes this matrix in-place or does nothing if its norm is smaller or equal to `eps`.
///
/// If the normalization succeeded, returns the old normal of this matrix.
#[inline]
pub fn try_normalize_mut(&mut self, min_norm: N::Real) -> Option<N::Real> {
let n = self.norm();
if n <= min_norm {
None
} else {
self.apply(|e| e.unscale(n));
Some(n)
}
}
}