2017-08-14 01:53:04 +08:00
|
|
|
//! Construction of householder elementary reflections.
|
2017-08-03 01:37:44 +08:00
|
|
|
|
|
|
|
use alga::general::Real;
|
|
|
|
use core::{Unit, MatrixN, MatrixMN, Vector, VectorN, DefaultAllocator};
|
|
|
|
use dimension::Dim;
|
|
|
|
use storage::{Storage, StorageMut};
|
|
|
|
use allocator::Allocator;
|
|
|
|
|
|
|
|
use geometry::Reflection;
|
|
|
|
|
|
|
|
/// Replaces `column` by the axis of the householder reflection that transforms `column` into
|
|
|
|
/// `(+/-|column|, 0, ..., 0)`.
|
|
|
|
///
|
|
|
|
/// The unit-length axis is output to `column`. Returns what would be the first component of
|
|
|
|
/// `column` after reflection and `false` if no reflection was necessary.
|
|
|
|
#[doc(hidden)]
|
|
|
|
#[inline(always)]
|
|
|
|
pub fn reflection_axis_mut<N: Real, D: Dim, S: StorageMut<N, D>>(column: &mut Vector<N, D, S>) -> (N, bool) {
|
|
|
|
let reflection_sq_norm = column.norm_squared();
|
|
|
|
let mut reflection_norm = reflection_sq_norm.sqrt();
|
|
|
|
|
|
|
|
let factor;
|
|
|
|
unsafe {
|
|
|
|
if *column.vget_unchecked(0) > N::zero() {
|
|
|
|
reflection_norm = -reflection_norm;
|
|
|
|
}
|
|
|
|
|
|
|
|
factor = (reflection_sq_norm - *column.vget_unchecked(0) * reflection_norm) * ::convert(2.0);
|
|
|
|
*column.vget_unchecked_mut(0) -= reflection_norm;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if !factor.is_zero() {
|
|
|
|
*column /= factor.sqrt();
|
|
|
|
(reflection_norm, true)
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
(reflection_norm, false)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Uses an householder reflection to zero out the `icol`-th column, starting with the `shift + 1`-th
|
|
|
|
/// subdiagonal element.
|
|
|
|
#[doc(hidden)]
|
|
|
|
pub fn clear_column_unchecked<N: Real, R: Dim, C: Dim>(matrix: &mut MatrixMN<N, R, C>,
|
|
|
|
diag_elt: &mut N,
|
|
|
|
icol: usize,
|
|
|
|
shift: usize,
|
|
|
|
bilateral: Option<&mut VectorN<N, R>>)
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<N, R> {
|
|
|
|
|
|
|
|
let (mut left, mut right) = matrix.columns_range_pair_mut(icol, icol + 1 ..);
|
|
|
|
let mut axis = left.rows_range_mut(icol + shift ..);
|
|
|
|
|
|
|
|
let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis);
|
|
|
|
*diag_elt = reflection_norm;
|
|
|
|
|
|
|
|
if not_zero {
|
|
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
|
|
|
if let Some(mut work) = bilateral {
|
|
|
|
refl.reflect_rows(&mut right, &mut work);
|
|
|
|
}
|
|
|
|
refl.reflect(&mut right.rows_range_mut(icol + shift ..));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Uses an hoseholder reflection to zero out the `irow`-th row, ending before the `shift + 1`-th
|
|
|
|
/// superdiagonal element.
|
|
|
|
#[doc(hidden)]
|
|
|
|
pub fn clear_row_unchecked<N: Real, R: Dim, C: Dim>(matrix: &mut MatrixMN<N, R, C>,
|
|
|
|
diag_elt: &mut N,
|
|
|
|
axis_packed: &mut VectorN<N, C>,
|
|
|
|
work: &mut VectorN<N, R>,
|
|
|
|
irow: usize,
|
|
|
|
shift: usize)
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
Allocator<N, R> +
|
|
|
|
Allocator<N, C> {
|
|
|
|
|
|
|
|
let (mut top, mut bottom) = matrix.rows_range_pair_mut(irow, irow + 1 ..);
|
|
|
|
let mut axis = axis_packed.rows_range_mut(irow + shift ..);
|
|
|
|
axis.tr_copy_from(&top.columns_range(irow + shift ..));
|
|
|
|
|
|
|
|
let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis);
|
|
|
|
*diag_elt = reflection_norm;
|
|
|
|
|
|
|
|
if not_zero {
|
|
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
|
|
|
refl.reflect_rows(&mut bottom.columns_range_mut(irow + shift ..), &mut work.rows_range_mut(irow + 1 ..));
|
|
|
|
top.columns_range_mut(irow + shift ..).tr_copy_from(refl.axis());
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
top.columns_range_mut(irow + shift ..).tr_copy_from(&axis);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Computes the orthogonal transformation described by the elementary reflector axices stored on
|
|
|
|
/// the lower-diagonal element of the given matrix.
|
|
|
|
/// matrices.
|
|
|
|
#[doc(hidden)]
|
|
|
|
pub fn assemble_q<N: Real, D: Dim>(m: &MatrixN<N, D>) -> MatrixN<N, D>
|
|
|
|
where DefaultAllocator: Allocator<N, D, D> {
|
|
|
|
assert!(m.is_square());
|
|
|
|
let dim = m.data.shape().0;
|
|
|
|
|
|
|
|
// NOTE: we could build the identity matrix and call p_mult on it.
|
|
|
|
// Instead we don't so that we take in accout the matrix sparcity.
|
|
|
|
let mut res = MatrixN::identity_generic(dim, dim);
|
|
|
|
|
|
|
|
for i in (0 .. dim.value() - 1).rev() {
|
|
|
|
let axis = m.slice_range(i + 1 .., i);
|
|
|
|
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
|
|
|
|
|
|
|
|
let mut res_rows = res.slice_range_mut(i + 1 .., i ..);
|
|
|
|
refl.reflect(&mut res_rows);
|
|
|
|
}
|
|
|
|
|
|
|
|
res
|
|
|
|
}
|