nalgebra/src/linalg/householder.rs

121 lines
4.6 KiB
Rust
Raw Normal View History

//! Construction of transformations.
use alga::general::Real;
use core::{Unit, MatrixN, MatrixMN, Vector, VectorN, DefaultAllocator};
use dimension::Dim;
use storage::{Storage, StorageMut};
use allocator::Allocator;
use geometry::Reflection;
/// Replaces `column` by the axis of the householder reflection that transforms `column` into
/// `(+/-|column|, 0, ..., 0)`.
///
/// The unit-length axis is output to `column`. Returns what would be the first component of
/// `column` after reflection and `false` if no reflection was necessary.
#[doc(hidden)]
#[inline(always)]
pub fn reflection_axis_mut<N: Real, D: Dim, S: StorageMut<N, D>>(column: &mut Vector<N, D, S>) -> (N, bool) {
let reflection_sq_norm = column.norm_squared();
let mut reflection_norm = reflection_sq_norm.sqrt();
let factor;
unsafe {
if *column.vget_unchecked(0) > N::zero() {
reflection_norm = -reflection_norm;
}
factor = (reflection_sq_norm - *column.vget_unchecked(0) * reflection_norm) * ::convert(2.0);
*column.vget_unchecked_mut(0) -= reflection_norm;
}
if !factor.is_zero() {
*column /= factor.sqrt();
(reflection_norm, true)
}
else {
(reflection_norm, false)
}
}
/// Uses an householder reflection to zero out the `icol`-th column, starting with the `shift + 1`-th
/// subdiagonal element.
#[doc(hidden)]
pub fn clear_column_unchecked<N: Real, R: Dim, C: Dim>(matrix: &mut MatrixMN<N, R, C>,
diag_elt: &mut N,
icol: usize,
shift: usize,
bilateral: Option<&mut VectorN<N, R>>)
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, R> {
let (mut left, mut right) = matrix.columns_range_pair_mut(icol, icol + 1 ..);
let mut axis = left.rows_range_mut(icol + shift ..);
let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis);
*diag_elt = reflection_norm;
if not_zero {
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
if let Some(mut work) = bilateral {
refl.reflect_rows(&mut right, &mut work);
}
refl.reflect(&mut right.rows_range_mut(icol + shift ..));
}
}
/// Uses an hoseholder reflection to zero out the `irow`-th row, ending before the `shift + 1`-th
/// superdiagonal element.
#[doc(hidden)]
pub fn clear_row_unchecked<N: Real, R: Dim, C: Dim>(matrix: &mut MatrixMN<N, R, C>,
diag_elt: &mut N,
axis_packed: &mut VectorN<N, C>,
work: &mut VectorN<N, R>,
irow: usize,
shift: usize)
where DefaultAllocator: Allocator<N, R, C> +
Allocator<N, R> +
Allocator<N, C> {
let (mut top, mut bottom) = matrix.rows_range_pair_mut(irow, irow + 1 ..);
let mut axis = axis_packed.rows_range_mut(irow + shift ..);
axis.tr_copy_from(&top.columns_range(irow + shift ..));
let (reflection_norm, not_zero) = reflection_axis_mut(&mut axis);
*diag_elt = reflection_norm;
if not_zero {
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
refl.reflect_rows(&mut bottom.columns_range_mut(irow + shift ..), &mut work.rows_range_mut(irow + 1 ..));
top.columns_range_mut(irow + shift ..).tr_copy_from(refl.axis());
}
else {
top.columns_range_mut(irow + shift ..).tr_copy_from(&axis);
}
}
/// Computes the orthogonal transformation described by the elementary reflector axices stored on
/// the lower-diagonal element of the given matrix.
/// matrices.
#[doc(hidden)]
pub fn assemble_q<N: Real, D: Dim>(m: &MatrixN<N, D>) -> MatrixN<N, D>
where DefaultAllocator: Allocator<N, D, D> {
assert!(m.is_square());
let dim = m.data.shape().0;
// NOTE: we could build the identity matrix and call p_mult on it.
// Instead we don't so that we take in accout the matrix sparcity.
let mut res = MatrixN::identity_generic(dim, dim);
for i in (0 .. dim.value() - 1).rev() {
let axis = m.slice_range(i + 1 .., i);
let refl = Reflection::new(Unit::new_unchecked(axis), N::zero());
let mut res_rows = res.slice_range_mut(i + 1 .., i ..);
refl.reflect(&mut res_rows);
}
res
}