nalgebra/src/linalg/convolution.rs

134 lines
4.1 KiB
Rust
Raw Normal View History

2019-02-07 11:15:33 +08:00
use std::cmp;
use crate::base::allocator::Allocator;
use crate::base::default_allocator::DefaultAllocator;
2019-03-31 23:30:32 +08:00
use crate::base::dimension::{Dim, DimAdd, DimDiff, DimSub, DimSum};
use crate::storage::Storage;
use crate::{zero, RealField, Vector, VectorN, U1};
impl<N: RealField, D1: Dim, S1: Storage<N, D1>> Vector<N, D1, S1> {
/// Returns the convolution of the target vector and a kernel.
///
/// # Arguments
///
/// * `kernel` - A Vector with size > 0
///
/// # Errors
/// Inputs must satisfy `vector.len() >= kernel.len() > 0`.
///
pub fn convolve_full<D2, S2>(
&self,
kernel: Vector<N, D2, S2>,
) -> VectorN<N, DimDiff<DimSum<D1, D2>, U1>>
where
D1: DimAdd<D2>,
D2: DimAdd<D1, Output = DimSum<D1, D2>>,
DimSum<D1, D2>: DimSub<U1>,
S2: Storage<N, D2>,
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, D2>, U1>>,
{
let vec = self.len();
let ker = kernel.len();
if ker == 0 || ker > vec {
panic!("convolve_full expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let result_len = self.data.shape().0.add(kernel.data.shape().0).sub(U1);
let mut conv = VectorN::zeros_generic(result_len, U1);
for i in 0..(vec + ker - 1) {
let u_i = if i > vec { i - ker } else { 0 };
let u_f = cmp::min(i, vec - 1);
if u_i == u_f {
conv[i] += self[u_i] * kernel[(i - u_i)];
} else {
for u in u_i..(u_f + 1) {
if i - u < ker {
conv[i] += self[u] * kernel[(i - u)];
}
2019-02-08 09:58:09 +08:00
}
}
}
conv
2019-02-08 09:58:09 +08:00
}
/// Returns the convolution of the target vector and a kernel.
///
/// The output convolution consists only of those elements that do not rely on the zero-padding.
/// # Arguments
///
/// * `kernel` - A Vector with size > 0
///
///
/// # Errors
/// Inputs must satisfy `self.len() >= kernel.len() > 0`.
///
2020-04-06 00:49:48 +08:00
pub fn convolve_valid<D2, S2>(
&self,
kernel: Vector<N, D2, S2>,
) -> VectorN<N, DimDiff<DimSum<D1, U1>, D2>>
where
D1: DimAdd<U1>,
D2: Dim,
DimSum<D1, U1>: DimSub<D2>,
S2: Storage<N, D2>,
DefaultAllocator: Allocator<N, DimDiff<DimSum<D1, U1>, D2>>,
{
let vec = self.len();
let ker = kernel.len();
2019-02-15 10:54:26 +08:00
if ker == 0 || ker > vec {
panic!("convolve_valid expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let result_len = self.data.shape().0.add(U1).sub(kernel.data.shape().0);
let mut conv = VectorN::zeros_generic(result_len, U1);
for i in 0..(vec - ker + 1) {
for j in 0..ker {
conv[i] += self[i + j] * kernel[ker - j - 1];
}
2019-02-07 11:15:33 +08:00
}
conv
2019-02-08 09:58:09 +08:00
}
/// Returns the convolution of the target vector and a kernel.
///
/// The output convolution is the same size as vector, centered with respect to the full output.
/// # Arguments
///
/// * `kernel` - A Vector with size > 0
///
/// # Errors
/// Inputs must satisfy `self.len() >= kernel.len() > 0`.
pub fn convolve_same<D2, S2>(&self, kernel: Vector<N, D2, S2>) -> VectorN<N, D1>
where
D2: Dim,
S2: Storage<N, D2>,
DefaultAllocator: Allocator<N, D1>,
{
let vec = self.len();
let ker = kernel.len();
2019-02-10 10:19:42 +08:00
if ker == 0 || ker > vec {
panic!("convolve_same expects `self.len() >= kernel.len() > 0`, received {} and {} respectively.",vec,ker);
}
let mut conv = VectorN::zeros_generic(self.data.shape().0, U1);
2019-02-10 10:19:42 +08:00
for i in 0..vec {
for j in 0..ker {
let val = if i + j < 1 || i + j >= vec + 1 {
zero::<N>()
} else {
self[i + j - 1]
};
conv[i] += val * kernel[ker - j - 1];
}
2019-02-10 11:51:20 +08:00
}
conv
2019-02-08 09:58:09 +08:00
}
2019-02-15 10:54:26 +08:00
}