2019-02-11 03:40:32 +08:00
|
|
|
|
use storage::Storage;
|
2019-02-15 10:54:26 +08:00
|
|
|
|
use {zero, DVector, Dim, Dynamic, Matrix, Real, VecStorage, Vector, U1, Add};
|
2019-02-07 11:15:33 +08:00
|
|
|
|
use std::cmp;
|
|
|
|
|
|
2019-02-15 10:54:26 +08:00
|
|
|
|
impl<N: Real, D1: Dim, S1: Storage<N,D1>> Vector<N,D1,S1>{
|
|
|
|
|
|
|
|
|
|
/// Returns the convolution of the vector and a kernel
|
|
|
|
|
///
|
|
|
|
|
/// # Arguments
|
|
|
|
|
///
|
|
|
|
|
/// * `self` - A DVector with size D > 0
|
|
|
|
|
/// * `kernel` - A DVector with size D > 0
|
|
|
|
|
///
|
|
|
|
|
/// # Note:
|
|
|
|
|
/// This function is commutative. If D_kernel > D_vector,
|
|
|
|
|
/// they will swap their roles as in
|
|
|
|
|
/// (self, kernel) = (kernel,self)
|
|
|
|
|
///
|
|
|
|
|
/// # Example
|
|
|
|
|
///
|
|
|
|
|
/// ```
|
|
|
|
|
///
|
|
|
|
|
/// ```
|
|
|
|
|
pub fn convolve_full<D2: Dim, S2: Storage<N, D2>>(&self, kernel: Vector<N, D2, S2>) -> Vector<N,Add<D1,D2>,Add<S1,S2>>
|
|
|
|
|
{
|
|
|
|
|
let vec = self.len();
|
|
|
|
|
let ker = kernel.len();
|
|
|
|
|
|
|
|
|
|
// if vec == 0 || ker == 0 {
|
|
|
|
|
// panic!("Convolve's inputs must not be 0-sized. ");
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// if ker > vec {
|
|
|
|
|
// return kernel::convolve_full(vector);
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
let newlen = vec + ker - 1;
|
|
|
|
|
let mut conv = DVector::<N>::zeros(newlen);
|
|
|
|
|
|
|
|
|
|
for i in 0..newlen {
|
|
|
|
|
let u_i = if i > ker { i - ker } else { 0 };
|
|
|
|
|
let u_f = cmp::min(i, vec - 1);
|
|
|
|
|
|
|
|
|
|
if u_i == u_f {
|
|
|
|
|
conv[i] += self[u_i] * kernel[(i - u_i)];
|
|
|
|
|
} else {
|
|
|
|
|
for u in u_i..(u_f + 1) {
|
|
|
|
|
if i - u < ker {
|
|
|
|
|
conv[i] += self[u] * kernel[(i - u)];
|
|
|
|
|
}
|
2019-02-08 09:58:09 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
2019-02-15 10:54:26 +08:00
|
|
|
|
// conv
|
2019-02-08 09:58:09 +08:00
|
|
|
|
}
|
2019-02-10 10:19:42 +08:00
|
|
|
|
}
|
2019-02-15 10:54:26 +08:00
|
|
|
|
///
|
|
|
|
|
/// The output is the full discrete linear convolution of the inputs
|
|
|
|
|
///
|
|
|
|
|
|
2019-02-08 09:58:09 +08:00
|
|
|
|
|
2019-02-11 03:40:32 +08:00
|
|
|
|
///
|
2019-02-11 03:46:37 +08:00
|
|
|
|
/// The output convolution consists only of those elements that do not rely on the zero-padding.
|
2019-02-11 03:40:32 +08:00
|
|
|
|
///
|
|
|
|
|
pub fn convolve_valid<R: Real, D: Dim, E: Dim, S: Storage<R, D>, Q: Storage<R, E>>(
|
2019-02-10 10:19:42 +08:00
|
|
|
|
vector: Vector<R, D, S>,
|
|
|
|
|
kernel: Vector<R, E, Q>,
|
|
|
|
|
) -> Matrix<R, Dynamic, U1, VecStorage<R, Dynamic, U1>> {
|
|
|
|
|
let vec = vector.len();
|
|
|
|
|
let ker = kernel.len();
|
2019-02-11 03:40:32 +08:00
|
|
|
|
|
|
|
|
|
if vec == 0 || ker == 0 {
|
|
|
|
|
panic!("Convolve's inputs must not be 0-sized. ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ker > vec {
|
|
|
|
|
return convolve_valid(kernel, vector);
|
|
|
|
|
}
|
|
|
|
|
|
2019-02-10 10:19:42 +08:00
|
|
|
|
let newlen = vec - ker + 1;
|
2019-02-10 11:51:20 +08:00
|
|
|
|
|
2019-02-10 10:19:42 +08:00
|
|
|
|
let mut conv = DVector::<R>::zeros(newlen);
|
|
|
|
|
|
|
|
|
|
for i in 0..newlen {
|
|
|
|
|
for j in 0..ker {
|
|
|
|
|
conv[i] += vector[i + j] * kernel[ker - j - 1];
|
2019-02-07 11:15:33 +08:00
|
|
|
|
}
|
2019-02-08 09:58:09 +08:00
|
|
|
|
}
|
2019-02-10 10:19:42 +08:00
|
|
|
|
conv
|
|
|
|
|
}
|
2019-02-08 09:58:09 +08:00
|
|
|
|
|
2019-02-11 03:40:32 +08:00
|
|
|
|
///
|
2019-02-11 03:46:37 +08:00
|
|
|
|
/// The output convolution is the same size as vector, centered with respect to the ‘full’ output.
|
2019-02-11 03:40:32 +08:00
|
|
|
|
///
|
|
|
|
|
pub fn convolve_same<R: Real, D: Dim, E: Dim, S: Storage<R, D>, Q: Storage<R, E>>(
|
2019-02-10 10:19:42 +08:00
|
|
|
|
vector: Vector<R, D, S>,
|
|
|
|
|
kernel: Vector<R, E, Q>,
|
|
|
|
|
) -> Matrix<R, Dynamic, U1, VecStorage<R, Dynamic, U1>> {
|
|
|
|
|
let vec = vector.len();
|
|
|
|
|
let ker = kernel.len();
|
|
|
|
|
|
2019-02-11 03:40:32 +08:00
|
|
|
|
if vec == 0 || ker == 0 {
|
|
|
|
|
panic!("Convolve's inputs must not be 0-sized. ");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ker > vec {
|
|
|
|
|
return convolve_same(kernel, vector);
|
|
|
|
|
}
|
|
|
|
|
|
2019-02-10 11:51:20 +08:00
|
|
|
|
let mut conv = DVector::<R>::zeros(vec);
|
2019-02-10 10:19:42 +08:00
|
|
|
|
|
2019-02-10 11:51:20 +08:00
|
|
|
|
for i in 0..vec {
|
|
|
|
|
for j in 0..ker {
|
|
|
|
|
let val = if i + j < 1 || i + j >= vec + 1 {
|
|
|
|
|
zero::<R>()
|
|
|
|
|
} else {
|
|
|
|
|
vector[i + j - 1]
|
|
|
|
|
};
|
|
|
|
|
conv[i] += val * kernel[ker - j - 1];
|
|
|
|
|
}
|
2019-02-08 09:58:09 +08:00
|
|
|
|
}
|
2019-02-10 10:19:42 +08:00
|
|
|
|
conv
|
2019-02-15 10:54:26 +08:00
|
|
|
|
}
|
|
|
|
|
|