nalgebra/nalgebra-lapack/src/lu.rs

412 lines
12 KiB
Rust
Raw Normal View History

2018-02-02 19:26:35 +08:00
use num::{One, Zero};
use num_complex::Complex;
2020-04-06 00:49:48 +08:00
use crate::ComplexHelper;
use na::allocator::Allocator;
2021-04-12 16:34:44 +08:00
use na::dimension::{Const, Dim, DimMin, DimMinimum};
use na::storage::Storage;
2021-04-11 17:00:38 +08:00
use na::{DefaultAllocator, Matrix, OMatrix, OVector, Scalar};
use lapack;
/// LU decomposition with partial pivoting.
///
/// This decomposes a matrix `M` with m rows and n columns into three parts:
/// * `L` which is a `m × min(m, n)` lower-triangular matrix.
/// * `U` which is a `min(m, n) × n` upper-triangular matrix.
/// * `P` which is a `m * m` permutation matrix.
///
/// Those are such that `M == P * L * U`.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize",
2021-04-11 17:00:38 +08:00
serde(bound(serialize = "DefaultAllocator: Allocator<T, R, C> +
Allocator<i32, DimMinimum<R, C>>,
2021-04-11 17:00:38 +08:00
OMatrix<T, R, C>: Serialize,
2020-04-06 00:49:48 +08:00
PermutationSequence<DimMinimum<R, C>>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize",
2021-04-11 17:00:38 +08:00
serde(bound(deserialize = "DefaultAllocator: Allocator<T, R, C> +
Allocator<i32, DimMinimum<R, C>>,
2021-04-11 17:00:38 +08:00
OMatrix<T, R, C>: Deserialize<'de>,
2020-04-06 00:49:48 +08:00
PermutationSequence<DimMinimum<R, C>>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
2021-04-11 17:00:38 +08:00
pub struct LU<T: Scalar, R: DimMin<C>, C: Dim>
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<i32, DimMinimum<R, C>> + Allocator<T, R, C>,
2018-02-02 19:26:35 +08:00
{
2021-04-11 17:00:38 +08:00
lu: OMatrix<T, R, C>,
p: OVector<i32, DimMinimum<R, C>>,
}
2021-04-11 17:00:38 +08:00
impl<T: Scalar + Copy, R: DimMin<C>, C: Dim> Copy for LU<T, R, C>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R, C> + Allocator<i32, DimMinimum<R, C>>,
OMatrix<T, R, C>: Copy,
OVector<i32, DimMinimum<R, C>>: Copy,
2020-04-06 00:49:48 +08:00
{
}
2021-04-11 17:00:38 +08:00
impl<T: LUScalar, R: Dim, C: Dim> LU<T, R, C>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
T: Zero + One,
2018-02-02 19:26:35 +08:00
R: DimMin<C>,
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R, C>
+ Allocator<T, R, R>
+ Allocator<T, R, DimMinimum<R, C>>
+ Allocator<T, DimMinimum<R, C>, C>
2018-02-02 19:26:35 +08:00
+ Allocator<i32, DimMinimum<R, C>>,
{
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
2021-04-11 17:00:38 +08:00
pub fn new(mut m: OMatrix<T, R, C>) -> Self {
2018-02-02 19:26:35 +08:00
let (nrows, ncols) = m.data.shape();
let min_nrows_ncols = nrows.min(ncols);
2018-02-02 19:26:35 +08:00
let nrows = nrows.value() as i32;
let ncols = ncols.value() as i32;
2021-04-12 16:34:44 +08:00
let mut ipiv: OVector<i32, _> = Matrix::zeros_generic(min_nrows_ncols, Const::<1>);
let mut info = 0;
2021-04-11 17:00:38 +08:00
T::xgetrf(
2018-02-02 19:26:35 +08:00
nrows,
ncols,
m.as_mut_slice(),
nrows,
ipiv.as_mut_slice(),
&mut info,
);
lapack_panic!(info);
Self { lu: m, p: ipiv }
}
/// Gets the lower-triangular matrix part of the decomposition.
#[inline]
2021-06-06 21:28:37 +08:00
#[must_use = "This function does not mutate self. You should use the return value."]
2021-04-11 17:00:38 +08:00
pub fn l(&self) -> OMatrix<T, R, DimMinimum<R, C>> {
let (nrows, ncols) = self.lu.data.shape();
let mut res = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
res.fill_upper_triangle(Zero::zero(), 1);
res.fill_diagonal(One::one());
res
}
/// Gets the upper-triangular matrix part of the decomposition.
#[inline]
2021-06-06 21:28:37 +08:00
#[must_use = "This function does not mutate self. You should use the return value."]
2021-04-11 17:00:38 +08:00
pub fn u(&self) -> OMatrix<T, DimMinimum<R, C>, C> {
let (nrows, ncols) = self.lu.data.shape();
let mut res = self.lu.rows_generic(0, nrows.min(ncols)).into_owned();
res.fill_lower_triangle(Zero::zero(), 1);
res
}
/// Gets the row permutation matrix of this decomposition.
///
/// Computing the permutation matrix explicitly is costly and usually not necessary.
/// To permute rows of a matrix or vector, use the method `self.permute(...)` instead.
#[inline]
2021-06-06 21:28:37 +08:00
#[must_use = "This function does not mutate self. You should use the return value."]
2021-04-12 16:34:44 +08:00
pub fn p(&self) -> OMatrix<T, R, R> {
let (dim, _) = self.lu.data.shape();
let mut id = Matrix::identity_generic(dim, dim);
self.permute(&mut id);
id
}
2020-11-15 23:57:49 +08:00
// TODO: when we support resizing a matrix, we could add unwrap_u/unwrap_l that would
// re-use the memory from the internal matrix!
/// Gets the LAPACK permutation indices.
#[inline]
2021-06-06 21:28:37 +08:00
#[must_use = "This function does not mutate self. You should use the return value."]
2021-04-11 17:00:38 +08:00
pub fn permutation_indices(&self) -> &OVector<i32, DimMinimum<R, C>> {
&self.p
}
/// Applies the permutation matrix to a given matrix or vector in-place.
#[inline]
2021-04-11 17:00:38 +08:00
pub fn permute<C2: Dim>(&self, rhs: &mut OMatrix<T, R, C2>)
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R, C2>,
2020-04-06 00:49:48 +08:00
{
let (nrows, ncols) = rhs.shape();
2021-04-11 17:00:38 +08:00
T::xlaswp(
2018-02-02 19:26:35 +08:00
ncols as i32,
rhs.as_mut_slice(),
nrows as i32,
1,
self.p.len() as i32,
self.p.as_slice(),
-1,
);
}
2021-04-11 17:00:38 +08:00
fn generic_solve_mut<R2: Dim, C2: Dim>(&self, trans: u8, b: &mut OMatrix<T, R2, C2>) -> bool
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R2, C2> + Allocator<i32, R2>,
2020-04-06 00:49:48 +08:00
{
let dim = self.lu.nrows();
2018-02-02 19:26:35 +08:00
assert!(
self.lu.is_square(),
"Unable to solve a set of under/over-determined equations."
);
assert!(
b.nrows() == dim,
"The number of rows of `b` must be equal to the dimension of the matrix `a`."
);
let nrhs = b.ncols() as i32;
2018-02-02 19:26:35 +08:00
let lda = dim as i32;
let ldb = dim as i32;
let mut info = 0;
2021-04-11 17:00:38 +08:00
T::xgetrs(
2018-02-02 19:26:35 +08:00
trans,
dim as i32,
nrhs,
self.lu.as_slice(),
lda,
self.p.as_slice(),
b.as_mut_slice(),
ldb,
&mut info,
);
lapack_test!(info)
}
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
2018-02-02 19:26:35 +08:00
pub fn solve<R2: Dim, C2: Dim, S2>(
&self,
2021-04-11 17:00:38 +08:00
b: &Matrix<T, R2, C2, S2>,
) -> Option<OMatrix<T, R2, C2>>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
S2: Storage<T, R2, C2>,
DefaultAllocator: Allocator<T, R2, C2> + Allocator<i32, R2>,
2018-02-02 19:26:35 +08:00
{
let mut res = b.clone_owned();
2021-04-11 17:00:38 +08:00
if self.generic_solve_mut(b'T', &mut res) {
Some(res)
2018-02-02 19:26:35 +08:00
} else {
None
}
}
/// Solves the linear system `self.transpose() * x = b`, where `x` is the unknown to be
/// determined.
2018-02-02 19:26:35 +08:00
pub fn solve_transpose<R2: Dim, C2: Dim, S2>(
&self,
2021-04-11 17:00:38 +08:00
b: &Matrix<T, R2, C2, S2>,
) -> Option<OMatrix<T, R2, C2>>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
S2: Storage<T, R2, C2>,
DefaultAllocator: Allocator<T, R2, C2> + Allocator<i32, R2>,
2018-02-02 19:26:35 +08:00
{
let mut res = b.clone_owned();
if self.generic_solve_mut(b'T', &mut res) {
Some(res)
2018-02-02 19:26:35 +08:00
} else {
None
}
}
/// Solves the linear system `self.adjoint() * x = b`, where `x` is the unknown to
/// be determined.
2018-02-02 19:26:35 +08:00
pub fn solve_conjugate_transpose<R2: Dim, C2: Dim, S2>(
&self,
2021-04-11 17:00:38 +08:00
b: &Matrix<T, R2, C2, S2>,
) -> Option<OMatrix<T, R2, C2>>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
S2: Storage<T, R2, C2>,
DefaultAllocator: Allocator<T, R2, C2> + Allocator<i32, R2>,
2018-02-02 19:26:35 +08:00
{
let mut res = b.clone_owned();
if self.generic_solve_mut(b'T', &mut res) {
Some(res)
2018-02-02 19:26:35 +08:00
} else {
None
}
}
/// Solves in-place the linear system `self * x = b`, where `x` is the unknown to be determined.
///
2018-09-24 12:48:42 +08:00
/// Returns `false` if no solution was found (the decomposed matrix is singular).
2021-04-11 17:00:38 +08:00
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut OMatrix<T, R2, C2>) -> bool
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R2, C2> + Allocator<i32, R2>,
2020-04-06 00:49:48 +08:00
{
2021-04-11 17:00:38 +08:00
self.generic_solve_mut(b'T', b)
}
/// Solves in-place the linear system `self.transpose() * x = b`, where `x` is the unknown to be
/// determined.
///
2018-09-24 12:48:42 +08:00
/// Returns `false` if no solution was found (the decomposed matrix is singular).
2021-04-11 17:00:38 +08:00
pub fn solve_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut OMatrix<T, R2, C2>) -> bool
2020-04-06 00:49:48 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R2, C2> + Allocator<i32, R2>,
2020-04-06 00:49:48 +08:00
{
self.generic_solve_mut(b'T', b)
}
/// Solves in-place the linear system `self.adjoint() * x = b`, where `x` is the unknown to
/// be determined.
///
2018-09-24 12:48:42 +08:00
/// Returns `false` if no solution was found (the decomposed matrix is singular).
2021-04-11 17:00:38 +08:00
pub fn solve_adjoint_mut<R2: Dim, C2: Dim>(&self, b: &mut OMatrix<T, R2, C2>) -> bool
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, R2, C2> + Allocator<i32, R2>,
2018-02-02 19:26:35 +08:00
{
self.generic_solve_mut(b'T', b)
}
}
2021-04-11 17:00:38 +08:00
impl<T: LUScalar, D: Dim> LU<T, D, D>
2018-02-02 19:26:35 +08:00
where
2021-04-11 17:00:38 +08:00
T: Zero + One,
2018-02-02 19:26:35 +08:00
D: DimMin<D, Output = D>,
2021-04-11 17:00:38 +08:00
DefaultAllocator: Allocator<T, D, D> + Allocator<i32, D>,
2018-02-02 19:26:35 +08:00
{
/// Computes the inverse of the decomposed matrix.
2021-04-11 17:00:38 +08:00
pub fn inverse(mut self) -> Option<OMatrix<T, D, D>> {
let dim = self.lu.nrows() as i32;
let mut info = 0;
2021-04-11 17:00:38 +08:00
let lwork = T::xgetri_work_size(
2018-02-02 19:26:35 +08:00
dim,
self.lu.as_mut_slice(),
dim,
self.p.as_mut_slice(),
&mut info,
);
lapack_check!(info);
2019-03-23 21:29:07 +08:00
let mut work = unsafe { crate::uninitialized_vec(lwork as usize) };
2021-04-11 17:00:38 +08:00
T::xgetri(
2018-02-02 19:26:35 +08:00
dim,
self.lu.as_mut_slice(),
dim,
self.p.as_mut_slice(),
&mut work,
lwork,
&mut info,
);
lapack_check!(info);
Some(self.lu)
}
}
/*
*
* Lapack functions dispatch.
*
*/
/// Trait implemented by scalars for which Lapack implements the LU decomposition.
pub trait LUScalar: Scalar + Copy {
#[allow(missing_docs)]
fn xgetrf(m: i32, n: i32, a: &mut [Self], lda: i32, ipiv: &mut [i32], info: &mut i32);
#[allow(missing_docs)]
fn xlaswp(n: i32, a: &mut [Self], lda: i32, k1: i32, k2: i32, ipiv: &[i32], incx: i32);
#[allow(missing_docs)]
2018-02-02 19:26:35 +08:00
fn xgetrs(
trans: u8,
n: i32,
nrhs: i32,
a: &[Self],
lda: i32,
ipiv: &[i32],
b: &mut [Self],
ldb: i32,
info: &mut i32,
);
#[allow(missing_docs)]
2018-02-02 19:26:35 +08:00
fn xgetri(
n: i32,
a: &mut [Self],
lda: i32,
ipiv: &[i32],
work: &mut [Self],
lwork: i32,
info: &mut i32,
);
#[allow(missing_docs)]
fn xgetri_work_size(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32], info: &mut i32) -> i32;
}
macro_rules! lup_scalar_impl(
($N: ty, $xgetrf: path, $xlaswp: path, $xgetrs: path, $xgetri: path) => (
impl LUScalar for $N {
#[inline]
fn xgetrf(m: i32, n: i32, a: &mut [Self], lda: i32, ipiv: &mut [i32], info: &mut i32) {
unsafe { $xgetrf(m, n, a, lda, ipiv, info) }
}
#[inline]
fn xlaswp(n: i32, a: &mut [Self], lda: i32, k1: i32, k2: i32, ipiv: &[i32], incx: i32) {
unsafe { $xlaswp(n, a, lda, k1, k2, ipiv, incx) }
}
#[inline]
fn xgetrs(trans: u8, n: i32, nrhs: i32, a: &[Self], lda: i32, ipiv: &[i32],
b: &mut [Self], ldb: i32, info: &mut i32) {
unsafe { $xgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info) }
}
#[inline]
fn xgetri(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32],
work: &mut [Self], lwork: i32, info: &mut i32) {
unsafe { $xgetri(n, a, lda, ipiv, work, lwork, info) }
}
#[inline]
fn xgetri_work_size(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32], info: &mut i32) -> i32 {
let mut work = [ Zero::zero() ];
let lwork = -1 as i32;
unsafe { $xgetri(n, a, lda, ipiv, &mut work, lwork, info); }
ComplexHelper::real_part(work[0]) as i32
}
}
)
);
2018-02-02 19:26:35 +08:00
lup_scalar_impl!(
f32,
lapack::sgetrf,
lapack::slaswp,
lapack::sgetrs,
lapack::sgetri
2018-02-02 19:26:35 +08:00
);
lup_scalar_impl!(
f64,
lapack::dgetrf,
lapack::dlaswp,
lapack::dgetrs,
lapack::dgetri
2018-02-02 19:26:35 +08:00
);
lup_scalar_impl!(
Complex<f32>,
lapack::cgetrf,
lapack::claswp,
lapack::cgetrs,
lapack::cgetri
2018-02-02 19:26:35 +08:00
);
lup_scalar_impl!(
Complex<f64>,
lapack::zgetrf,
lapack::zlaswp,
lapack::zgetrs,
lapack::zgetri
2018-02-02 19:26:35 +08:00
);