2017-08-03 01:38:28 +08:00
|
|
|
|
use num::{Zero, One};
|
|
|
|
|
use num_complex::Complex;
|
|
|
|
|
|
|
|
|
|
use ::ComplexHelper;
|
|
|
|
|
use na::{Scalar, DefaultAllocator, Matrix, MatrixMN, MatrixN, VectorN};
|
|
|
|
|
use na::dimension::{Dim, DimMin, DimMinimum, U1};
|
|
|
|
|
use na::storage::Storage;
|
|
|
|
|
use na::allocator::Allocator;
|
|
|
|
|
|
|
|
|
|
use lapack::fortran as interface;
|
|
|
|
|
|
|
|
|
|
/// LU decomposition with partial pivoting.
|
|
|
|
|
///
|
|
|
|
|
/// This decomposes a matrix `M` with m rows and n columns into three parts:
|
|
|
|
|
/// * `L` which is a `m × min(m, n)` lower-triangular matrix.
|
|
|
|
|
/// * `U` which is a `min(m, n) × n` upper-triangular matrix.
|
|
|
|
|
/// * `P` which is a `m * m` permutation matrix.
|
|
|
|
|
///
|
|
|
|
|
/// Those are such that `M == P * L * U`.
|
2017-08-14 01:53:04 +08:00
|
|
|
|
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
|
|
|
|
|
#[cfg_attr(feature = "serde-serialize",
|
|
|
|
|
serde(bound(serialize =
|
|
|
|
|
"DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
|
Allocator<i32, DimMinimum<R, C>>,
|
|
|
|
|
MatrixMN<N, R, C>: serde::Serialize,
|
|
|
|
|
PermutationSequence<DimMinimum<R, C>>: serde::Serialize")))]
|
|
|
|
|
#[cfg_attr(feature = "serde-serialize",
|
|
|
|
|
serde(bound(deserialize =
|
|
|
|
|
"DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
|
Allocator<i32, DimMinimum<R, C>>,
|
|
|
|
|
MatrixMN<N, R, C>: serde::Deserialize<'de>,
|
|
|
|
|
PermutationSequence<DimMinimum<R, C>>: serde::Deserialize<'de>")))]
|
|
|
|
|
#[derive(Clone, Debug)]
|
2017-08-03 01:38:28 +08:00
|
|
|
|
pub struct LU<N: Scalar, R: DimMin<C>, C: Dim>
|
|
|
|
|
where DefaultAllocator: Allocator<i32, DimMinimum<R, C>> +
|
|
|
|
|
Allocator<N, R, C> {
|
|
|
|
|
lu: MatrixMN<N, R, C>,
|
|
|
|
|
p: VectorN<i32, DimMinimum<R, C>>
|
|
|
|
|
}
|
|
|
|
|
|
2017-08-14 01:53:04 +08:00
|
|
|
|
impl<N: Scalar, R: DimMin<C>, C: Dim> Copy for LU<N, R, C>
|
|
|
|
|
where DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
|
Allocator<i32, DimMinimum<R, C>>,
|
|
|
|
|
MatrixMN<N, R, C>: Copy,
|
|
|
|
|
VectorN<i32, DimMinimum<R, C>>: Copy { }
|
|
|
|
|
|
2017-08-03 01:38:28 +08:00
|
|
|
|
impl<N: LUScalar, R: Dim, C: Dim> LU<N, R, C>
|
|
|
|
|
where N: Zero + One,
|
|
|
|
|
R: DimMin<C>,
|
|
|
|
|
DefaultAllocator: Allocator<N, R, C> +
|
|
|
|
|
Allocator<N, R, R> +
|
|
|
|
|
Allocator<N, R, DimMinimum<R, C>> +
|
|
|
|
|
Allocator<N, DimMinimum<R, C>, C> +
|
|
|
|
|
Allocator<i32, DimMinimum<R, C>> {
|
|
|
|
|
|
2017-08-14 01:52:58 +08:00
|
|
|
|
/// Computes the LU decomposition with partial (row) pivoting of `matrix`.
|
2017-08-03 01:38:28 +08:00
|
|
|
|
pub fn new(mut m: MatrixMN<N, R, C>) -> Self {
|
|
|
|
|
let (nrows, ncols) = m.data.shape();
|
|
|
|
|
let min_nrows_ncols = nrows.min(ncols);
|
|
|
|
|
let nrows = nrows.value() as i32;
|
|
|
|
|
let ncols = ncols.value() as i32;
|
|
|
|
|
|
|
|
|
|
let mut ipiv: VectorN<i32, _> = Matrix::zeros_generic(min_nrows_ncols, U1);
|
|
|
|
|
|
|
|
|
|
let mut info = 0;
|
|
|
|
|
|
|
|
|
|
N::xgetrf(nrows, ncols, m.as_mut_slice(), nrows, ipiv.as_mut_slice(), &mut info);
|
|
|
|
|
lapack_panic!(info);
|
|
|
|
|
|
|
|
|
|
LU { lu: m, p: ipiv }
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Gets the lower-triangular matrix part of the decomposition.
|
|
|
|
|
#[inline]
|
|
|
|
|
pub fn l(&self) -> MatrixMN<N, R, DimMinimum<R, C>> {
|
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
|
let mut res = self.lu.columns_generic(0, nrows.min(ncols)).into_owned();
|
|
|
|
|
|
|
|
|
|
res.fill_upper_triangle(Zero::zero(), 1);
|
|
|
|
|
res.fill_diagonal(One::one());
|
|
|
|
|
|
|
|
|
|
res
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Gets the upper-triangular matrix part of the decomposition.
|
|
|
|
|
#[inline]
|
|
|
|
|
pub fn u(&self) -> MatrixMN<N, DimMinimum<R, C>, C> {
|
|
|
|
|
let (nrows, ncols) = self.lu.data.shape();
|
|
|
|
|
let mut res = self.lu.rows_generic(0, nrows.min(ncols)).into_owned();
|
|
|
|
|
|
|
|
|
|
res.fill_lower_triangle(Zero::zero(), 1);
|
|
|
|
|
|
|
|
|
|
res
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Gets the row permutation matrix of this decomposition.
|
|
|
|
|
///
|
|
|
|
|
/// Computing the permutation matrix explicitly is costly and usually not necessary.
|
|
|
|
|
/// To permute rows of a matrix or vector, use the method `self.permute(...)` instead.
|
|
|
|
|
#[inline]
|
|
|
|
|
pub fn p(&self) -> MatrixN<N, R> {
|
|
|
|
|
let (dim, _) = self.lu.data.shape();
|
|
|
|
|
let mut id = Matrix::identity_generic(dim, dim);
|
|
|
|
|
self.permute(&mut id);
|
|
|
|
|
|
|
|
|
|
id
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// FIXME: when we support resizing a matrix, we could add unwrap_u/unwrap_l that would
|
|
|
|
|
// re-use the memory from the internal matrix!
|
|
|
|
|
|
|
|
|
|
/// Gets the LAPACK permutation indices.
|
|
|
|
|
#[inline]
|
|
|
|
|
pub fn permutation_indices(&self) -> &VectorN<i32, DimMinimum<R, C>> {
|
|
|
|
|
&self.p
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Applies the permutation matrix to a given matrix or vector in-place.
|
|
|
|
|
#[inline]
|
|
|
|
|
pub fn permute<C2: Dim>(&self, rhs: &mut MatrixMN<N, R, C2>)
|
|
|
|
|
where DefaultAllocator: Allocator<N, R, C2> {
|
|
|
|
|
|
|
|
|
|
let (nrows, ncols) = rhs.shape();
|
|
|
|
|
|
|
|
|
|
N::xlaswp(ncols as i32, rhs.as_mut_slice(), nrows as i32,
|
|
|
|
|
1, self.p.len() as i32, self.p.as_slice(), -1);
|
|
|
|
|
}
|
|
|
|
|
|
2017-08-14 01:52:51 +08:00
|
|
|
|
fn generic_solve_mut<R2: Dim, C2: Dim>(&self, trans: u8, b: &mut MatrixMN<N, R2, C2>) -> bool
|
2017-08-03 01:38:28 +08:00
|
|
|
|
where DefaultAllocator: Allocator<N, R2, C2> +
|
|
|
|
|
Allocator<i32, R2> {
|
|
|
|
|
|
|
|
|
|
let dim = self.lu.nrows();
|
|
|
|
|
|
|
|
|
|
assert!(self.lu.is_square(), "Unable to solve a set of under/over-determined equations.");
|
|
|
|
|
assert!(b.nrows() == dim, "The number of rows of `b` must be equal to the dimension of the matrix `a`.");
|
|
|
|
|
|
|
|
|
|
let nrhs = b.ncols() as i32;
|
|
|
|
|
let lda = dim as i32;
|
|
|
|
|
let ldb = dim as i32;
|
|
|
|
|
let mut info = 0;
|
|
|
|
|
|
|
|
|
|
N::xgetrs(trans, dim as i32, nrhs, self.lu.as_slice(), lda, self.p.as_slice(),
|
2017-08-14 01:52:51 +08:00
|
|
|
|
b.as_mut_slice(), ldb, &mut info);
|
|
|
|
|
lapack_test!(info)
|
2017-08-03 01:38:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Solves the linear system `self * x = b`, where `x` is the unknown to be determined.
|
2017-08-14 01:52:51 +08:00
|
|
|
|
pub fn solve<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>) -> Option<MatrixMN<N, R2, C2>>
|
|
|
|
|
where S2: Storage<N, R2, C2>,
|
|
|
|
|
DefaultAllocator: Allocator<N, R2, C2> +
|
2017-08-03 01:38:28 +08:00
|
|
|
|
Allocator<i32, R2> {
|
|
|
|
|
|
2017-08-14 01:52:51 +08:00
|
|
|
|
let mut res = b.clone_owned();
|
|
|
|
|
if self.generic_solve_mut(b'N', &mut res) {
|
|
|
|
|
Some(res)
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
None
|
|
|
|
|
}
|
2017-08-03 01:38:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Solves the linear system `self.transpose() * x = b`, where `x` is the unknown to be
|
|
|
|
|
/// determined.
|
2017-08-14 01:52:51 +08:00
|
|
|
|
pub fn solve_transpose<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>)
|
2017-08-03 01:38:28 +08:00
|
|
|
|
-> Option<MatrixMN<N, R2, C2>>
|
2017-08-14 01:52:51 +08:00
|
|
|
|
where S2: Storage<N, R2, C2>,
|
|
|
|
|
DefaultAllocator: Allocator<N, R2, C2> +
|
2017-08-03 01:38:28 +08:00
|
|
|
|
Allocator<i32, R2> {
|
|
|
|
|
|
2017-08-14 01:52:51 +08:00
|
|
|
|
let mut res = b.clone_owned();
|
|
|
|
|
if self.generic_solve_mut(b'T', &mut res) {
|
|
|
|
|
Some(res)
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
None
|
|
|
|
|
}
|
2017-08-03 01:38:28 +08:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Solves the linear system `self.conjugate_transpose() * x = b`, where `x` is the unknown to
|
|
|
|
|
/// be determined.
|
2017-08-14 01:52:51 +08:00
|
|
|
|
pub fn solve_conjugate_transpose<R2: Dim, C2: Dim, S2>(&self, b: &Matrix<N, R2, C2, S2>)
|
2017-08-03 01:38:28 +08:00
|
|
|
|
-> Option<MatrixMN<N, R2, C2>>
|
2017-08-14 01:52:51 +08:00
|
|
|
|
where S2: Storage<N, R2, C2>,
|
|
|
|
|
DefaultAllocator: Allocator<N, R2, C2> +
|
|
|
|
|
Allocator<i32, R2> {
|
|
|
|
|
|
|
|
|
|
let mut res = b.clone_owned();
|
|
|
|
|
if self.generic_solve_mut(b'T', &mut res) {
|
|
|
|
|
Some(res)
|
|
|
|
|
}
|
|
|
|
|
else {
|
|
|
|
|
None
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Solves in-place the linear system `self * x = b`, where `x` is the unknown to be determined.
|
|
|
|
|
///
|
|
|
|
|
/// Retuns `false` if no solution was found (the decomposed matrix is singular).
|
|
|
|
|
pub fn solve_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
|
|
|
|
where DefaultAllocator: Allocator<N, R2, C2> +
|
|
|
|
|
Allocator<i32, R2> {
|
|
|
|
|
|
|
|
|
|
self.generic_solve_mut(b'N', b)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Solves in-place the linear system `self.transpose() * x = b`, where `x` is the unknown to be
|
|
|
|
|
/// determined.
|
|
|
|
|
///
|
|
|
|
|
/// Retuns `false` if no solution was found (the decomposed matrix is singular).
|
|
|
|
|
pub fn solve_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
|
|
|
|
where DefaultAllocator: Allocator<N, R2, C2> +
|
|
|
|
|
Allocator<i32, R2> {
|
|
|
|
|
|
|
|
|
|
self.generic_solve_mut(b'T', b)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Solves in-place the linear system `self.conjugate_transpose() * x = b`, where `x` is the unknown to
|
|
|
|
|
/// be determined.
|
|
|
|
|
///
|
|
|
|
|
/// Retuns `false` if no solution was found (the decomposed matrix is singular).
|
|
|
|
|
pub fn solve_conjugate_transpose_mut<R2: Dim, C2: Dim>(&self, b: &mut MatrixMN<N, R2, C2>) -> bool
|
2017-08-03 01:38:28 +08:00
|
|
|
|
where DefaultAllocator: Allocator<N, R2, C2> +
|
|
|
|
|
Allocator<i32, R2> {
|
|
|
|
|
|
2017-08-14 01:52:51 +08:00
|
|
|
|
self.generic_solve_mut(b'T', b)
|
2017-08-03 01:38:28 +08:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<N: LUScalar, D: Dim> LU<N, D, D>
|
|
|
|
|
where N: Zero + One,
|
|
|
|
|
D: DimMin<D, Output = D>,
|
|
|
|
|
DefaultAllocator: Allocator<N, D, D> +
|
|
|
|
|
Allocator<i32, D> {
|
|
|
|
|
/// Computes the inverse of the decomposed matrix.
|
|
|
|
|
pub fn inverse(mut self) -> Option<MatrixN<N, D>> {
|
|
|
|
|
let dim = self.lu.nrows() as i32;
|
|
|
|
|
let mut info = 0;
|
|
|
|
|
let lwork = N::xgetri_work_size(dim, self.lu.as_mut_slice(),
|
|
|
|
|
dim, self.p.as_mut_slice(),
|
|
|
|
|
&mut info);
|
|
|
|
|
lapack_check!(info);
|
|
|
|
|
|
|
|
|
|
let mut work = unsafe { ::uninitialized_vec(lwork as usize) };
|
|
|
|
|
|
|
|
|
|
N::xgetri(dim, self.lu.as_mut_slice(), dim, self.p.as_mut_slice(),
|
|
|
|
|
&mut work, lwork, &mut info);
|
|
|
|
|
lapack_check!(info);
|
|
|
|
|
|
|
|
|
|
Some(self.lu)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
*
|
|
|
|
|
* Lapack functions dispatch.
|
|
|
|
|
*
|
|
|
|
|
*/
|
2017-08-14 01:52:58 +08:00
|
|
|
|
/// Trait implemented by scalars for which Lapack implements the LU decomposition.
|
2017-08-03 01:38:28 +08:00
|
|
|
|
pub trait LUScalar: Scalar {
|
2017-08-14 01:52:58 +08:00
|
|
|
|
#[allow(missing_docs)]
|
2017-08-03 01:38:28 +08:00
|
|
|
|
fn xgetrf(m: i32, n: i32, a: &mut [Self], lda: i32, ipiv: &mut [i32], info: &mut i32);
|
2017-08-14 01:52:58 +08:00
|
|
|
|
#[allow(missing_docs)]
|
2017-08-03 01:38:28 +08:00
|
|
|
|
fn xlaswp(n: i32, a: &mut [Self], lda: i32, k1: i32, k2: i32, ipiv: &[i32], incx: i32);
|
2017-08-14 01:52:58 +08:00
|
|
|
|
#[allow(missing_docs)]
|
2017-08-03 01:38:28 +08:00
|
|
|
|
fn xgetrs(trans: u8, n: i32, nrhs: i32, a: &[Self], lda: i32, ipiv: &[i32],
|
|
|
|
|
b: &mut [Self], ldb: i32, info: &mut i32);
|
2017-08-14 01:52:58 +08:00
|
|
|
|
#[allow(missing_docs)]
|
2017-08-03 01:38:28 +08:00
|
|
|
|
fn xgetri(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32],
|
|
|
|
|
work: &mut [Self], lwork: i32, info: &mut i32);
|
2017-08-14 01:52:58 +08:00
|
|
|
|
#[allow(missing_docs)]
|
2017-08-03 01:38:28 +08:00
|
|
|
|
fn xgetri_work_size(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32], info: &mut i32) -> i32;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
macro_rules! lup_scalar_impl(
|
|
|
|
|
($N: ty, $xgetrf: path, $xlaswp: path, $xgetrs: path, $xgetri: path) => (
|
|
|
|
|
impl LUScalar for $N {
|
|
|
|
|
#[inline]
|
|
|
|
|
fn xgetrf(m: i32, n: i32, a: &mut [Self], lda: i32, ipiv: &mut [i32], info: &mut i32) {
|
|
|
|
|
$xgetrf(m, n, a, lda, ipiv, info)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
fn xlaswp(n: i32, a: &mut [Self], lda: i32, k1: i32, k2: i32, ipiv: &[i32], incx: i32) {
|
|
|
|
|
$xlaswp(n, a, lda, k1, k2, ipiv, incx)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
fn xgetrs(trans: u8, n: i32, nrhs: i32, a: &[Self], lda: i32, ipiv: &[i32],
|
|
|
|
|
b: &mut [Self], ldb: i32, info: &mut i32) {
|
|
|
|
|
$xgetrs(trans, n, nrhs, a, lda, ipiv, b, ldb, info)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
fn xgetri(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32],
|
|
|
|
|
work: &mut [Self], lwork: i32, info: &mut i32) {
|
|
|
|
|
$xgetri(n, a, lda, ipiv, work, lwork, info)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
|
fn xgetri_work_size(n: i32, a: &mut [Self], lda: i32, ipiv: &[i32], info: &mut i32) -> i32 {
|
|
|
|
|
let mut work = [ Zero::zero() ];
|
|
|
|
|
let lwork = -1 as i32;
|
|
|
|
|
|
|
|
|
|
$xgetri(n, a, lda, ipiv, &mut work, lwork, info);
|
|
|
|
|
ComplexHelper::real_part(work[0]) as i32
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
)
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lup_scalar_impl!(f32, interface::sgetrf, interface::slaswp, interface::sgetrs, interface::sgetri);
|
|
|
|
|
lup_scalar_impl!(f64, interface::dgetrf, interface::dlaswp, interface::dgetrs, interface::dgetri);
|
|
|
|
|
lup_scalar_impl!(Complex<f32>, interface::cgetrf, interface::claswp, interface::cgetrs, interface::cgetri);
|
|
|
|
|
lup_scalar_impl!(Complex<f64>, interface::zgetrf, interface::zlaswp, interface::zgetrs, interface::zgetri);
|