nalgebra/src/geometry/orthographic.rs

307 lines
9.7 KiB
Rust
Raw Normal View History

#[cfg(feature="arbitrary")]
use quickcheck::{Arbitrary, Gen};
use rand::{Rand, Rng};
#[cfg(feature = "serde-serialize")]
use serde;
use std::fmt;
use alga::general::Real;
use core::{Matrix4, Vector, Vector3};
use core::dimension::U3;
use core::storage::Storage;
use core::helper;
use geometry::Point3;
/// A 3D orthographic projection stored as an homogeneous 4x4 matrix.
pub struct Orthographic3<N: Real> {
matrix: Matrix4<N>
}
impl<N: Real> Copy for Orthographic3<N> { }
impl<N: Real> Clone for Orthographic3<N> {
#[inline]
fn clone(&self) -> Self {
Orthographic3::from_matrix_unchecked(self.matrix.clone())
}
}
impl<N: Real> fmt::Debug for Orthographic3<N> {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
self.matrix.fmt(f)
}
}
impl<N: Real> PartialEq for Orthographic3<N> {
#[inline]
fn eq(&self, right: &Self) -> bool {
self.matrix == right.matrix
}
}
#[cfg(feature = "serde-serialize")]
impl<N: Real + serde::Serialize> serde::Serialize for Orthographic3<N> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where S: serde::Serializer {
self.matrix.serialize(serializer)
}
}
#[cfg(feature = "serde-serialize")]
impl<'a, N: Real + serde::Deserialize<'a>> serde::Deserialize<'a> for Orthographic3<N> {
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where Des: serde::Deserializer<'a> {
let matrix = Matrix4::<N>::deserialize(deserializer)?;
Ok(Orthographic3::from_matrix_unchecked(matrix))
}
}
impl<N: Real> Orthographic3<N> {
/// Creates a new orthographic projection matrix.
#[inline]
pub fn new(left: N, right: N, bottom: N, top: N, znear: N, zfar: N) -> Self {
assert!(left < right, "The left corner must be farther than the right corner.");
assert!(bottom < top, "The top corner must be higher than the bottom corner.");
assert!(znear < zfar, "The far plane must be farther than the near plane.");
let matrix = Matrix4::<N>::identity();
let mut res = Self::from_matrix_unchecked(matrix);
res.set_left_and_right(left, right);
res.set_bottom_and_top(bottom, top);
res.set_znear_and_zfar(znear, zfar);
res
}
/// Wraps the given matrix to interpret it as a 3D orthographic matrix.
///
/// It is not checked whether or not the given matrix actually represents an orthographic
/// projection.
#[inline]
pub fn from_matrix_unchecked(matrix: Matrix4<N>) -> Self {
Orthographic3 {
matrix: matrix
}
}
/// Creates a new orthographic projection matrix from an aspect ratio and the vertical field of view.
#[inline]
pub fn from_fov(aspect: N, vfov: N, znear: N, zfar: N) -> Self {
assert!(znear < zfar, "The far plane must be farther than the near plane.");
assert!(!relative_eq!(aspect, N::zero()), "The apsect ratio must not be zero.");
let half: N = ::convert(0.5);
let width = zfar * (vfov * half).tan();
let height = width / aspect;
Self::new(-width * half, width * half, -height * half, height * half, znear, zfar)
}
2017-02-13 01:17:09 +08:00
/// Retrieves the inverse of the underlying homogeneous matrix.
#[inline]
pub fn inverse(&self) -> Matrix4<N> {
2017-02-13 01:17:09 +08:00
let mut res = self.to_homogeneous();
let inv_m11 = N::one() / self.matrix[(0, 0)];
let inv_m22 = N::one() / self.matrix[(1, 1)];
let inv_m33 = N::one() / self.matrix[(2, 2)];
res[(0, 0)] = inv_m11;
res[(1, 1)] = inv_m22;
res[(2, 2)] = inv_m33;
res[(0, 3)] = -self.matrix[(0, 3)] * inv_m11;
res[(1, 3)] = -self.matrix[(1, 3)] * inv_m22;
res[(2, 3)] = -self.matrix[(2, 3)] * inv_m33;
res
}
/// Computes the corresponding homogeneous matrix.
#[inline]
pub fn to_homogeneous(&self) -> Matrix4<N> {
self.matrix.clone_owned()
}
/// A reference to the underlying homogeneous transformation matrix.
#[inline]
pub fn as_matrix(&self) -> &Matrix4<N> {
&self.matrix
}
/// Retrieves the underlying homogeneous matrix.
#[inline]
pub fn unwrap(self) -> Matrix4<N> {
self.matrix
}
/// The smallest x-coordinate of the view cuboid.
#[inline]
pub fn left(&self) -> N {
(-N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)]
}
/// The largest x-coordinate of the view cuboid.
#[inline]
pub fn right(&self) -> N {
(N::one() - self.matrix[(0, 3)]) / self.matrix[(0, 0)]
}
/// The smallest y-coordinate of the view cuboid.
#[inline]
pub fn bottom(&self) -> N {
(-N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)]
}
/// The largest y-coordinate of the view cuboid.
#[inline]
pub fn top(&self) -> N {
(N::one() - self.matrix[(1, 3)]) / self.matrix[(1, 1)]
}
/// The near plane offset of the view cuboid.
#[inline]
pub fn znear(&self) -> N {
(N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)]
}
/// The far plane offset of the view cuboid.
#[inline]
pub fn zfar(&self) -> N {
(-N::one() + self.matrix[(2, 3)]) / self.matrix[(2, 2)]
}
// FIXME: when we get specialization, specialize the Mul impl instead.
/// Projects a point. Faster than matrix multiplication.
#[inline]
pub fn project_point(&self, p: &Point3<N>) -> Point3<N> {
Point3::new(
self.matrix[(0, 0)] * p[0] + self.matrix[(0, 3)],
self.matrix[(1, 1)] * p[1] + self.matrix[(1, 3)],
self.matrix[(2, 2)] * p[2] + self.matrix[(2, 3)]
)
}
2017-02-13 01:17:09 +08:00
/// Un-projects a point. Faster than multiplication by the underlying matrix inverse.
#[inline]
pub fn unproject_point(&self, p: &Point3<N>) -> Point3<N> {
2017-02-13 01:17:09 +08:00
Point3::new(
2017-02-13 01:17:09 +08:00
(p[0] - self.matrix[(0, 3)]) / self.matrix[(0, 0)],
(p[1] - self.matrix[(1, 3)]) / self.matrix[(1, 1)],
(p[2] - self.matrix[(2, 3)]) / self.matrix[(2, 2)]
)
}
// FIXME: when we get specialization, specialize the Mul impl instead.
/// Projects a vector. Faster than matrix multiplication.
#[inline]
pub fn project_vector<SB>(&self, p: &Vector<N, U3, SB>) -> Vector3<N>
where SB: Storage<N, U3> {
Vector3::new(
self.matrix[(0, 0)] * p[0],
self.matrix[(1, 1)] * p[1],
self.matrix[(2, 2)] * p[2]
)
}
/// Sets the smallest x-coordinate of the view cuboid.
#[inline]
pub fn set_left(&mut self, left: N) {
let right = self.right();
self.set_left_and_right(left, right);
}
/// Sets the largest x-coordinate of the view cuboid.
#[inline]
pub fn set_right(&mut self, right: N) {
let left = self.left();
self.set_left_and_right(left, right);
}
/// Sets the smallest y-coordinate of the view cuboid.
#[inline]
pub fn set_bottom(&mut self, bottom: N) {
let top = self.top();
self.set_bottom_and_top(bottom, top);
}
/// Sets the largest y-coordinate of the view cuboid.
#[inline]
pub fn set_top(&mut self, top: N) {
let bottom = self.bottom();
self.set_bottom_and_top(bottom, top);
}
/// Sets the near plane offset of the view cuboid.
#[inline]
pub fn set_znear(&mut self, znear: N) {
let zfar = self.zfar();
self.set_znear_and_zfar(znear, zfar);
}
/// Sets the far plane offset of the view cuboid.
#[inline]
pub fn set_zfar(&mut self, zfar: N) {
let znear = self.znear();
self.set_znear_and_zfar(znear, zfar);
}
/// Sets the view cuboid coordinates along the `x` axis.
#[inline]
pub fn set_left_and_right(&mut self, left: N, right: N) {
assert!(left < right, "The left corner must be farther than the right corner.");
self.matrix[(0, 0)] = ::convert::<_, N>(2.0) / (right - left);
self.matrix[(0, 3)] = -(right + left) / (right - left);
}
/// Sets the view cuboid coordinates along the `y` axis.
#[inline]
pub fn set_bottom_and_top(&mut self, bottom: N, top: N) {
assert!(bottom < top, "The top corner must be higher than the bottom corner.");
self.matrix[(1, 1)] = ::convert::<_, N>(2.0) / (top - bottom);
self.matrix[(1, 3)] = -(top + bottom) / (top - bottom);
}
/// Sets the near and far plane offsets of the view cuboid.
#[inline]
pub fn set_znear_and_zfar(&mut self, znear: N, zfar: N) {
assert!(!relative_eq!(zfar - znear, N::zero()), "The near-plane and far-plane must not be superimposed.");
self.matrix[(2, 2)] = -::convert::<_, N>(2.0) / (zfar - znear);
self.matrix[(2, 3)] = -(zfar + znear) / (zfar - znear);
}
}
impl<N: Real + Rand> Rand for Orthographic3<N> {
fn rand<R: Rng>(r: &mut R) -> Self {
let left = Rand::rand(r);
let right = helper::reject_rand(r, |x: &N| *x > left);
let bottom = Rand::rand(r);
let top = helper::reject_rand(r, |x: &N| *x > bottom);
let znear = Rand::rand(r);
let zfar = helper::reject_rand(r, |x: &N| *x > znear);
Self::new(left, right, bottom, top, znear, zfar)
}
}
#[cfg(feature="arbitrary")]
impl<N: Real + Arbitrary> Arbitrary for Orthographic3<N>
where Matrix4<N>: Send {
fn arbitrary<G: Gen>(g: &mut G) -> Self {
let left = Arbitrary::arbitrary(g);
let right = helper::reject(g, |x: &N| *x > left);
let bottom = Arbitrary::arbitrary(g);
let top = helper::reject(g, |x: &N| *x > bottom);
let znear = Arbitrary::arbitrary(g);
let zfar = helper::reject(g, |x: &N| *x > znear);
Self::new(left, right, bottom, top, znear, zfar)
}
}