2021-04-30 23:06:59 +08:00
|
|
|
//! Macros for `nalgebra`.
|
|
|
|
//!
|
|
|
|
//! This crate is not intended for direct consumption. Instead, the macros are re-exported by
|
|
|
|
//! `nalgebra` if the `macros` feature is enabled (enabled by default).
|
|
|
|
|
2021-07-28 07:18:29 +08:00
|
|
|
#![deny(
|
|
|
|
nonstandard_style,
|
|
|
|
unused,
|
|
|
|
missing_docs,
|
|
|
|
rust_2018_idioms,
|
|
|
|
rust_2018_compatibility,
|
|
|
|
future_incompatible,
|
|
|
|
missing_copy_implementations,
|
|
|
|
missing_debug_implementations,
|
|
|
|
clippy::all,
|
|
|
|
clippy::pedantic
|
|
|
|
)]
|
2021-04-11 14:01:30 +08:00
|
|
|
|
2021-04-11 17:08:41 +08:00
|
|
|
use proc_macro::TokenStream;
|
2021-05-03 19:50:48 +08:00
|
|
|
use quote::{quote, ToTokens, TokenStreamExt};
|
|
|
|
use syn::parse::{Error, Parse, ParseStream, Result};
|
|
|
|
use syn::punctuated::Punctuated;
|
|
|
|
use syn::Expr;
|
|
|
|
use syn::{parse_macro_input, Token};
|
2021-04-11 17:08:41 +08:00
|
|
|
|
2021-05-03 19:50:48 +08:00
|
|
|
use proc_macro2::{Delimiter, Spacing, TokenStream as TokenStream2, TokenTree};
|
2021-04-17 15:43:55 +08:00
|
|
|
use proc_macro2::{Group, Punct};
|
|
|
|
|
2021-04-11 17:08:41 +08:00
|
|
|
struct Matrix {
|
|
|
|
// Represent the matrix as a row-major vector of vectors of expressions
|
|
|
|
rows: Vec<Vec<Expr>>,
|
|
|
|
ncols: usize,
|
2021-04-11 14:01:30 +08:00
|
|
|
}
|
|
|
|
|
2021-04-11 17:08:41 +08:00
|
|
|
impl Matrix {
|
|
|
|
fn nrows(&self) -> usize {
|
|
|
|
self.rows.len()
|
2021-04-11 14:01:30 +08:00
|
|
|
}
|
|
|
|
|
2021-04-11 17:08:41 +08:00
|
|
|
fn ncols(&self) -> usize {
|
|
|
|
self.ncols
|
2021-04-11 14:01:30 +08:00
|
|
|
}
|
|
|
|
|
2021-04-29 23:06:52 +08:00
|
|
|
/// Produces a stream of tokens representing this matrix as a column-major nested array.
|
|
|
|
fn to_col_major_nested_array_tokens(&self) -> TokenStream2 {
|
2021-04-17 15:43:55 +08:00
|
|
|
let mut result = TokenStream2::new();
|
2021-05-03 19:50:48 +08:00
|
|
|
for j in 0..self.ncols() {
|
2021-04-17 15:43:55 +08:00
|
|
|
let mut col = TokenStream2::new();
|
2021-05-03 19:50:48 +08:00
|
|
|
let col_iter = (0..self.nrows()).map(move |i| &self.rows[i][j]);
|
2021-04-17 15:43:55 +08:00
|
|
|
col.append_separated(col_iter, Punct::new(',', Spacing::Alone));
|
|
|
|
result.append(Group::new(Delimiter::Bracket, col));
|
|
|
|
result.append(Punct::new(',', Spacing::Alone));
|
2021-04-11 14:01:30 +08:00
|
|
|
}
|
2021-04-17 15:43:55 +08:00
|
|
|
TokenStream2::from(TokenTree::Group(Group::new(Delimiter::Bracket, result)))
|
2021-04-11 14:01:30 +08:00
|
|
|
}
|
2021-04-29 23:06:52 +08:00
|
|
|
|
|
|
|
/// Produces a stream of tokens representing this matrix as a column-major flat array
|
|
|
|
/// (suitable for representing e.g. a `DMatrix`).
|
|
|
|
fn to_col_major_flat_array_tokens(&self) -> TokenStream2 {
|
|
|
|
let mut data = TokenStream2::new();
|
2021-05-03 19:50:48 +08:00
|
|
|
for j in 0..self.ncols() {
|
|
|
|
for i in 0..self.nrows() {
|
2021-04-29 23:06:52 +08:00
|
|
|
self.rows[i][j].to_tokens(&mut data);
|
|
|
|
data.append(Punct::new(',', Spacing::Alone));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
TokenStream2::from(TokenTree::Group(Group::new(Delimiter::Bracket, data)))
|
|
|
|
}
|
2021-04-11 17:08:41 +08:00
|
|
|
}
|
2021-04-11 14:01:30 +08:00
|
|
|
|
2021-04-11 17:08:41 +08:00
|
|
|
type MatrixRowSyntax = Punctuated<Expr, Token![,]>;
|
2021-04-11 14:01:30 +08:00
|
|
|
|
2021-04-11 17:08:41 +08:00
|
|
|
impl Parse for Matrix {
|
2021-07-28 07:18:29 +08:00
|
|
|
fn parse(input: ParseStream<'_>) -> Result<Self> {
|
2021-04-11 17:08:41 +08:00
|
|
|
let mut rows = Vec::new();
|
2021-04-11 23:29:33 +08:00
|
|
|
let mut ncols = None;
|
|
|
|
|
|
|
|
while !input.is_empty() {
|
|
|
|
let row_span = input.span();
|
|
|
|
let row = MatrixRowSyntax::parse_separated_nonempty(input)?;
|
2021-04-11 14:01:30 +08:00
|
|
|
|
2021-04-11 23:29:33 +08:00
|
|
|
if let Some(ncols) = ncols {
|
|
|
|
if row.len() != ncols {
|
|
|
|
let row_idx = rows.len();
|
|
|
|
let error_msg = format!(
|
|
|
|
"Unexpected number of entries in row {}. Expected {}, found {} entries.",
|
|
|
|
row_idx,
|
|
|
|
ncols,
|
2021-05-03 19:50:48 +08:00
|
|
|
row.len()
|
|
|
|
);
|
2021-04-11 23:29:33 +08:00
|
|
|
return Err(Error::new(row_span, error_msg));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ncols = Some(row.len());
|
2021-04-11 14:01:30 +08:00
|
|
|
}
|
2021-04-11 17:08:41 +08:00
|
|
|
rows.push(row.into_iter().collect());
|
2021-04-11 23:29:33 +08:00
|
|
|
|
|
|
|
// We've just read a row, so if there are more tokens, there must be a semi-colon,
|
|
|
|
// otherwise the input is malformed
|
|
|
|
if !input.is_empty() {
|
|
|
|
input.parse::<Token![;]>()?;
|
|
|
|
}
|
2021-04-11 14:01:30 +08:00
|
|
|
}
|
|
|
|
|
2021-04-11 17:08:41 +08:00
|
|
|
Ok(Self {
|
|
|
|
rows,
|
2021-05-03 19:50:48 +08:00
|
|
|
ncols: ncols.unwrap_or(0),
|
2021-04-11 17:08:41 +08:00
|
|
|
})
|
2021-04-11 14:01:30 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-04-30 22:46:29 +08:00
|
|
|
/// Construct a fixed-size matrix directly from data.
|
|
|
|
///
|
2021-04-30 23:06:59 +08:00
|
|
|
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
|
|
|
|
///
|
2021-04-30 22:46:29 +08:00
|
|
|
/// This macro facilitates easy construction of matrices when the entries of the matrix are known
|
|
|
|
/// (either as constants or expressions). This macro produces an instance of `SMatrix`. This means
|
|
|
|
/// that the data of the matrix is stored on the stack, and its dimensions are fixed at
|
|
|
|
/// compile-time. If you want to construct a dynamic matrix, use [`dmatrix!`] instead.
|
|
|
|
///
|
|
|
|
/// `matrix!` is intended to be both the simplest and most efficient way to construct (small)
|
|
|
|
/// matrices, and can also be used in *const fn* contexts.
|
|
|
|
///
|
|
|
|
/// The syntax is MATLAB-like. Column elements are separated by a comma (`,`), and a semi-colon
|
|
|
|
/// (`;`) designates that a new row begins.
|
|
|
|
///
|
|
|
|
/// # Examples
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use nalgebra::matrix;
|
|
|
|
///
|
|
|
|
/// // Produces a Matrix3<_> == SMatrix<_, 3, 3>
|
|
|
|
/// let a = matrix![1, 2, 3;
|
|
|
|
/// 4, 5, 6;
|
|
|
|
/// 7, 8, 9];
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
/// You can construct matrices with arbitrary expressions for its elements:
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use nalgebra::{matrix, Matrix2};
|
|
|
|
/// let theta = 0.45f64;
|
|
|
|
///
|
|
|
|
/// let r = matrix![theta.cos(), - theta.sin();
|
|
|
|
/// theta.sin(), theta.cos()];
|
|
|
|
/// ```
|
2021-04-11 14:01:30 +08:00
|
|
|
#[proc_macro]
|
|
|
|
pub fn matrix(stream: TokenStream) -> TokenStream {
|
2021-04-11 17:08:41 +08:00
|
|
|
let matrix = parse_macro_input!(stream as Matrix);
|
|
|
|
|
2021-04-14 23:30:52 +08:00
|
|
|
let row_dim = matrix.nrows();
|
|
|
|
let col_dim = matrix.ncols();
|
2021-04-17 15:43:55 +08:00
|
|
|
|
2021-04-29 23:06:52 +08:00
|
|
|
let array_tokens = matrix.to_col_major_nested_array_tokens();
|
2021-04-11 17:08:41 +08:00
|
|
|
|
|
|
|
// TODO: Use quote_spanned instead??
|
|
|
|
let output = quote! {
|
2021-04-14 23:30:52 +08:00
|
|
|
nalgebra::SMatrix::<_, #row_dim, #col_dim>
|
2021-04-17 22:41:52 +08:00
|
|
|
::from_array_storage(nalgebra::ArrayStorage(#array_tokens))
|
2021-04-11 17:08:41 +08:00
|
|
|
};
|
2021-04-11 14:01:30 +08:00
|
|
|
|
2021-04-29 23:06:52 +08:00
|
|
|
proc_macro::TokenStream::from(output)
|
|
|
|
}
|
|
|
|
|
2021-04-30 22:46:29 +08:00
|
|
|
/// Construct a dynamic matrix directly from data.
|
|
|
|
///
|
2021-04-30 23:06:59 +08:00
|
|
|
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
|
|
|
|
///
|
2021-04-30 22:46:29 +08:00
|
|
|
/// The syntax is exactly the same as for [`matrix!`], but instead of producing instances of
|
|
|
|
/// `SMatrix`, it produces instances of `DMatrix`. At the moment it is not usable
|
|
|
|
/// in `const fn` contexts.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use nalgebra::dmatrix;
|
|
|
|
///
|
|
|
|
/// // Produces a DMatrix<_>
|
|
|
|
/// let a = dmatrix![1, 2, 3;
|
|
|
|
/// 4, 5, 6;
|
|
|
|
/// 7, 8, 9];
|
|
|
|
/// ```
|
2021-04-29 23:06:52 +08:00
|
|
|
#[proc_macro]
|
|
|
|
pub fn dmatrix(stream: TokenStream) -> TokenStream {
|
|
|
|
let matrix = parse_macro_input!(stream as Matrix);
|
|
|
|
|
|
|
|
let row_dim = matrix.nrows();
|
|
|
|
let col_dim = matrix.ncols();
|
|
|
|
|
|
|
|
let array_tokens = matrix.to_col_major_flat_array_tokens();
|
|
|
|
|
|
|
|
// TODO: Use quote_spanned instead??
|
|
|
|
let output = quote! {
|
|
|
|
nalgebra::DMatrix::<_>
|
|
|
|
::from_vec_storage(nalgebra::VecStorage::new(
|
|
|
|
nalgebra::Dynamic::new(#row_dim),
|
|
|
|
nalgebra::Dynamic::new(#col_dim),
|
|
|
|
vec!#array_tokens))
|
|
|
|
};
|
|
|
|
|
2021-04-30 20:09:36 +08:00
|
|
|
proc_macro::TokenStream::from(output)
|
|
|
|
}
|
|
|
|
|
|
|
|
struct Vector {
|
|
|
|
elements: Vec<Expr>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Vector {
|
|
|
|
fn to_array_tokens(&self) -> TokenStream2 {
|
|
|
|
let mut data = TokenStream2::new();
|
|
|
|
data.append_separated(&self.elements, Punct::new(',', Spacing::Alone));
|
|
|
|
TokenStream2::from(TokenTree::Group(Group::new(Delimiter::Bracket, data)))
|
|
|
|
}
|
|
|
|
|
|
|
|
fn len(&self) -> usize {
|
|
|
|
self.elements.len()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Parse for Vector {
|
2021-07-28 07:18:29 +08:00
|
|
|
fn parse(input: ParseStream<'_>) -> Result<Self> {
|
2021-04-30 20:09:36 +08:00
|
|
|
// The syntax of a vector is just the syntax of a single matrix row
|
|
|
|
if input.is_empty() {
|
|
|
|
Ok(Self {
|
2021-05-03 19:50:48 +08:00
|
|
|
elements: Vec::new(),
|
2021-04-30 20:09:36 +08:00
|
|
|
})
|
|
|
|
} else {
|
2021-05-03 19:50:48 +08:00
|
|
|
let elements = MatrixRowSyntax::parse_separated_nonempty(input)?
|
|
|
|
.into_iter()
|
|
|
|
.collect();
|
|
|
|
Ok(Self { elements })
|
2021-04-30 20:09:36 +08:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2021-04-30 22:46:29 +08:00
|
|
|
/// Construct a fixed-size column vector directly from data.
|
|
|
|
///
|
2021-04-30 23:06:59 +08:00
|
|
|
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
|
|
|
|
///
|
2021-04-30 22:46:29 +08:00
|
|
|
/// Similarly to [`matrix!`], this macro facilitates easy construction of fixed-size vectors.
|
|
|
|
/// However, whereas the [`matrix!`] macro expects each row to be separated by a semi-colon,
|
|
|
|
/// the syntax of this macro is instead similar to `vec!`, in that the elements of the vector
|
|
|
|
/// are simply listed consecutively.
|
|
|
|
///
|
|
|
|
/// `vector!` is intended to be the most readable and performant way of constructing small,
|
|
|
|
/// fixed-size vectors, and it is usable in `const fn` contexts.
|
|
|
|
///
|
|
|
|
/// ## Examples
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use nalgebra::vector;
|
|
|
|
///
|
|
|
|
/// // Produces a Vector3<_> == SVector<_, 3>
|
|
|
|
/// let v = vector![1, 2, 3];
|
|
|
|
/// ```
|
2021-04-30 20:09:36 +08:00
|
|
|
#[proc_macro]
|
|
|
|
pub fn vector(stream: TokenStream) -> TokenStream {
|
|
|
|
let vector = parse_macro_input!(stream as Vector);
|
|
|
|
let len = vector.len();
|
|
|
|
let array_tokens = vector.to_array_tokens();
|
|
|
|
let output = quote! {
|
|
|
|
nalgebra::SVector::<_, #len>
|
|
|
|
::from_array_storage(nalgebra::ArrayStorage([#array_tokens]))
|
|
|
|
};
|
|
|
|
proc_macro::TokenStream::from(output)
|
|
|
|
}
|
|
|
|
|
2021-04-30 22:46:29 +08:00
|
|
|
/// Construct a dynamic column vector directly from data.
|
|
|
|
///
|
2021-04-30 23:06:59 +08:00
|
|
|
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
|
|
|
|
///
|
2021-04-30 22:46:29 +08:00
|
|
|
/// The syntax is exactly the same as for [`vector!`], but instead of producing instances of
|
|
|
|
/// `SVector`, it produces instances of `DVector`. At the moment it is not usable
|
|
|
|
/// in `const fn` contexts.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use nalgebra::dvector;
|
|
|
|
///
|
|
|
|
/// // Produces a DVector<_>
|
|
|
|
/// let v = dvector![1, 2, 3];
|
|
|
|
/// ```
|
2021-04-30 20:09:36 +08:00
|
|
|
#[proc_macro]
|
|
|
|
pub fn dvector(stream: TokenStream) -> TokenStream {
|
|
|
|
let vector = parse_macro_input!(stream as Vector);
|
|
|
|
let len = vector.len();
|
|
|
|
let array_tokens = vector.to_array_tokens();
|
|
|
|
let output = quote! {
|
|
|
|
nalgebra::DVector::<_>
|
|
|
|
::from_vec_storage(nalgebra::VecStorage::new(
|
|
|
|
nalgebra::Dynamic::new(#len),
|
|
|
|
nalgebra::Const::<1>,
|
|
|
|
vec!#array_tokens))
|
|
|
|
};
|
2021-04-11 17:08:41 +08:00
|
|
|
proc_macro::TokenStream::from(output)
|
2021-05-03 19:50:48 +08:00
|
|
|
}
|
2021-05-24 23:53:59 +08:00
|
|
|
|
|
|
|
/// Construct a fixed-size point directly from data.
|
|
|
|
///
|
|
|
|
/// **Note: Requires the `macro` feature to be enabled (enabled by default)**.
|
|
|
|
///
|
|
|
|
/// Similarly to [`vector!`], this macro facilitates easy construction of points.
|
|
|
|
///
|
|
|
|
/// `point!` is intended to be the most readable and performant way of constructing small,
|
|
|
|
/// points, and it is usable in `const fn` contexts.
|
|
|
|
///
|
|
|
|
/// ## Examples
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use nalgebra::point;
|
|
|
|
///
|
|
|
|
/// // Produces a Point3<_>
|
|
|
|
/// let v = point![1, 2, 3];
|
|
|
|
/// ```
|
|
|
|
#[proc_macro]
|
|
|
|
pub fn point(stream: TokenStream) -> TokenStream {
|
|
|
|
let vector = parse_macro_input!(stream as Vector);
|
|
|
|
let len = vector.len();
|
|
|
|
let array_tokens = vector.to_array_tokens();
|
|
|
|
let output = quote! {
|
|
|
|
nalgebra::Point::<_, #len> {
|
|
|
|
coords: nalgebra::SVector::<_, #len>
|
|
|
|
::from_array_storage(nalgebra::ArrayStorage([#array_tokens]))
|
|
|
|
}
|
|
|
|
};
|
|
|
|
proc_macro::TokenStream::from(output)
|
|
|
|
}
|