TypeVar and virtual support in Symbol Resolver #99

Merged
sb10q merged 12 commits from symbol_resolver_typevar into master 2021-12-01 22:44:53 +08:00
8 changed files with 687 additions and 334 deletions

View File

@ -9,13 +9,18 @@ import nac3artiq
__all__ = ["KernelInvariant", "extern", "kernel", "portable", "nac3",
"ms", "us", "ns",
"print_int32", "print_int64",
"Core", "TTLOut", "parallel", "sequential"]
"Core", "TTLOut", "parallel", "sequential", "virtual"]
T = TypeVar('T')
class KernelInvariant(Generic[T]):
pass
# place the `virtual` class infront of the construct of NAC3 object to ensure the
# virtual class is known during the initializing of NAC3 object

Unclear - do you have an example?

Unclear - do you have an example?

Sorry for the unclear comment. Here I mean that before this line in min_artiq.py: compiler = nac3artiq.NAC3(core_arguments["target"]), the class virtual should already be known to CPython (because the construction of compiler needs to read get the id of it)

if we move this class definition below:

compiler = nac3artiq.NAC3(core_arguments["target"])
class virtual(Generic[T]):
    pass

and run the compiler, we will have:

PyErr { type: <class 'KeyError'>, value: KeyError('virtual'), traceback: None }
Sorry for the unclear comment. Here I mean that before this line in `min_artiq.py`: `compiler = nac3artiq.NAC3(core_arguments["target"])`, the class `virtual` should already be known to CPython (because the construction of `compiler` needs to read get the id of it) if we move this class definition below: ```python compiler = nac3artiq.NAC3(core_arguments["target"]) class virtual(Generic[T]): pass ``` and run the compiler, we will have: ``` PyErr { type: <class 'KeyError'>, value: KeyError('virtual'), traceback: None } ```

By the way, why is this different than the KernelInvariant class ?

By the way, why is this different than the KernelInvariant class ?

As I understand it, here during the initialization of the nac3 python object it needs to know the id of class virtual becuase virtual[..] is actually a type that can exist in the range of a typevar, and when resolving typevars, nac3artiq needs the id of it to know that it is handling a virtual.

While KernelInvariant in min_artiq.py is just for cpython to not complain about unknown name and we do not need to know its id because so far it only occurs in class fields definition and nac3 do not need to know any cpython related information about it since we are directly looking into the string in the ast.

As I understand it, here during the initialization of the nac3 python object it needs to know the id of class `virtual` becuase `virtual[..]` is actually a type that can exist in the range of a typevar, and when resolving typevars, nac3artiq needs the id of it to know that it is handling a `virtual`. While KernelInvariant in `min_artiq.py` is just for cpython to not complain about unknown name and we do not need to know its id because so far it only occurs in class fields definition and nac3 do not need to know any cpython related information about it since we are directly looking into the string in the ast.
class virtual(Generic[T]):
pass
import device_db
core_arguments = device_db.device_db["core"]["arguments"]

View File

@ -55,6 +55,10 @@ pub struct PrimitivePythonId {
bool: u64,
list: u64,
tuple: u64,
typevar: u64,
none: u64,
generic_alias: (u64, u64),
virtual_id: u64,
}
// TopLevelComposer is unsendable as it holds the unification table, which is
@ -96,10 +100,13 @@ impl Nac3 {
let val = id_fn.call1((member.get_item(1)?,))?.extract()?;
name_to_pyid.insert(key.into(), val);
}
let typings = PyModule::import(py, "typing")?;
let helper = PythonHelper {
id_fn: builtins.getattr("id").unwrap().to_object(py),
len_fn: builtins.getattr("len").unwrap().to_object(py),
type_fn: builtins.getattr("type").unwrap().to_object(py),
origin_ty_fn: typings.getattr("get_origin").unwrap().to_object(py),
args_ty_fn: typings.getattr("get_args").unwrap().to_object(py),
};
Ok((
module.getattr("__name__")?.extract()?,
@ -284,7 +291,42 @@ impl Nac3 {
let builtins_mod = PyModule::import(py, "builtins").unwrap();
let id_fn = builtins_mod.getattr("id").unwrap();
let numpy_mod = PyModule::import(py, "numpy").unwrap();
let typing_mod = PyModule::import(py, "typing").unwrap();
let types_mod = PyModule::import(py, "types").unwrap();
let primitive_ids = PrimitivePythonId {
virtual_id: id_fn
.call1((builtins_mod
.getattr("globals")
.unwrap()
.call0()
.unwrap()
.get_item("virtual")
.unwrap(),
)).unwrap()
.extract()
.unwrap(),
generic_alias: (
id_fn
.call1((typing_mod.getattr("_GenericAlias").unwrap(),))
.unwrap()
.extract()
.unwrap(),
id_fn
.call1((types_mod.getattr("GenericAlias").unwrap(),))
.unwrap()
.extract()
.unwrap(),
),
none: id_fn
.call1((builtins_mod.getattr("None").unwrap(),))
.unwrap()
.extract()
.unwrap(),
typevar: id_fn
.call1((typing_mod.getattr("TypeVar").unwrap(),))
.unwrap()
.extract()
.unwrap(),
int: id_fn
.call1((builtins_mod.getattr("int").unwrap(),))
.unwrap()
@ -403,10 +445,13 @@ impl Nac3 {
};
let mut synthesized = parse_program(&synthesized).unwrap();
let builtins = PyModule::import(py, "builtins")?;
let typings = PyModule::import(py, "typing")?;
let helper = PythonHelper {
id_fn: builtins.getattr("id").unwrap().to_object(py),
len_fn: builtins.getattr("len").unwrap().to_object(py),
type_fn: builtins.getattr("type").unwrap().to_object(py),
origin_ty_fn: typings.getattr("get_origin").unwrap().to_object(py),
args_ty_fn: typings.getattr("get_args").unwrap().to_object(py),
};
let resolver = Arc::new(Resolver(Arc::new(InnerResolver {
id_to_type: self.builtins_ty.clone().into(),

View File

@ -43,6 +43,8 @@ pub struct PythonHelper {
pub type_fn: PyObject,
pub len_fn: PyObject,
pub id_fn: PyObject,
pub origin_ty_fn: PyObject,
pub args_ty_fn: PyObject,
}
struct PythonValue {
@ -133,47 +135,46 @@ impl InnerResolver {
}))
}
fn get_obj_type(
// handle python objects that represent types themselves
// primitives and class types should be themselves, use `ty_id` to check,
// TypeVars and GenericAlias(`A[int, bool]`) should use `ty_ty_id` to check
// the `bool` value returned indicates whether they are instantiated or not
fn get_pyty_obj_type(
&self,
py: Python,
obj: &PyAny,
pyty: &PyAny,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
) -> PyResult<Option<Type>> {
) -> PyResult<Result<(Type, bool), String>> {
let ty_id: u64 = self
.helper
.id_fn
.call1(py, (self.helper.type_fn.call1(py, (obj,))?,))?
.call1(py, (pyty,))?
.extract(py)?;
let ty_ty_id: u64 = self
.helper
.id_fn
.call1(py, (self.helper.type_fn.call1(py, (pyty,))?,))?
.extract(py)?;
if ty_id == self.primitive_ids.int || ty_id == self.primitive_ids.int32 {
Ok(Some(primitives.int32))
Ok(Ok((primitives.int32, true)))
} else if ty_id == self.primitive_ids.int64 {
Ok(Some(primitives.int64))
Ok(Ok((primitives.int64, true)))
} else if ty_id == self.primitive_ids.bool {
Ok(Some(primitives.bool))
Ok(Ok((primitives.bool, true)))
} else if ty_id == self.primitive_ids.float {
Ok(Some(primitives.float))
Ok(Ok((primitives.float, true)))
} else if ty_id == self.primitive_ids.list {
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
if len == 0 {
let var = unifier.get_fresh_var().0;
let list = unifier.add_ty(TypeEnum::TList { ty: var });
Ok(Some(list))
} else {
let ty = self.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
Ok(ty.map(|ty| unifier.add_ty(TypeEnum::TList { ty })))
}
// do not handle type var param and concrete check here
let var = unifier.get_fresh_var().0;
let list = unifier.add_ty(TypeEnum::TList { ty: var });
Ok(Ok((list, false)))
} else if ty_id == self.primitive_ids.tuple {
let elements: &PyTuple = obj.cast_as()?;
let types: Result<Option<Vec<_>>, _> = elements
.iter()
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect();
let types = types?;
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id) {
// do not handle type var param and concrete check here
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: vec![] }), false)))
} else if let Some(def_id) = self.pyid_to_def.read().get(&ty_id).cloned() {
let def = defs[def_id.0].read();
if let TopLevelDef::Class {
object_id,
@ -183,54 +184,275 @@ impl InnerResolver {
..
} = &*def
{
let var_map: HashMap<_, _> = type_vars
.iter()
.map(|var| {
(
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
*id
} else {
unreachable!()
},
unifier.get_fresh_var().0,
)
})
.collect();
let mut fields_ty = HashMap::new();
for method in methods.iter() {
fields_ty.insert(method.0, (method.1, false));
}
for field in fields.iter() {
let name: String = field.0.into();
let field_data = obj.getattr(&name)?;
let ty = self
.get_obj_type(py, field_data, unifier, defs, primitives)?
.unwrap_or(primitives.none);
let field_ty = unifier.subst(field.1, &var_map).unwrap_or(field.1);
if unifier.unify(ty, field_ty).is_err() {
// field type mismatch
return Ok(None);
// do not handle type var param and concrete check here, and no subst
Ok(Ok({
let ty = TypeEnum::TObj {
obj_id: *object_id,
params: RefCell::new({
type_vars
.iter()
.map(|x| {
if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*x) {
(*id, *x)
} else {
println!("{}", unifier.default_stringify(*x));
unreachable!()
}
}).collect()
}),
fields: RefCell::new({
let mut res = methods
.iter()
.map(|(iden, ty, _)| (*iden, (*ty, false)))
.collect::<HashMap<_, _>>();
res.extend(fields.clone().into_iter().map(|x| (x.0, (x.1, x.2))));
res
})
};
// here also false, later instantiation use python object to check compatible
(unifier.add_ty(ty), false)
}))
} else {
// only object is supported, functions are not supported
unreachable!("function type is not supported, should not be queried")
}
} else if ty_ty_id == self.primitive_ids.typevar {
let constraint_types = {
let constraints = pyty.getattr("__constraints__").unwrap();
let mut result: Vec<Type> = vec![];
for i in 0.. {
if let Ok(constr) = constraints.get_item(i) {
result.push({
match self.get_pyty_obj_type(py, constr, unifier, defs, primitives)? {
Ok((ty, _)) => {
if unifier.is_concrete(ty, &[]) {
ty
} else {
return Ok(Err(format!(
"the {}th constraint of TypeVar `{}` is not concrete",
i + 1,
pyty.getattr("__name__")?.extract::<String>()?
)))
}
},
Err(err) => return Ok(Err(err))
}
})
} else {
break;
}
}
result
};
let res = unifier.get_fresh_var_with_range(&constraint_types).0;
Ok(Ok((res, true)))
} else if ty_ty_id == self.primitive_ids.generic_alias.0 || ty_ty_id == self.primitive_ids.generic_alias.1 {
let origin = self.helper.origin_ty_fn.call1(py, (pyty,))?;
let args = self.helper.args_ty_fn.call1(py, (pyty,))?;
let args: &PyTuple = args.cast_as(py)?;
let origin_ty = match self.get_pyty_obj_type(py, origin.as_ref(py), unifier, defs, primitives)? {
Ok((ty, false)) => ty,
Ok((_, true)) => return Ok(Err("instantiated type does not take type parameters".into())),
Err(err) => return Ok(Err(err))
};
match &*unifier.get_ty(origin_ty) {
TypeEnum::TList { .. } => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(py, args.get_item(0), unifier, defs, primitives)? {
Ok(ty) => ty,
Err(err) => return Ok(Err(err))
};
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
panic!("type list should take concrete parameters in type var ranges")
}
Ok(Ok((unifier.add_ty(TypeEnum::TList { ty: ty.0 }), true)))
} else {
return Ok(Err(format!("type list needs exactly 1 type parameters, found {}", args.len())))
}
},
TypeEnum::TTuple { .. } => {
let args = match args
.iter()
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.collect::<Result<Vec<_>, _>>() {
Ok(args) if !args.is_empty() => args
.into_iter()
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
panic!("type tuple should take concrete parameters in type var ranges")
} else {
x
}
)
.collect::<Vec<_>>(),
Err(err) => return Ok(Err(err)),
_ => return Ok(Err("tuple type needs at least 1 type parameters".to_string()))
};
Ok(Ok((unifier.add_ty(TypeEnum::TTuple { ty: args }), true)))
},
TypeEnum::TObj { params, obj_id, .. } => {
let subst = {
let params = &*params.borrow();
if params.len() != args.len() {
return Ok(Err(format!(
"for class #{}, expect {} type parameters, got {}.",
obj_id.0,
params.len(),
args.len(),
)))
}
let args = match args
.iter()
.map(|x| self.get_pyty_obj_type(py, x, unifier, defs, primitives))
.collect::<Result<Vec<_>, _>>()?
.into_iter()
.collect::<Result<Vec<_>, _>>() {
Ok(args) => args
.into_iter()
.map(|(x, check)| if !unifier.is_concrete(x, &[]) && !check {
panic!("type class should take concrete parameters in type var ranges")
} else {
x
}
)
.collect::<Vec<_>>(),
Err(err) => return Ok(Err(err)),
};
params
.iter()
.zip(args.iter())
.map(|((id, _), ty)| (*id, *ty))
.collect::<HashMap<_, _>>()
};
Ok(Ok((unifier.subst(origin_ty, &subst).unwrap_or(origin_ty), true)))
},
TypeEnum::TVirtual { .. } => {
if args.len() == 1 {
let ty = match self.get_pyty_obj_type(py, args.get_item(0), unifier, defs, primitives)? {
Ok(ty) => ty,
Err(err) => return Ok(Err(err))
};
if !unifier.is_concrete(ty.0, &[]) && !ty.1 {
panic!("virtual class should take concrete parameters in type var ranges")
}
Ok(Ok((unifier.add_ty(TypeEnum::TVirtual { ty: ty.0 }), true)))
} else {
return Ok(Err(format!("virtual class needs exactly 1 type parameters, found {}", args.len())))
}
}
_ => unimplemented!()
}
} else if ty_id == self.primitive_ids.virtual_id {
Ok(Ok(({
let ty = TypeEnum::TVirtual { ty: unifier.get_fresh_var().0 };
unifier.add_ty(ty)
}, false)))
} else {
Ok(Err("unknown type".into()))
}
}
fn get_obj_type(
&self,
py: Python,
obj: &PyAny,
unifier: &mut Unifier,
defs: &[Arc<RwLock<TopLevelDef>>],
primitives: &PrimitiveStore,
) -> PyResult<Option<Type>> {
let ty = self.helper.type_fn.call1(py, (obj,)).unwrap();
let (extracted_ty, inst_check) = match self.get_pyty_obj_type(
py,
{
if [self.primitive_ids.typevar,
self.primitive_ids.generic_alias.0,
self.primitive_ids.generic_alias.1
].contains(&self.helper.id_fn.call1(py, (ty.clone(),))?.extract::<u64>(py)?) {
obj
} else {
ty.as_ref(py)
}
},
unifier,
defs,
primitives
)? {
Ok(s) => s,
Err(_) => return Ok(None)
};
return match (&*unifier.get_ty(extracted_ty), inst_check) {
// do the instantiation for these three types
(TypeEnum::TList { ty }, false) => {
let len: usize = self.helper.len_fn.call1(py, (obj,))?.extract(py)?;
if len == 0 {
assert!(matches!(
&*unifier.get_ty(extracted_ty),
TypeEnum::TVar { meta: nac3core::typecheck::typedef::TypeVarMeta::Generic, range, .. }
if range.borrow().is_empty()
));
Ok(Some(extracted_ty))
} else {
let actual_ty = self
.get_list_elem_type(py, obj, len, unifier, defs, primitives)?;
if let Some(actual_ty) = actual_ty {
unifier.unify(*ty, actual_ty).unwrap();
Ok(Some(extracted_ty))
} else {
Ok(None)
}
}
}
(TypeEnum::TTuple { .. }, false) => {
let elements: &PyTuple = obj.cast_as()?;
let types: Result<Option<Vec<_>>, _> = elements
.iter()
.map(|elem| self.get_obj_type(py, elem, unifier, defs, primitives))
.collect();
let types = types?;
Ok(types.map(|types| unifier.add_ty(TypeEnum::TTuple { ty: types })))
}
(TypeEnum::TObj { params, fields, .. }, false) => {
let var_map = params
.borrow()
.iter()
.map(|(id_var, ty)| {
if let TypeEnum::TVar { id, range, .. } = &*unifier.get_ty(*ty) {
assert_eq!(*id, *id_var);
(*id, unifier.get_fresh_var_with_range(&range.borrow()).0)
} else {
unreachable!()
}
})
.collect::<HashMap<_, _>>();
// loop through non-function fields of the class to get the instantiated value
for field in fields.borrow().iter() {
let name: String = (*field.0).into();
if let TypeEnum::TFunc( .. ) = &*unifier.get_ty(field.1.0) {
continue;
} else {
let field_data = obj.getattr(&name)?;
let ty = self
.get_obj_type(py, field_data, unifier, defs, primitives)?
.unwrap_or(primitives.none);
let field_ty = unifier.subst(field.1.0, &var_map).unwrap_or(field.1.0);
if unifier.unify(ty, field_ty).is_err() {
// field type mismatch
return Ok(None);
}
}
fields_ty.insert(field.0, (ty, field.2));
}
for (_, ty) in var_map.iter() {
// must be concrete type
if !unifier.is_concrete(*ty, &[]) {
return Ok(None);
return Ok(None)
}
}
Ok(Some(unifier.add_ty(TypeEnum::TObj {
obj_id: *object_id,
fields: RefCell::new(fields_ty),
params: RefCell::new(var_map),
})))
} else {
// only object is supported, functions are not supported
Ok(None)
return Ok(Some(unifier.subst(extracted_ty, &var_map).unwrap_or(extracted_ty)));
}
} else {
Ok(None)
}
_ => Ok(Some(extracted_ty))
};
}
fn get_obj_value<'ctx, 'a>(
@ -620,4 +842,4 @@ impl SymbolResolver for Resolver {
result
})
}
}
}

View File

@ -138,159 +138,165 @@ pub fn parse_type_annotation<T>(
let list_id = ids[6];
let tuple_id = ids[7];
match &expr.node {
Name { id, .. } => {
if *id == int32_id {
Ok(primitives.int32)
} else if *id == int64_id {
Ok(primitives.int64)
} else if *id == float_id {
Ok(primitives.float)
} else if *id == bool_id {
Ok(primitives.bool)
} else if *id == none_id {
Ok(primitives.none)
} else {
let obj_id = resolver.get_identifier_def(*id);
if let Some(obj_id) = obj_id {
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if !type_vars.is_empty() {
return Err(format!(
"Unexpected number of type parameters: expected {} but got 0",
type_vars.len()
));
}
let fields = RefCell::new(
chain(
fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
methods.iter().map(|(k, v, _)| (*k, (*v, false))),
)
.collect(),
);
Ok(unifier.add_ty(TypeEnum::TObj {
obj_id,
fields,
params: Default::default(),
}))
} else {
Err("Cannot use function name as type".into())
let name_handling = |id: &StrRef, unifier: &mut Unifier| {
if *id == int32_id {
Ok(primitives.int32)
} else if *id == int64_id {
Ok(primitives.int64)
} else if *id == float_id {
Ok(primitives.float)
} else if *id == bool_id {
Ok(primitives.bool)
} else if *id == none_id {
Ok(primitives.none)
} else {
let obj_id = resolver.get_identifier_def(*id);
if let Some(obj_id) = obj_id {
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if !type_vars.is_empty() {
return Err(format!(
"Unexpected number of type parameters: expected {} but got 0",
type_vars.len()
));
}
let fields = RefCell::new(
chain(
fields.iter().map(|(k, v, m)| (*k, (*v, *m))),
methods.iter().map(|(k, v, _)| (*k, (*v, false))),
)
.collect(),
);
Ok(unifier.add_ty(TypeEnum::TObj {
obj_id,
fields,
params: Default::default(),
}))
} else {
// it could be a type variable
let ty = resolver
.get_symbol_type(unifier, top_level_defs, primitives, *id)
.ok_or_else(|| "unknown type variable name".to_owned())?;
if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) {
Ok(ty)
} else {
Err(format!("Unknown type annotation {}", id))
}
Err("Cannot use function name as type".into())
}
} else {
// it could be a type variable
let ty = resolver
.get_symbol_type(unifier, top_level_defs, primitives, *id)
.ok_or_else(|| "unknown type variable name".to_owned())?;
if let TypeEnum::TVar { .. } = &*unifier.get_ty(ty) {
Ok(ty)
} else {
Err(format!("Unknown type annotation {}", id))
}
}
}
Subscript { value, slice, .. } => {
if let Name { id, .. } = &value.node {
if *id == virtual_id {
let ty = parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
slice,
)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
} else if *id == list_id {
let ty = parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
slice,
)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
} else if *id == tuple_id {
if let Tuple { elts, .. } = &slice.node {
let ty = elts
.iter()
.map(|elt| {
parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
elt,
)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
} else {
Err("Expected multiple elements for tuple".into())
}
} else {
let types = if let Tuple { elts, .. } = &slice.node {
elts.iter()
.map(|v| {
parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
v,
)
})
.collect::<Result<Vec<_>, _>>()?
} else {
vec![parse_type_annotation(
};
let subscript_name_handle = |id: &StrRef, slice: &Expr<T>, unifier: &mut Unifier| {
if *id == virtual_id {
let ty = parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
slice,
)?;
Ok(unifier.add_ty(TypeEnum::TVirtual { ty }))
} else if *id == list_id {
let ty = parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
slice,
)?;
Ok(unifier.add_ty(TypeEnum::TList { ty }))
} else if *id == tuple_id {
if let Tuple { elts, .. } = &slice.node {
let ty = elts
.iter()
.map(|elt| {
parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
slice,
)?]
};
elt,
)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.add_ty(TypeEnum::TTuple { ty }))
} else {
Err("Expected multiple elements for tuple".into())
}
} else {
let types = if let Tuple { elts, .. } = &slice.node {
elts.iter()
.map(|v| {
parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
v,
)
})
.collect::<Result<Vec<_>, _>>()?
} else {
vec![parse_type_annotation(
resolver,
top_level_defs,
unifier,
primitives,
slice,
)?]
};
let obj_id = resolver
.get_identifier_def(*id)
.ok_or_else(|| format!("Unknown type annotation {}", id))?;
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if types.len() != type_vars.len() {
return Err(format!(
"Unexpected number of type parameters: expected {} but got {}",
type_vars.len(),
types.len()
));
}
let mut subst = HashMap::new();
for (var, ty) in izip!(type_vars.iter(), types.iter()) {
let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
*id
} else {
unreachable!()
};
subst.insert(id, *ty);
}
let mut fields = fields
.iter()
.map(|(attr, ty, is_mutable)| {
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*attr, (ty, *is_mutable))
})
.collect::<HashMap<_, _>>();
fields.extend(methods.iter().map(|(attr, ty, _)| {
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*attr, (ty, false))
}));
Ok(unifier.add_ty(TypeEnum::TObj {
obj_id,
fields: fields.into(),
params: subst.into(),
}))
} else {
Err("Cannot use function name as type".into())
}
let obj_id = resolver
.get_identifier_def(*id)
.ok_or_else(|| format!("Unknown type annotation {}", id))?;
let def = top_level_defs[obj_id.0].read();
if let TopLevelDef::Class { fields, methods, type_vars, .. } = &*def {
if types.len() != type_vars.len() {
return Err(format!(
"Unexpected number of type parameters: expected {} but got {}",
type_vars.len(),
types.len()
));
}
let mut subst = HashMap::new();
for (var, ty) in izip!(type_vars.iter(), types.iter()) {
let id = if let TypeEnum::TVar { id, .. } = &*unifier.get_ty(*var) {
*id
} else {
unreachable!()
};
subst.insert(id, *ty);
}
let mut fields = fields
.iter()
.map(|(attr, ty, is_mutable)| {
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*attr, (ty, *is_mutable))
})
.collect::<HashMap<_, _>>();
fields.extend(methods.iter().map(|(attr, ty, _)| {
let ty = unifier.subst(*ty, &subst).unwrap_or(*ty);
(*attr, (ty, false))
}));
Ok(unifier.add_ty(TypeEnum::TObj {
obj_id,
fields: fields.into(),
params: subst.into(),
}))
} else {
Err("Cannot use function name as type".into())
}
}
};
match &expr.node {
Name { id, .. } => name_handling(id, unifier),
Subscript { value, slice, .. } => {
if let Name { id, .. } = &value.node {
subscript_name_handle(id, slice, unifier)
} else {
Err("unsupported type expression".into())
}

View File

@ -532,7 +532,7 @@ impl TopLevelComposer {
}
}
fn extract_def_list(&self) -> Vec<Arc<RwLock<TopLevelDef>>> {
pub fn extract_def_list(&self) -> Vec<Arc<RwLock<TopLevelDef>>> {
self.definition_ast_list.iter().map(|(def, ..)| def.clone()).collect_vec()
}

View File

@ -24,7 +24,7 @@ pub struct DefinitionId(pub usize);
pub mod composer;
pub mod helper;
mod type_annotation;
pub mod type_annotation;
use composer::*;
use type_annotation::*;
#[cfg(test)]

View File

@ -1,7 +1,6 @@
use std::cell::RefCell;
use crate::typecheck::typedef::TypeVarMeta;
use super::*;
#[derive(Clone, Debug)]
@ -49,54 +48,121 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
primitives: &PrimitiveStore,
expr: &ast::Expr<T>,
// the key stores the type_var of this topleveldef::class, we only need this field here
mut locked: HashMap<DefinitionId, Vec<Type>>,
locked: HashMap<DefinitionId, Vec<Type>>,
) -> Result<TypeAnnotation, String> {
match &expr.node {
ast::ExprKind::Name { id, .. } => {
if id == &"int32".into() {
Ok(TypeAnnotation::Primitive(primitives.int32))
} else if id == &"int64".into() {
Ok(TypeAnnotation::Primitive(primitives.int64))
} else if id == &"float".into() {
Ok(TypeAnnotation::Primitive(primitives.float))
} else if id == &"bool".into() {
Ok(TypeAnnotation::Primitive(primitives.bool))
} else if id == &"None".into() {
Ok(TypeAnnotation::Primitive(primitives.none))
} else if id == &"str".into() {
Ok(TypeAnnotation::Primitive(primitives.str))
} else if let Some(obj_id) = resolver.get_identifier_def(*id) {
let type_vars = {
let def_read = top_level_defs[obj_id.0].try_read();
if let Some(def_read) = def_read {
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
type_vars.clone()
} else {
return Err("function cannot be used as a type".into());
}
let name_handle = |id: &StrRef, unifier: &mut Unifier, locked: HashMap<DefinitionId, Vec<Type>>| {
if id == &"int32".into() {
Ok(TypeAnnotation::Primitive(primitives.int32))
} else if id == &"int64".into() {
Ok(TypeAnnotation::Primitive(primitives.int64))
} else if id == &"float".into() {
Ok(TypeAnnotation::Primitive(primitives.float))
} else if id == &"bool".into() {
Ok(TypeAnnotation::Primitive(primitives.bool))
} else if id == &"None".into() {
Ok(TypeAnnotation::Primitive(primitives.none))
} else if id == &"str".into() {
Ok(TypeAnnotation::Primitive(primitives.str))
} else if let Some(obj_id) = resolver.get_identifier_def(*id) {
let type_vars = {
let def_read = top_level_defs[obj_id.0].try_read();
if let Some(def_read) = def_read {
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
type_vars.clone()
} else {
locked.get(&obj_id).unwrap().clone()
return Err("function cannot be used as a type".into());
}
};
// check param number here
if !type_vars.is_empty() {
return Err(format!(
"expect {} type variable parameter but got 0",
type_vars.len()
));
}
Ok(TypeAnnotation::CustomClass { id: obj_id, params: vec![] })
} else if let Some(ty) = resolver.get_symbol_type(unifier, top_level_defs, primitives, *id) {
if let TypeEnum::TVar { .. } = unifier.get_ty(ty).as_ref() {
Ok(TypeAnnotation::TypeVar(ty))
} else {
Err("not a type variable identifier".into())
locked.get(&obj_id).unwrap().clone()
}
};
// check param number here
if !type_vars.is_empty() {
return Err(format!(
"expect {} type variable parameter but got 0",
type_vars.len()
));
}
Ok(TypeAnnotation::CustomClass { id: obj_id, params: vec![] })
} else if let Some(ty) = resolver.get_symbol_type(unifier, top_level_defs, primitives, *id) {
if let TypeEnum::TVar { .. } = unifier.get_ty(ty).as_ref() {
Ok(TypeAnnotation::TypeVar(ty))
} else {
Err("not a type variable identifier".into())
}
} else {
Err("name cannot be parsed as a type annotation".into())
}
};
let class_name_handle =
|id: &StrRef, slice: &ast::Expr<T>, unifier: &mut Unifier, mut locked: HashMap<DefinitionId, Vec<Type>>| {
if vec!["virtual".into(), "Generic".into(), "list".into(), "tuple".into()]
.contains(id)
{
return Err("keywords cannot be class name".into());
}
let obj_id = resolver
.get_identifier_def(*id)
.ok_or_else(|| "unknown class name".to_string())?;
let type_vars = {
let def_read = top_level_defs[obj_id.0].try_read();
if let Some(def_read) = def_read {
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
type_vars.clone()
} else {
unreachable!("must be class here")
}
} else {
Err("name cannot be parsed as a type annotation".into())
locked.get(&obj_id).unwrap().clone()
}
}
};
// we do not check whether the application of type variables are compatible here
let param_type_infos = {
let params_ast = if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
elts.iter().collect_vec()
} else {
vec![slice]
};
if type_vars.len() != params_ast.len() {
return Err(format!(
"expect {} type parameters but got {}",
type_vars.len(),
params_ast.len()
));
}
let result = params_ast
.into_iter()
.map(|x| {
parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
x,
{
locked.insert(obj_id, type_vars.clone());
locked.clone()
},
)
})
.collect::<Result<Vec<_>, _>>()?;
// make sure the result do not contain any type vars
let no_type_var = result
.iter()
.all(|x| get_type_var_contained_in_type_annotation(x).is_empty());
if no_type_var {
result
} else {
return Err("application of type vars to generic class \
is not currently supported"
.into());
}
};
Ok(TypeAnnotation::CustomClass { id: obj_id, params: param_type_infos })
};
match &expr.node {
ast::ExprKind::Name { id, .. } => name_handle(id, unifier, locked),
// virtual
ast::ExprKind::Subscript { value, slice, .. }
if {
@ -163,71 +229,7 @@ pub fn parse_ast_to_type_annotation_kinds<T>(
// custom class
ast::ExprKind::Subscript { value, slice, .. } => {
if let ast::ExprKind::Name { id, .. } = &value.node {
if vec!["virtual".into(), "Generic".into(), "list".into(), "tuple".into()]
.contains(id)
{
return Err("keywords cannot be class name".into());
}
let obj_id = resolver
.get_identifier_def(*id)
.ok_or_else(|| "unknown class name".to_string())?;
let type_vars = {
let def_read = top_level_defs[obj_id.0].try_read();
if let Some(def_read) = def_read {
if let TopLevelDef::Class { type_vars, .. } = &*def_read {
type_vars.clone()
} else {
unreachable!("must be class here")
}
} else {
locked.get(&obj_id).unwrap().clone()
}
};
// we do not check whether the application of type variables are compatible here
let param_type_infos = {
let params_ast = if let ast::ExprKind::Tuple { elts, .. } = &slice.node {
elts.iter().collect_vec()
} else {
vec![slice.as_ref()]
};
if type_vars.len() != params_ast.len() {
return Err(format!(
"expect {} type parameters but got {}",
type_vars.len(),
params_ast.len()
));
}
let result = params_ast
.into_iter()
.map(|x| {
parse_ast_to_type_annotation_kinds(
resolver,
top_level_defs,
unifier,
primitives,
x,
{
locked.insert(obj_id, type_vars.clone());
locked.clone()
},
)
})
.collect::<Result<Vec<_>, _>>()?;
// make sure the result do not contain any type vars
let no_type_var = result
.iter()
.all(|x| get_type_var_contained_in_type_annotation(x).is_empty());
if no_type_var {
result
} else {
return Err("application of type vars to generic class \
is not currently supported"
.into());
}
};
Ok(TypeAnnotation::CustomClass { id: obj_id, params: param_type_infos })
class_name_handle(id, slice, unifier, locked)
} else {
Err("unsupported expression type for class name".into())
}
@ -370,13 +372,7 @@ pub fn get_type_from_type_annotation_kinds(
/// But note that here we do not make a duplication of `T`, `V`, we direclty
/// use them as they are in the TopLevelDef::Class since those in the
/// TopLevelDef::Class.type_vars will be substitute later when seeing applications/instantiations
/// the Type of their fields and methods will also be subst when application/instantiation \
/// \
/// Note this implicit self type is different with seeing `A[T, V]` explicitly outside
/// the class def ast body, where it is a new instantiation of the generic class `A`,
/// but equivalent to seeing `A[T, V]` inside the class def body ast, where although we
/// create copies of `T` and `V`, we will find them out as occured type vars in the analyze_class()
/// and unify them with the class generic `T`, `V`
/// the Type of their fields and methods will also be subst when application/instantiation
pub fn make_self_type_annotation(type_vars: &[Type], object_id: DefinitionId) -> TypeAnnotation {
TypeAnnotation::CustomClass {
id: object_id,

View File

@ -3,8 +3,9 @@ use inkwell::{
targets::*,
OptimizationLevel,
};
use nac3core::typecheck::type_inferencer::PrimitiveStore;
use nac3core::typecheck::{type_inferencer::PrimitiveStore, typedef::{Type, Unifier}};
use nac3parser::{ast::{Expr, ExprKind, StmtKind}, parser};
use parking_lot::RwLock;
use std::{borrow::Borrow, env};
use std::fs;
use std::{collections::HashMap, path::Path, sync::Arc, time::SystemTime};
@ -15,7 +16,11 @@ use nac3core::{
WorkerRegistry,
},
symbol_resolver::SymbolResolver,
toplevel::{composer::TopLevelComposer, TopLevelDef, helper::parse_parameter_default_value},
toplevel::{
composer::TopLevelComposer,
TopLevelDef, helper::parse_parameter_default_value,
type_annotation::*,
},
typecheck::typedef::FunSignature,
};
@ -68,25 +73,84 @@ fn main() {
for stmt in parser_result.into_iter() {
if let StmtKind::Assign { targets, value, .. } = &stmt.node {
fn handle_typevar_definition(
var: &Expr,
resolver: &(dyn SymbolResolver + Send + Sync),
def_list: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
) -> Result<Type, String> {
if let ExprKind::Call { func, args, .. } = &var.node {
if matches!(&func.node, ExprKind::Name { id, .. } if id == &"TypeVar".into()) {
let constraints = args
.iter()
.skip(1)
.map(|x| -> Result<Type, String> {
let ty = parse_ast_to_type_annotation_kinds(
resolver,
def_list,
unifier,
primitives,
x,
Default::default(),
)?;
get_type_from_type_annotation_kinds(def_list, unifier, primitives, &ty)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(unifier.get_fresh_var_with_range(&constraints).0)
} else {
Err(format!("expression {:?} cannot be handled as a TypeVar in global scope", var))
}
} else {
Err(format!("expression {:?} cannot be handled as a TypeVar in global scope", var))
}
}
fn handle_assignment_pattern(
targets: &[Expr],
value: &Expr,
resolver: &(dyn SymbolResolver + Send + Sync),
internal_resolver: &ResolverInternal,
def_list: &[Arc<RwLock<TopLevelDef>>],
unifier: &mut Unifier,
primitives: &PrimitiveStore,
) -> Result<(), String> {
if targets.len() == 1 {
match &targets[0].node {
ExprKind::Name { id, .. } => {
let val = parse_parameter_default_value(value.borrow(), resolver)?;
internal_resolver.add_module_global(*id, val);
Ok(())
if let Ok(var) = handle_typevar_definition(
value.borrow(),
resolver,
def_list,
unifier,
primitives,
) {
internal_resolver.add_id_type(*id, var);
Ok(())
} else if let Ok(val) = parse_parameter_default_value(value.borrow(), resolver) {
internal_resolver.add_module_global(*id, val);
Ok(())
} else {
Err(format!("fails to evaluate this expression `{:?}` as a constant or TypeVar at {}",
targets[0].node,
targets[0].location,
))
}
}
ExprKind::List { elts, .. }
| ExprKind::Tuple { elts, .. } => {
handle_assignment_pattern(elts, value, resolver, internal_resolver)?;
handle_assignment_pattern(
elts,
value,
resolver,
internal_resolver,
def_list,
unifier,
primitives
)?;
Ok(())
}
_ => unreachable!("cannot be assigned")
_ => Err(format!("assignment to {:?} is not supported at {}", targets[0], targets[0].location))
}
} else {
match &value.node {
@ -105,7 +169,10 @@ fn main() {
std::slice::from_ref(tar),
val,
resolver,
internal_resolver
internal_resolver,
def_list,
unifier,
primitives
)?;
}
Ok(())
@ -115,7 +182,19 @@ fn main() {
}
}
}
if let Err(err) = handle_assignment_pattern(targets, value, resolver.as_ref(), internal_resolver.as_ref()) {
let def_list = composer.extract_def_list();
let unifier = &mut composer.unifier;
let primitives = &composer.primitives_ty;
if let Err(err) = handle_assignment_pattern(
targets,
value,
resolver.as_ref(),
internal_resolver.as_ref(),
&def_list,
unifier,
primitives,
) {
eprintln!("{}", err);
return;
}